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Abstract. In recent years fully-parametric fast simulation methods based on generative
models have been proposed for a variety of high-energy physics detectors. By their nature,
the quality of data-driven models degrades in the regions of the phase space where the data
are sparse. Since machine-learning models are hard to analyse from the physical principles, the
commonly used testing procedures are performed in a data-driven way and can’t be reliably
used in such regions. In our work we propose three methods to estimate the uncertainty of
generative models inside and outside of the training phase space region, along with data-driven
calibration techniques. A test of the proposed methods on the LHCb RICH fast simulation is
also presented.

1. Introduction
In the last years, deep learning has become a common tool in natural science. Generative
models, such as generative adversarial networks (GANs) [1], variational autoencoder (VAE) [2],
normalising flows [3], and diffusion models [4], can learn to sample from a distribution efficiently.
They are used for fully-parametric simulation of detectors – in place of computationally-intensive
simulation from the physical principles, usually with Geant4 [5, 6, 7, 8].

Neural networks (NN) are black-box models that don’t provide theoretical guarantees on the
uncertainty of the prediction. This makes it difficult to use them in rigorous scientific reasoning.
Uncertainty of machine learning models is an active area of research, but almost all works deal
with classification and regression tasks, not generative modelling [9]. A recent work [10] shows
how Bayesian normalising flows capture uncertainties.

Our work extends uncertainty estimation research by introducing new methods for estimating
the uncertainty of GANs. Comparing with [10], in practice GANs are usually faster in training
and inference, and more accurate than normalising flows, and thus are more widely used for fast
simulations in high-energy physics. The contributions of this work are summarised as follows:

• We propose methods for estimating uncertainty of GANs

• We propose an approach to distillate the ensemble into a single model for efficient
uncertainty computation

2. LHCb RICH fast simulation
In the LHCb experiment, the new fully-parametric simulation of Ring-Imaging Cherenkov
detectors (RICH) is based on training a fully-connected Cramer GAN [11, 12] to approximate
the reconstructed detector response. It is trained using the real data calibration samples [13].
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RICH particle identification works as follows. First, the likelihoods for each particle type
hypothesis are computed for each track. Second, the delta log-likelihoods are computed as
the difference between the given hypothesis and the pion hypothesis. The variables are named
RichDLL*, where * can be k (kaon), p (proton), mu (muon), e (electron) and bt (below the
threshold of emitting Cherenkov light).

For the generator, input x ∈ X ⊂ R3+dnoise consists of kinematic characteristics of particles
(pseudorapidity η, momentum P , number of tracks) and random noise. The output y ∈ Y ⊂ R5

corresponds to the delta log-likelihoods.

3. Uncertainty estimation methods
3.1. MC dropout
Common dropout [14] acts as a regularisation to avoid overfitting when training an NN. The
dropout is applied at both training and inference for Monte Carlo dropout (MC dropout) [15].
The prediction is no longer deterministic but depends on which NN nodes are randomly chosen
to be kept. The MC dropout generates random predictions, and the latter has the interpretation
of samples from a probabilistic distribution.

In our work, for MC dropout experiments, we add a dropout layer after each fully connected
one and train with the same configuration as before. In the beginning, we used Bernoulli
dropout, and then we experimented with Gaussian and Variational dropouts [16]. Finally, we
found that the “structured” dropout modification (neuron with the neighborhood of arbitrary
size k zeroed with probability p) improves uncertainty quality.

During inference, for each batch we generate a fixed set of dropout masks as a way to have
a virtual ensemble.

3.2. Adversarial deep ensembles
Ensemble methods are a widely-used heuristic uncertainty estimation method [17]. The core
idea of ensembles is to introduce perturbations to the training procedure that shouldn’t affect
the outputs. Thus, the observed deviation in outputs is considered as uncertainty.

