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Abstract 

The Superconducting Proton Linac (SPL) delivers bunches with a total length of 30 ps and a total 
energy spread of 5 MeV. Before injecting the beam into the Accumulator Compressor ( P D A C ) 2 ) r ing 
the bunches have to be stretched to a total length in the range of 100-500 ps. The R F bucket in the r ing 
has a height of ± 2 MeV and thus imposes a limit for the acceptable amount of energy and phase ji t ter 
at the end of the SPL. By carefully designing the transfer line, the acceptable jitter range from the l inac 
can be maximized. 
Several options have been studied to provide the necessary bunch stretching and have then been tested 
for their susceptibility to energy and phase errors. At the same time the actual layout of the line on the 
C E R N site is taken into account. The results of this study are presented together with a proposal for a 
new, optimized version of the transfer line. 

1 ) Superconducting Proton Linac 
2) Proton Driver Accumulator Compressor 
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1 Layout and principle 
In the present SPL scenario the linac is located along the south-western fence of the CERN site and ends 
parallel to the ISR tunnel. The transfer line then starts with a curve (radius = 100 m) to hend the beam 
towards the injection into the ISR ring tunnel. Due to the width of the ring tunnel it will be possible to 
accommodate several parallel beam lines, meaning that the length of the transfer line is not restricted to 
the curve and the short straight section between the linac output and the ISR tunnel (Fig. 1). 

Figure 1 : Layout of the transfer line on the CERN site 

In order to stretch the bunches to a final length between 100 ps and 500 ps one has to use a certain length 
of drift, with only transverse focusing. Due to the lack of longitudinal forces the phase width increases, 
and the longitudinal phase space ellipse starts to rotate. Having reached the desired bunch length, several 
bunch rotation cavities (0 = —90°) "kick" the ellipse down to the phase axis and consequently decrease 
the energy spread (see Fig.2). An active debuncher at the beginning of the transfer line can be used to 
shorten the length of the drift, and as will be shown later, to stabilize the transfer line against phase and 
energy jitter from the linac. Such a debuncher consists of a number of cavities operating at +90° . 
In the following three different scenarios will be investigated: 

1. drift + bunch rotation, 
2. debuncher + drift + bunch rotation, and 
3. drift + debuncher + drift + bunch rotation. 

One case of the scenario no. 2 describes the version of the transfer line that is published in the SPL 
conceptual design report [1]. After explaining the transformation of initial errors through the transfer 
line, this scenario is optimized for higher error acceptance and proposed as the new reference layout. 
All simulations were done with IMPACT [2] using 100000 particles and a 6D waterbag distribution (ratio 
between total bunch length and rms bunch length ≈ 2.83). The simulations start at the beginning of the 
superconducting part of the linac (120 MeV) with a longitudinal emittance of 0.6 Π deg MeV, and a beam 
current of 40 mA. The emittance is likely to be reduced for future versions of the linac which will then 
entail changes in the longitudinal distribution. Up to now no bending magnets have been considered in 
the simulations. 
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2 Scenario no. 1: drift + bunch rotation 
Without active debuncher the SPL linac tunnel becomes shorter and the the RF costs are reduced. On the 
other hand a longer drift is needed to sufficiently stretch the bunches. Furthermore there are less "knobs 
to turn" in order to stabilize the layout against phase and energy jitter. 
Due to the relatively slow debunching process this set-up only makes sense for short bunches. In the 
present case a drift of 180 m stretches the bunches to a total length of ≈ 100 ps (Fig.2). 
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Figure 2: Beam evolution through the transfer line 

After the drift, four bunch rotation cavities reduce the energy spread. The voltage that has to be imposed 
on these cavities is given by the slope of the longitudinal phase space ellipse after the drift (Fig.2). In this 
case the total bunch length of Δϕb = ±6.25° and the total energy width of ΔVb = ±2 .7 MeV require a 
total voltage (to be seen by the beam) of: 

Using one LEP kryostat with four LEP cavities as bunch rotator, this number translates into a cavity 
voltage of E0T = 3.7 MV/m. In order to stabilize the system against initial phase offset a lower voltage 
of E0T = 3.2 MV/m was chosen [Eq. (2)]. Therefore the beam ellipse remains slightly tilted after the 
bunch rotation. 
The sensitivity against phase and energy offset at the linac output can be quickly estimated by the follow­

ing formulae. For a cavity which operates either at ­ 9 0 ° or at +90° a phase offset Δϕ yields an energy 
offset of: 

