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In axion models, the global U(1) Peccei-Quinn (PQ) symmetry is explicitly broken by non-
perturbative effects of gravity, such as axionic wormholes. The gravitational violation of the PQ
symmetry due to wormholes is large enough to invalidate the PQ mechanism, which is entitled as
the axion quality problem. Recently, a novel solution to this quality problem was suggested, where
the non-minimal coupling of the axion field to gravity ξ is introduced to suppress the wormhole
contribution. In this work, we revisit the problem in a different but equally valid formulation of
gravity, namely the Palatini formulation, where the Ricci scalar is solely determined by connection.
We first find the axionic wormhole solution in the Palatini formulation, taking the full dynamical
radial mode as well as the axial mode, then show that the quality problem is still resolved with the
non-minimal coupling ξ. The requested lower bound of ξ in the Palatini formulation turns out to
be slightly higher than that in the metric formulation.

INTRODUCTION

The axion [1, 2], which is a pseudo-Nambu-Goldstone
boson associated with the spontaneous breaking of the
global U(1) Peccei-Quinn (PQ) symmetry [3, 4], is intro-
duced as a solution to the strong CP problem. Below the
QCD scale, the axion field obtains a periodic potential
induced by QCD instantons to settle down to an exactly
CP-conserving vacuum. However, even a tiny violation
of this symmetry can jeopardize the PQ solution to the
strong CP problem, leading to the mechanism being ex-
tremely sensitive to the quality of the PQ symmetry [5].

From an effective field theory perspective, we expect
that there should be higher dimensional operators of the

form ∆V ∼ cΦn/Mn−4
P ∼ cfn

a

Mn−4
P

cos
(
nφ
fa

+ δ
)

where Φ is

a complex PQ scalar and φ is the associated axion field
with a decay constant fa [6]. Indeed, it is expected that
gravity may spoil any global symmetry at the least [7–11]
and the PQ symmetry may not be an exception. This vio-
lation of the U(1) symmetry generally displaces the axion
field from the CP-conserving minimum of the axion po-
tential. If the deviation is too large, the induced value of
the neutron electric dipole moment becomes incompati-
ble with the experimental upper bound [12], and hence
the PQ mechanism does not work as a viable solution to
the strong CP problem. This is called the ‘axion qual-
ity problem’ [13–15] and there have been many possible
solutions suggested in the literature [16–21].

Meanwhile, an axionic wormhole [7, 22, 23], which is a
gravitational instanton in Euclidean spacetime, is a well-
known case that explicitly shows the gravitational vio-
lation of the U(1) symmetry. It has a non-trivial topol-
ogy characterized by a global U(1) charge and induces

effective local operators that violate the U(1) symme-
try through computing quantum transition amplitudes
in a semi-classical approximation [24–27]. (See also
Refs. [28, 29].) Assuming these non-perturbative effects
as the source of symmetry breaking, the coefficients of
these operators have a characteristic exponentially sup-
pressed term consisting of a coefficient of order c ∼ e−S

with S corresponding to the wormhole action [27, 30].1 In
order to issue the quality problem, the wormhole action
should be large, S & 190, for its effect to be suppressed
enough [7, 32].

Whether these wormholes induce the quality problem
depends sensitively on the UV model that realizes the
axion at low energies [32]. In a simple model with a
periodic scalar field [22, 23], the wormhole action is S ∼
nMP /fa; thus the value becomes large enough when the
decay constant is small as fa . 1016 GeV. However, the
result drastically changes if the axion corresponds to a
phase component of a complex scalar field together with
a dynamical radial component, Φ = feiθ/

√
2. In this

case, the field value of f stays near the Planck scale at
the throat of the wormhole, and the size of the wormhole
also becomes close to the Planck length. The wormhole
action now scales logarithmically as S ∼ n log(MP /fa)
and it cannot grow sufficiently. Therefore, we still suffer
from the quality problem [7, 28, 32].