These perturbations can be implemented using randomisation techniques such as bagging and
random initialisation of the NN parameters. Bagging on average uses 63% unique data points
which leads to a biased performance estimate [17]. The diversity of the ensemble also tends
to zero with the increase of training dataset size. While a reasonable outcome for in-domain
uncertainty, it renders bagging unsuitable for out-domain uncertainty estimation.

In our method we start with the idea of diversity through NN weights. In addition to
random initialisation, we add a component to the loss function that rewards the models for
being different. For Cramer GAN [12] the loss function is modified as follows:

f(y) = ||D(y)−D(y′g)||2 − ||D(y)||2, (1)

LG = f(yr)− f(yg)−α||D(yg)−D(y⋃ g)||2α||D(yg)−D(y⋃ g)||2α||D(yg)−D(y⋃ g)||2, (2)

where yr are real data, yg are generated data, and y⋃ g is a concatenation of the predictions
of the ensemble, corresponding to a model with averaged probability density; α ≥ 0 is a
hyperparameter. The method is not specific to Cramer GAN and can be used with any GAN.

We reduce the influence of the adversarial component as the training progresses. Using
pre-trained discriminators leads to more variety among the models. The overall training
scheme is summarised in Algorithm 1. As α tends to zero, each ensemble member is trained
without additional bias. This provide a principled advantage to adversarial ensembles: instead
of heuristically perturbing the training objective as common in other methods [9], we take



advantage of existence of many equally good local minima and search for a maximally diverse
set of solutions to the unbiased problem of learning the distribution.

Algorithm 1: Adversarial ensembles training scheme

1. Train several GANs with the classic loss (α = 0);
2. Reinitialize the generators with random weights; keep the discriminators weights; set
α > 0. We used α = 10;

3. Train both the generators and the discriminators with our loss Eq. (2), decrease α
gradually to 0;

3.3. Distillation
Running multiple generators for each simulated particle is excessively expensive for a fast
simulation. Methods for distilling ensemble models are discussed in the literature [18], but
they do not deal with generative models. Let us indicate the variance of the underlying PDF
as Var(pdf), and the variance due to differences among the trained generators, representing
the uncertainty on the implicit model of the underlying PDF, as Var(train). Evaluating the
ensemble multiple times, at fixed conditions, we expect a distribution of outputs with a variance
Var(tot) = Var(pdf) + Var(train) as long as we accept the very reasonable hypothesis that the
random component of each generator in the ensemble is not correlated to the random differences
between generators of the ensemble. Let Y be a random variable – output of the generative
model; Yr,1 and Yr,2 be the results of two independent inferences of a generator with fixed input
conditions X (η, P , number of tracks in the case of RICH GAN), then

Var(pdf)(Y |X) =
1

2
Ereference

[
(Yr,2 − Yr,1)2

]
, (3)

where Ereference indicates the average over several samples obtained from the same, reference
model. Instead, when sampling Ye,1 and Ye,2 from independent predictors in the ensemble, we
expect their variance to be

Var(tot)(Y |X) =
1

2
Eensemble

[
(Ye,2 − Ye,1)2

]
(4)

By training a regressor to predict (Yr,1−Yr,2)2 and (Ye,1−Ye,2)2 as a function of X optimised

to minimise the Mean Squared Error, we obtain explicit models for 2 · Var(pdf)(Y |X) and

2 · Var(tot)(Y |X), which can be combined to assess Var(train) as a function of the conditions
X as

Var(train)(Y |X) = Var(tot)(Y |X)−Var(pdf)(Y |X) (5)

In summary, naming fr(X) and fe(X) the trained predictors for (Yr,1−Yr,2)2 and (Ye,1−Ye,2)2,
respectively, and assuming a normal distribution for the training error, the uncertainty on the
generated samples, at a given condition X, is estimated as

σsyst(X) =

√
1

2
fe (X)− 1

2
fr (X) (6)

4. Results
4.1. Figure of merit
The quality of a fast simulation model in a particular phase space region is measured by the
difference between the distributions of real and generated data. The objective of our uncertainty
estimation methods is to predict this discrepancy.