An additional phase error has to be taken into account, when a bunch with a certain energy offset passes 
the transfer line. The major part of this additional phase error accumulates during the drift, where an 
energy offset of AW yields a phase offset of: 

First of all the acceptable phase error shall be estimated: To inject the beam lossfree into the PDAC RF 
bucket ( ±2 MeV), the bunch center at the end of the transfer line must not be displaced by more than 
≈ 1 MeV. Assuming a pure initial phase offset, the whole energy displacement of the bunch center occurs 

during the bunch rotation process. Eq. (2) relates the acceptable energy offset after bunch rotation to an 
acceptable phase jitter of ±2.6° at the linac output. This value would impose very tight constraints for 
the linac design. The only possibility to raise the acceptance for phase jitter would be to operate with 
longer bunches. In this case the bunch rotation voltage can be reduced and consequently the sensitivity 
to phase errors goes down. An example with numbers: aiming for an acceptance of ±7.5° (which will be 
achieved in a later scenario) and keeping the energy displacement during bunch rotation below ± 1 MeV 
requires ≈ 400 ps long bunches. To obtain this value the length of the drift has to be multiplied by a 
factor of four, resulting in a drift length of more than 700 m, which clearly exceeds feasable dimensions. 
The sensitivity of this design against energy offset is much less critical. One can easily work out from 
Eq. (2) and (3) that an energy offset of e.g. -7.5 MeV ( 100 ps long bunches) at the linac output yields an 
energy offset of-0.7 MeV after bunch rotation. 
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Without going into detailed simulations it is elear that this design has to be abandoned due its very small 
acceptance of phase errors. 

Table 1 : Layout parameters of the transfer line with: 180 m drift + bunch rotator (100 ps long bunches) 

element length no. of no. of focusing cavity cavity 
[ml cavities periods voltage [MV/m] phase [deg] 

drift 179.1 14 

buncher 12.8 4 1 3.2 - 9 0 ° 

total 191.9 4 15 

3 Scenario no. 2: debuncher + drift + bunch rotation 
An active debuncher at the end of the linac serves two purposes: first of all it decreases the drift length 
of the transfer line and secondly it improves the acceptance for phase jitter from the linac. 
Altogether three versions have been tested for this scenario: two with a 280 m long drift and 500 or 250 
ps long bunches, respectively, and a third one with 230 m of drift and with a bunch length of 180 ps. 
The first version was modelled in order to obtain a nominal output distribution with the smallest possible 
energy spread. It will also illustrate how an active debuncher raises the acceptance for phase jitter from 
the linac. After investigating the transformation of phase and energy jitter throughout the transfer line, the 
second version (with 250 ps long bunches) was modelled. It uses the same physical set-up of the transfer 
line as version no. 1 but with different voltages in the debunching- and the bunch rotation cavities. The 
voltages were optimized so that the transfer line can digest a higher amount of energy and phase jitter 
from the linac. Both versions use eight LEP type cavities as debunching unit, and two cavities as bunch 
rotator. 
Eventually the third (and final) version was modelled, using not only the voltages but also the drift- and 
bunch length as free parameters. Apart from that this version has a symmetric cavity set-up with four 
cavites for debunching and the same number of cavities for the final bunch rotation. 

Table 2: Layout parameters of the transfer line with: debuncher + 280 m drift + bunch rotator [500 ps 
(250 ps) long bunches] 

element length no. of no. of focusing cavity cavity 
[m] cavities periods voltage [MV/m] phase [deg] 

debuncher 25.6 8 2 8.6 (4.3) + 9 0 ° 
drift 281.4 22 

buncher 12.8 2 1 4.4 (4.2) - 9 0 ° 
total 319.8 10 25 

Table 3: Layout parameters of the transfer line with: debuncher + 230 m drift + bunch rotator (180 ps 
long bunches) 

element length no. of no. of focusing cavity cavity 
[m] cavities periods voltage [MV/m] phase[deg] 

debuncher 12.8 4 2 7.5 + 9 0 ° 
drift 230.2 18 

buncher 12.8 4 1 2.5 - 90" 
total 255.8 8 21 
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Version 1: debuncher + 280 m drift + buncher, bunch length: 500 ps 
This version represents the status of the transfer line which is published in the SPL conceptual design 
report [1]. 
Several energy and phase offsets have been imposed at the end of the linac to study their effect on the 
output distribution of the transfer line. Fig.3 shows an example for an initial energy offset of ±7 .5 MeV 
and Table 4 lists the results for this error study. 