A recent work [33] suggested a novel solution to the
quality problem even in the presence of the dynamical
radial field, by introducing a non-minimal gravitational
coupling of a complex scalar field, ξ. It is found that

1 See, for example, Ref. [31] for other sources of explicit PQ-
violation such as stringy instantons.
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the quality problem is avoided for ξ & 2 × 103 having a
sufficiently large wormhole action. We take this solution
seriously, as the non-minimal coupling ξ is allowed in any
effective theory as long as the term is consistent with
the symmetries of the theory. Indeed, the implications
of the term have been widely explored in inflationary
cosmology [34–45].

One potential loophole of the suggested solution in
Ref. [33] is noted: gravity can be equally valid when
formulated in different ways. Indeed, distinctively from
the conventional metric formulation taken in Ref. [33],
we can alternatively choose the Palatini formulation of
gravity [46, 47] that takes the connection as an indepen-
dent degree of freedom apart from the metric. While
both the metric and Palatini formulations are equiva-
lent within the so-called minimal gravity model of the
Einstein-Hilbert action, the equivalence is generally bro-
ken in non-minimal models [48, 49]. Since we are not able
to distinctively rule out either formulation at the current
stage of our experimental knowledge, in this paper, we
pursue to reconsider the Palatini formulation and exam-
ine if the noble solution to the quality problem remains
valid. 2

MODEL

The action for a complex scalar field Φ = f√
2
eiθ with

non-minimal coupling with gravity in the Palatini formu-
lation is given as

S =

∫
d4x
√
|g|
[
−M

2 + 2ξ|Φ|2

2
R(Γ) + |∂µΦ|2 + V (|Φ|)

]
,

(1)

where g = det gµν , the mass parameter M is defined as

M2 = M2
P −ξf2a with the Planck mass MP = 1/

√
8πG ≈

2.4× 1018 GeV and V (|Φ|) = λ
(
|Φ|2 − f2a/2

)2
. The vac-

uum expectation value of Φ is
√
〈Φ†Φ〉 = fa/

√
2 such

that the gravitational coupling becomes canonical at the
vacuum. In order to keep the correct sign of the kinetic
term of the graviton, we request M2 ≥ 0, or equivalently
ξ ≤M2

P /f
2
a . The Ricci scalar R(Γ) is obtained from the

Ricci tensor, which is explicitly given as

Rµν(Γ) = ∂µΓλλν − ∂λΓλµν + ΓλµσΓσλν − ΓσµνΓλλσ. (2)

2 The intrinsic difficulty of the experimental probes becomes more
transparent when one considers the Einstein frame. In this
frame, the gravity sector becomes canonical in both formula-
tions of gravity and all effects are recast to the scalar potential
deformation, which non-minimally couples to the Ricci scalar in
the Jordan frame. As long as we are not able to probe scalar
field values large enough for the deformation of the potential to
be significant, f & MP /ξ, the differences in observables become
negligible. On the other hand, for f(R) gravity, there could be
constraints for Palatini formulation coming from the fact that it
violates the equivalence principle [50, 51].

Due to the absence of second-order derivatives, unlike the
metric formulation, the Gibbons-Hawking-York bound-
ary term [52, 53] is not necessary for the Palatini for-
mulation. We take the Euclidean geometry with spher-
ical symmetry, ds2 = dr2 + a(r)2d2Ω3, where r is the
Euclidean time, d2Ω3 is the line element on the three-
dimensional unit sphere and a is the radius of the sphere.
We assume that f and θ depend only on r, taking the
spherical symmetry into account.

ANALYSIS IN PALATINI FORMULATION

Wormhole Solutions

In a semi-classical approximation, a wormhole is a
saddle-point solution in the Euclidean path integral, with
a boundary condition on the canonical momentum of the
axion field [7, 28, 29]. Expanding Eq. (1), we have

S =

∫
d4x
√
|g|
[
−M

2
P

2
Ω2(f)R+

1

2
(∂µf)2

+
1

2
f2(∂µθ)

2 + V (f)

]
, (3)

where

Ω2(f) ≡ 1 +
ξ(f2 − f2a )

M2
P

. (4)

The variation with respect to θ gives

∂µ
(√
gf2∂µθ

)
= 0, (5)

motivating us to define a conserved current,

Jµ =
√
gf2∂µθ(r), (6)

which is associated with shift symmetry. The conserved
charge is quantized as

2π2a3f2θ′(r) = n ∈ Z, (7)

due to the 2π-periodicity of the axion and the spherical
symmetry of the metric. The prime(′) denotes the deriva-
tive with respect to r. The integer n 6= 0 corresponds to
the charge going through the wormhole and characterizes
a wormhole solution.