To evaluate our methods, we compare background efficiency on real and generated data,
computed as following. RichDLL values are commonly used for filtering tracks by a condition
RichDLLx > threshold. We choose a threshold for RichDLLx so that 90% of all tracks with
type x in the training dataset are accepted. Since the detector is not perfect, not only x-particles
pass the selection, but there are also false positives. We plot the efficiency of the requirement
RichDLLx > threshold on pions, as an approximation of the background selection efficiency.
For a good uncertainty estimate real efficiencies should lie inside the uncertainty bounds for 68%
of the bins.

4.2. Uniform split
We uniformly split the dataset into training and testing parts, containing 2 and 1 million
examples, correspondingly. The results are presented in figure 1; for most of the bins efficiency
on the test data lies inside the error bounds of the efficiency of the model. The side effect
of MC dropout is dropout layers themselves. The dropout acts as a regularizer: it reduces
variance but may increase the bias in the resulting model. Thus, the MC dropout model could
be overregularized (more significant RichDLLmu efficiency error compared to ensembles).

Figure 1. Fraction of pi-
ons in the test dataset se-
lected by applying require-
ments on RichDLLK (a)
and RichDLLmu (b) with
thresholds corresponding
to 90% selection efficiency
on kaons and muons, re-
spectively.

4.3. Extrapolation scan
This test aims to assess the performance of the models in the regions of the phase space where
there are no data. We emulate this situation by splitting the data into train and test parts in
P and η space as shown in figure 2. The train part contains 947933 examples, and the test part

Figure 2. Training and testing
datasets used for the extrapolation
scan. The regions are separated
by straight lines in the normalised
space. Pions data correspond to the
ones present in the LHCb Run 2
calibration sample [13]. Each test
band contains the same number of
examples.

contains 523917 examples. The models are trained on the train part. For evaluation, 101917
examples are samples from each training and test band. The high number of tracks makes the
statistical uncertainty of the efficiency estimation negligible, both for real and generated data.



The results are present in figure 3. The adversarial ensembles show wider uncertainty bounds;
nevertheless, both methods underestimate the uncertainty in the last bands. For kaons, figure
3 (a), real background efficiency decreases for the first half of the test part, then starts to
increase. This demonstrates a great obstacle for extrapolating with purely machine learning
methods, as the qualitative change can’t be reasonably predicted from the training data without
incorporating additional knowledge. For muons, figure 3 (b), efficiency in the test part continues
the trend observed in the training part, resulting in uncertainty bands that contain the real
efficiencies for the most bands.

Figure 3. Fraction of
pions selected by applying
requirements on RichDLLK

(a) and RichDLLmu (b)
with thresholds corre-
sponding to 90% selection
efficiency on kaons and
muons, respectively as a
function of the extrap-
olation scan test band
index.

5. Conclusion
We present methods for estimating uncertainty of GANs with adversarial ensembles and MC
dropout. Although in this work we only use Cramer GAN, both methods are applicable to
any GAN. The ensembles have a desirable theoretical property: each model converges to a
local minimum of the unperturbed problem. We propose a method for distilling ensemble-based
uncertainty estimation into a single model for fast inference.

The methods are evaluated on the LHCb RICH dataset. For most of the bins, efficiency on
the test data lies inside the error bounds of the efficiency of the model. In the extrapolation
case, the uncertainty increases while getting further from the training region. However, the
uncertainty does not increase sufficiently to account for the discrepancy in the furthest test
regions where the detector operational conditions are much different from those corresponding
to the training sample. Our code is available online [19, 20].

This work is a first step towards incorporating GAN uncertainty into high-energy physics fast
simulation. We see the future directions for the research as following. Better correspondence
between uncertainty and the real/simulated data difference could be achieved, along with more
robust uncertainty growth outside the training region. We use background efficiency as a proxy
metric, evaluating GAN uncertainty impact on the uncertainty of the final measurement would
be more instructive.
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