linac offset: +7.5 MeV => tr. line offset: +0.7 MeV, -39.3 deg 

phase [deg] 

linac offset: -7.5 MeV => tr. line offset: -0.8 MeV, +39.8 deg 

phase [deg] 

Figure 3: Transfer line output for an initial offset of ± 7.5 MeV (debuncher + 280 m drift + bunch 
rotator, bunch length: 500 ps) 

Table 4: Transfer line output for several inital phase and energy offsets (debuncher + 280 m drift + 
bunch rotator, bunch length: 500 ps) 

Initial offset nominal ±5MeV ±7.5MeV ±10MeV ±2 .5° ±5 ° 

Output ±0.()MeV ±0 .3MeV ±0.8McV ±2.CMeV ±0 .3MeV ±0 .5MeV 

offset ±0 .0° ±26.5° ±40 " ±53 ° ±25° ±47° 

ΔW [MeV] ±0 .2 ±0 . 7 ±1 . 5 ±2 . 7 ±0 . 6 ± 2 

Δ ϕ [deg] ± 2 8 ±28 ±2 8 ±2 8 ±2 8 ±2 8 

The assymetric output offset and the unequal bunch rotation for ±7.5MeV (Fig.3) is induced by the phase 
slippage in the 4 cell cavities. In case of energy or phase offset the tasks of focusing and acceleration 
inside a cavity become slightly seperated. Depending on the sign of the offset, the particles experience 
either more acceleration or more focusing force in the first two cells than in the last two cells of one 
cavity. Hence the deviation from the reference energy level becomes different. In the actual case the 
assymetry is enhanced by the fact that eight cavities are used for debunching the beam and only two 
cavities are used for bunch rotation. In a later example were four cavities are used for both tasks, the 
resulting assymetry is barely visible. 
However, comparing these results with the previous scenario without active debuncher, one can see that 
the effect of initial phase jitter is reduced, while the effect of initial energy jitter (±7.5MeV) is about the 
same (Table 4). The acceptable phase and energy jitter for this version is in the range of ±6 .5 MeV or 1

) 
± 4 ° . 

3.1 Optimization against initial phase and energy jitter 
The evolution of initial phase and energy offset throughout the elements: debuncher, drift, bunch rotator 
can be shown with two simple pictures [bearing in mind Eqs.(2) and (3)]. 
An initial positive phase or energy offset (Fig.4) corresponds to bunches that arrive too early with respect 
to the RF cavity voltage. Faster bunches see on average a positive RF voltage (instead of 0) in the 
debuncher and are therefore accelerated. During the passage of the drift these bunches gain even more in 

1) Combined errors were not investigated for this version. 
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Figure 4: Arrival of bunches with positive phase or energy offset in the debunching (left) and bunch 
rotation (right) cavities 

Figure 5: Arrival of bunches with negative phase or energy offset in the debunching (left) and the 
bunch rotation (right) cavities 

phase and therefore arrive even earlier in the bunch rotation cavities. Here they see on average a negative 
RF voltage and are thus decelerated. For particles with an initial negative phase or energy offset (Fig.5) 
the inverse rules apply. The evolution of the average bunch energy (Fig.6) illustrates how the system can 
be tuned by varying the voltages of the debuncher- and the bunch rotation cavities. 

Figure 6: Evolution of average bunch energy in the nominal case (upper), with -10 MeV initial offset 
(middle), and with +7.5° initial offset (lower). 

6 



Version 2: debuncher + 280 m drift + buncher, bunch length: 250 ps 
Using the optimization measures mentioned above and a shorter bunch length of 250 ps the same set-up 
was tuned for higher jitter acceptance. 

Figure 7: Transfer line output for several initial phase and energy offsets (debuncher + 280 m drift + 
bunch rotator, bunch length: 250 ps) 

From Fig.7 one can see that the maximum acceptable jitter at the the linac output is now raised to 
approximately ± 8 MeV or ±8° . Combining the initial offsets decreases the acceptance to a range of ± 5 
MeV and ± 5 ° . 