To take this constraint into account properly, one can
either impose the condition Eq. (7) from the beginning
and plug this into the action in Eq. (3), or introduce the
constraint as a Lagrange multiplier [23, 32].3 For sure,
both ways give identical results. Note that in the former
way, the kinetic term of θ gives an additional effective

3 For rigorous treatments on this point, see Ref. [30].
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potential that corresponds to a ‘centrifugal force’. As we
will see, this is the origin of the large field value at the
wormhole throat once the radial field f is taken to be
dynamical.

From the variational principle with respect to Γλµν , we
find

∇λ[M2
PΩ2(f)

√
ggµν ] = 0, (8)

or

Γλµν = Γ̄λµν + δλµ∂νω + δλν ∂µω − gµν∂λω, (9)

where

ω(f) ≡ log |Ω(f)|. (10)

The first term in Eq. (9) is the Levi-Civita connection,

Γ̄λµν =
1

2
gλα(gµα,ν + gαν,µ − gµν,α) , (11)

while the last three terms are additional terms that are
absent in the metric formulation and depend on the non-
minimal coupling. We also obtain

R = gµνRµν(Γ)

= −6

(
a′′

a
+
a′2

a2
− 1

a2

)
− 6

[
ω′2 + ω′′ + 3

a′

a
ω′
]
.

(12)

From the variation with respect to gµν , we find

Ω2
[
a′2 − 1 + 2aa′ω′ + a2ω′2

]
= − a2

3M2
P

[
−1

2
f ′2 + V (f) +

n2

8π4f2a6

]
, (13)

and

Ω2
[
2aa′′ + a′2 − 1 + 4aa′ω′ + a2ω′2 + 2a2ω′′

]
= − a2

M2
P

[
1

2
f ′2 + V (f)− n2

8π4f2a6

]
, (14)

while from the variation with respect to f , we obtain

f ′′ + 3
a′

a
f ′ − dV

df
+

n2

4π4f3a6

= 6ξf

[
a′′

a
+
a′2

a2
− 1

a2
+ ω′2 + ω′′ + 3

a′

a
ω′
]
. (15)

We solve Eqs. (13), (14) and (15) numerically with the
following boundary conditions,

a′(0) = 0, f ′(0) = 0, f(∞) = fa. (16)

For convenience, we introduce dimensionless parameters,

ρ ≡
√

3λMP r, A ≡
√

3λMPa, F ≡ f√
3MP

. (17)

ξ = 0

ξ = 101

ξ = 103

ξ = 105

ξ =MP
2/fa

2
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n = 1, λ = 0.1, fa = 1015 GeV

FIG. 1. F (ρ) for several values of ξ. The solid and dashed
lines are for the Palatini and metric formulations, respectively.
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FIG. 2. A(ρ) for several values of ξ. The solid and dashed
lines are for the Palatini and metric formulations, respectively.

We show the graphs of F (ρ) and A(ρ) in Fig. 1 and
Fig. 2, respectively. First, for ξ = 0 and ξ = M2

P /f
2
a ,

both the metric (dashed) and Palatini (solid) formula-
tions give identical results. In particular, as found in
Ref. [33], the solution for ξ = M2

P /f
2
a (the induced grav-

ity model) is identical to the Giddings-Strominger (GS)
wormhole corresponding to f(r) = fa [22].

To understand this trend, it is illuminating to consider
the action Eq. (3) in the Einstein frame, with a metric
redefinition gµν → Ω−2gµν [54]. In this frame,

SE =

∫
d4x
√
g

[
−M

2
P

2

(
R− 3ζ(∂µΩ2)2

2Ω4

)
+

1

2Ω2
(∂µf)2 +

1

2Ω2
f2(∂µθ)

2 +
V

Ω4

]
,

(18)

where ζ = 0, 1 in the Palatini and metric formalisms,
respectively, and we have not canonicalized the kinetic
term of f as it is irrelevant for the discussion. Note that,
in the induced-gravity limit with Ω2 = f2/f2a , the coef-
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ficient of (∂µθ)
2 becomes constant. This shows the de-

coupling between f and θ in this limit, hence the reason
for staying in the GS solution with the absence of the
additional force more explicitly.

