

Optimizing the ATLAS Geant4 Detector Simulation Software

Dr. Evangelos Kourlitis on behalf of the ATLAS Geant4 Optimization Task Force

October 24th 2022

Argonne (Argonne (Arg

LHC Analysis Workflow

Reconstruction & Analysis

arXiv:2207.00320

LHC Analysis Workflow

Reconstruction & Analysis

ATLAS Detector Simulation

Facts

- Full detector simulations (aka FullSim full <u>Geant4</u> tracking) are 1. accurate but the largest CPU consumer
- 2. FullSim usage is critical (CP calibrations, FastSim training, etc.)
- LAr EM calorimeters dominate the simulation load: 3.
 - low-energy photons from electron scattering а.
 - b. highly-segmented geometry

Geant4 Optimisation Task Force responsible for optimising the performance of the ATLAS Geant4 simulation software Formed in September 2020 with the target to achieve for Run 3

- >30% CPU time speed up w.r.t the comparable Run 2 simulation

Geant4 Optimizations for Run 3

1. Production-ready

2. Ongoing R&D selection

LHC schedule [link]

ATLAS Simulation Production Schedule

Production-Ready Optimizations

Big Library / Static Linking

Use Geant4 as static library to avoid "trampolines" (Lookup Table delay)

Define a BigSimulation shared library, by grouping of all libraries from Athena packages that use Geant4

no physics validation was needed

Benchmark and Athena* showed ~7% speed up

HepExpMT stand-alone Geant4 benchmark

Reducing Operations

Gamma General Process

Use only one, collective physics process for photons → reduced number of instructions/ calculations on geometry boundary crossings

~4.5% speed up

on 100 ttbar events in Athena

Magnetic Field Tailored Switch-OFF

Speed up observed when switching-off magnetic field in LAr calorimeter (except for muons) without affecting shower shapes

~3% Speed UP on 200 ttbar events in Athena Possibility to extend solution to other detector regions too

Accelerating Geometries

EMEC Custom Solid

Described by a custom Geant4 solid using G4Polycone for internal calculations. Re-Implemented custom solid variants:

- Wheel: the default with G4Polycone •
- **Cone**: improved shape using G4ShiftedCone outer wheel divided into two conical-shaped sections
- Slices: new LArWheelSliceSolid each wheel is divided into many thick slices along Z axis

Slices variant showed 5-6% speed up

VecGeom Integration

A geometry modeller/navigation library providing fast geometry primitives as well as vectorised (SIMD) navigation.

enabled in Athena only for G4Cons & G4Polycones

3 - 4.5% speed up on top of the rest of Run3Opt

Russian Roulettes & EM Range Cuts

Russian Roulette

- Neutrons and photons take majority of CPU time EM calorimeters most resource intensive
- Photon/Neutron Russian Roulette (PRR/NRR): randomly discard particles below energy threshold and weight the energy deposits of remaining particles accordingly
- NRR performance: **10% speed up** with 2 MeV threshold for neutrons

EM Range Cuts

- is below a certain value
- OFF by default for three processes:
- Turning them on provides ~6-7%

Geant4 Optimizations Speedup Timeline

Current optimisations into production surpass the target performance improvement

Realistic Benchmarks

Improvement is also observed in "realistic" production conditions – LWCG sites

*Big Library optimization is missing

Voxel Density Tuning

Geant4 tracking is optimized by voxelization

The density of the voxels can be tuned

- Goal: Optimize the voxel density value for a balance between memory usage for the detector description and CPU time for tracking
- No significant effect on simulation accuracy is expected – to be validated

Optimal values show a preliminary:

- ~40% memory usage reduction
- for the ~same CPU time

130

210

190 180 [s] 170 -년 160 년 ن_{- 150} س

140

voxels

voxels

Woodcock Tracking

Reducing simulation steps (and CPU time) without approximations

Woodcock, E., et al. "Techniques used in the GEM code for Monte Carlo neutronics" calculations in reactors and other systems of complex geometry." Proc. Conf. Applications of Computing Methods to Reactor Problems. Vol. 557. No. 2. 1965.

- Especially powerful in highly granular detectors (e.g, the EMEC) where geometric boundaries limit steps, rather than interactions
- Performs tracking in one material without boundaries: the densest (Pb)
 - Avoids many steps caused by geometric boundaries (*Transportation*)
- Interaction probability is proportional to the cross section ratio between the real material and Pb
- Implemented as a modification of the G4GammaGeneralProcess

Results from stand-alone simulation of the ATLAS detector with Woodcock Tracking enabled in EMEC

		FTFP_BERT_ATL	_'
#steps	charged	3.548e+06	
	neutral	8.501e + 06	

Simplified sampling calorimeter: 50 layers of [2.3 mm Pb + 5.7 mm lAr] (when applied, alternating *Woodcock*- and *"G4-Native"*- tracking of γ with a period of 5 layers)

WDCK Woodcock(EMEC)3.550e + 064.215e+06

- ~50% EMEC step reduction
- 8-9% overall CPU speedup

Longer R&D Projects

G4HepEM library 1.

New compact and GPU-friendly Geant4 HEP EM library provides significant speed up with specialized tracking

GPU-friendly EMEC description 2.

Description of the EMEC with standard Geant4/VecGeom shapes provides speedup due to internal vectorization and portability to accelerator hardware

TRT Geometry Optimization 3.

Reduce the usage of Boolean shapes/operations using alternative descriptions

4. New beam-pipe particle filter

Kill primary particles generating secondaries close to the beam-pipe at 5-6 m that will never cause any energy deposition to the detector

Quantized State System Stepper 5.

Efficient handling of discontinuities (geometric boundaries) in the simulation

Thread Local Storage optimization 6.

Reduce TLS usage/bottlenecks in magnetic field handling

7. Machine Learning Correction for Aggressive Range Cuts

Fast production and correction of low-fidelity EM showers

Conclusions

- ongoing and new ideas target both the upcoming Run 3
- and future Run 4 MC campaigns

- Optimizations delivered >50% higher throughput so far 1.5 times more events can be simulated using the same computational resources compared to Run 2
 - More optimizations in R&D phase

Excellent collaboration with the Geant4 team allowed R&D projects to turn into production