For intermediate values of ξ, the behavior of the so-
lutions differs between the metric and Palatini formula-
tions. The difference is especially noticeable at the worm-
hole throat, as shown in Fig. 3. This figure shows that in
the Palatini case, the radial field f stays near the Planck
scale (corresponding to F (0) ∼ 1) except for extremely
close values to ξ = M2

P /f
2
a and quickly transits to the

GS wormhole near the induced-gravity limit ξ = M2
P /f

2
a .

As ξ increases from 0, the radius of the wormhole throat
a(0) initially decreases and then increases drastically near
ξ = M2

P /f
2
a in the Palatini case, while it monotonically

increases in the metric case. We have also confirmed that
the λ-dependence of the wormhole solutions for small λs
is negligible, resulting in identical wormhole geometries
for both the metric and Palatini cases, leading to robust
predictions.

One may wonder if there is no problem with the size of
the wormhole throat being comparable to or even smaller
than the Planck length. In fact, such a large non-minimal
coupling also introduces a perturbative unitarity cutoff
ΛJ to the theory, where J denotes the Jordan frame [39,
55–61].4 It is known that,5 for small field values

ΛJ

(
f � MP√

ξ

)
'

{
MP /ξ (metric)

MP /
√
ξ (Palatini)

(19)

while for large field values

ΛJ

(
f � MP√

ξ

)
'

{
ξf2/MP (metric)√
ξf2/MP (Palatini).

(20)

Near the throat, the field value of f can be as large as
the Planck scale, but the cutoff scale also increases as

Λ
(M)
J ∼ ξMP and Λ

(P )
J ∼

√
ξMP for the metric and Pala-

tini cases, respectively, giving a cutoff much larger than
the Planck scale. This partly justifies the self-consistency
of our calculation6 in the semi-classical regime while the

4 The cutoff scales in the Einstein frame, ΛE , and in the Jordan
frame, ΛJ , are related through a conformal factor Ω, as ΛJ =
ΩΛE .

5 We note that the perturbative unitarity cutoff of the complex
U(1) scalar is higher than the SU(2) scalar doublet as the SM
Higgs. This difference is nicely discussed and summarized in the
addendum of Ref. [61].

6 We, however, note in passing that although our calculation for
wormholes is self-consistent, if we consider f as an inflaton, a
large value of ξ as in Eq. (22) may still give rise to a unitar-
ity problem at the stage of preheating for the metric formula-
tion [62–64]. On the other hand, if the quartic coupling λ is less
than O(1), the unitarity problem may not occur for the Palatini
formulation, for any value of ξ [64]. This difference between the
two formulations is highly related to the dependence of the cutoff
scale on ξ as given in Eq. (19).

F(0)

A(0)

0.01 10 104 107
10-4

0.001

0.010

0.100

1

10

ξ

In
iti
al
va
lu
e
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FIG. 3. F (0) and A(0) as functions of ξ. The solid and dashed
lines are for the Palatini and metric formulations, respectively.
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FIG. 4. Values of wormhole action as a function of ξ. The
blue-solid and red-dashed lines are for the Palatini and metric
formulations, respectively. The horizontal gray line shows a
lower bound to solve the quality problem, S = 190.

wormhole throat becomes smaller than the Planck length
for large ξ in the Palatini case, as depicted in Fig. 2.

Quality Problem

The PQ-violating operators are exponentially sup-
pressed by the wormhole action. The wormhole action
is almost proportional to the PQ charge n for a given
ξ. Thus, we focus on the contributions of the wormholes
with n = 1 to the quality problem. We now compute the
wormhole action,

S = 2π2

∫ ∞
0

dr a3
[
f ′2 + 3M2

PΩ2

{
a′′

a
+
a′

a
ω′ + ω′′

}]
.

(21)

In Fig. 4, we show the wormhole action as a function of
ξ in both Palatini and metric formulations. For 0 < ξ <
M2
P /f

2
a , the wormhole action in the Palatini formulation
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Palatini

Metric

ξ >
MP

2

fa
2

1012 1013 1014 1015 1016 1017
1000

5000

1×104

5×104

1×105

fa (GeV)

ξ
n=1, λ = 0.1, metric vs Palatini

FIG. 5. fa-ξ boundaries that marginally solve the quality
problem in the Palatini (blue-solid) and metric (red-dashed)
formulations. Regions above each line correspond to values
that are safe from wormhole solutions spoiling the axion qual-
ity. The right gray region corresponds to values ξ > M2

P /f
2
a .

is found to be smaller than that in the metric formulation.
For ξ = 0 and ξ = M2

P /f
2
a , both formulations give the

same result, as expected. Note that the quality problem
can be solved for S & 190 [7, 32]. This corresponds to
ξ & 1×104 in the Palatini case, which is roughly an order
of magnitude more stringent than that in the metric case,
ξ & 2 × 103 [33]. It is also worth noting that, for the
Palatini case, the wormhole action increases even when
the radius of the throat of the wormhole decreases.

In Fig. 5, we also depict the fa-ξ plane which shows the
parameter space that solves the axion quality problem
with axionic wormholes, for both Palatini (blue-solid)
and metric (red-dashed) formulations. Note that the re-
quired values of ξ not to have the quality problem hardly
depend on the PQ symmetry breaking scale fa. This fa
independence may be understood as follows. As shown
in Fig. 6, for a fixed value of ξ, the solutions of F (ρ)
and A(ρ) are almost independent of fa except for a large
value of ρ. On the other hand, the contribution to the
action S is dominated by the region of small ρ near the
wormhole throat. Thus, the region of large ρ (which is
sensitive to fa) hardly contributes to the S.

CONCLUSION AND DISCUSSIONS

In this work, we have discussed the effect of the non-
minimal coupling to gravity ξ on the axion quality prob-
lem in the Palatini formulation. In this formulation, the
affine connection and the metric are independent a priori.
Hence, for non-zero ξ, the affine connection is different
from the Levi-Civita connection of metric formulation,
and so are the physical consequences compared to the
usual metric formulation.

We have found that the presence of additional terms in
the affine connection does affect the wormhole solution,

fa = 10
15 GeV

fa = 10
16 GeV

fa = 10
17 GeV

0.001 0.100 10 1000
10-4

0.001

0.010

0.100

1

ρ

F
(ρ
)

n=1, λ=0.1, ξ=102

FIG. 6. F (ρ) for several values of fa. The solid and dashed
lines are for the Palatini and metric formulations, respectively.

resulting in a smaller wormhole action compared to that
in the metric formulation. As a result, a larger value
of the non-minimal coupling, ξ & 1 × 104, is required in
order to avoid the quality problem. We have also checked
that our calculation does not violate the perturbative
unitarity of the theory with large non-minimal coupling
thanks to large radial field values at the wormhole throat.

More specifically, as ξ increases, the wormhole throat
decreases at first while the wormhole action value in-
creases. For larger ξ near the induced gravity limit, there
is a rapid convergence to the Gidding-Stronminger solu-
tion. This coincidence happens in both the metric and
Palatini formulations, and could be understood as a de-
coupling between the axion θ and the radial mode f , as
explicitly shown in the Einstein frame.

Lastly, as mentioned in the introduction, a scalar field
with a large non-minimal coupling is sometimes consid-
ered in the context of inflation which gives a consistent
fit to CMB observations. In our case, the radial field f
can play the role of the inflaton. To be consistent with
the measurement of the scalar amplitude of the power
spectrum As ' 2.1 × 10−9 [65] with about 60 e-folds,
we request a substantial value of ξ for successful infla-
tion [35, 37],

ξ '

{
4.9× 104

√
λ (metric)

1.4× 1010λ (Palatini).
(22)

Note that a larger value of ξ is needed for the Palatini
case and it can easily satisfy the condition to solve the
axion quality problem when λ > 10−6.
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