Version 3: debuncher + 230 m drift + bunch rotator, bunch length: 180 ps 
For this scenario the debunching unit is reduced from eight to four LEP type cavities and the bunching 
unit now uses four instead of two cavities. This has the beneficial effect of reducing the length of the 
linac, and of producing a more symmetric deviation of bunches that only differ by the sign of their initial 
offset (see section 3.1). Apart from that the drift length is reduced due to the shorter final bunch length. 
The length of the drift as well as the voltages in the cavities have been optimized in order to digest the 
highest possible amount of phase and energy jitter from the linac. As a result a maximum jitter of ± 1 0 
MeV or ±10° can be accepted by the transfer line (only the case with —10° slightly exceeds the limit of 
+2 MeV). The results of the error study are shown in Fig.8. 
Combining energy and phase offset yields a jitter acceptance of ± 6 MeV and ± 6 ° . This scenario is 
proposed to be the new reference layout for the SPL transfer line. 

4 Scenario no. 3: drift + active debuncher + drift + bunch rotation 
In the previous scenario the debunching unit is placed right after the linac. The advantage of that set-up 
is that the power supply and the necessary cooling facilities are already available. The disadvantage is 
that the bunches go through the curve with an increased energy spread, which enforces large apertures 
for the bending magnets. Therefore it is of interest to investigate the possibility of placing the debuncher 
after the curve instead of before. The parameters for this layout are listed in Table 5. 
Due to the 64m of drift before the debuncher, this scenario is more sensitive to initial energy jitter than 
the previous one. Bunches that initially only have a certain energy displacement, experience an additional 
phase displacement during the drift. This yields a maximum acceptance for the initial offset in the range 
of ±7 .5 MeV or ± 7 ° . Fig.9 shows the resulting longitudinal phase space distributions from the error 
study. 
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Figure 8: Transfer line output for several initial phase and energy offsets (debuncher + 230 m drift + 
buncher, bunch length: 180 ps, new reference scenario) 
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Figure 9: Transfer line output for several initial phase and energy offsets (64 m drift + debuncher + 
130 m drift + bunch rotator, bunch length: 150 ps) 
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Table 5: Layout parameters of the transfer line with: 64 m drift + debuncher + 130 m drift + bunch 
rotator (180 ps long bunches) 

element length no. of no. of focusing cavity cavity 

[m] cavities periods voltage [MV/mJ phase [deg] 

drift 63.9 5 

debuncher 12.8 4 1 4.3 + 9 0 ° 

drift 127.9 10 

buncher 12.8 4 1 3.2 - 9 0 ° 

total 217.4 8 17 

5 Conclusions 
Several options have been studied and optimized in order to stretch the linac bunches and fit them into 
the PDAC bucket of ± 2 MeV. Assuming that there is no energy or phase jitter at the end of the linac, this 
task can be perfectly fulfilled by a simple drift followed by a bunch rotation cavity (scenario no. 1). 
A more flexible system is needed if one takes into account the actual energy and phase offset at the 
linac output. This flexibility can be achieved by an active debuncher at the beginning of the transfer 
line (scenario no. 2). Now there are three adjustment "knobs" for three bunch characterics: debuncher 
voltage, drift length, and bunch rotation voltage are used to tune the final energy spread, and the final 
energy offset of the bunches in case of initial phase or energy offset. Taking the bunch length as a 
variable (within certain limits) one can find an "optimum" were the acceptance for phase and energy 
errors becomes maximal. This optimum was found for the set-up with four debunching cavities, 230 m 
of drift, four bunch rotation cavities, and a bunch length of 180 ps (scenario no. 2, version 3). In this case 
the transfer line can accept ± 6 ° and ± 6 MeV (with both offsets occuring simultaneously). I propose 
this scenario as the new reference layout for the SPL transfer line, keeping in mind that some of the 
parameters might change in order to adapt the system to a future change of the longitudinal emittance. 
An additional drift before the debunching cavities might be desirable in order to have less energy spread 
when the bunches pass the curve that follows the SPL (scenario no. 3). However, this measure reduces 
the error acceptance of the system. 
In all three scenarios it is possible to "trade" a bigger phase offset against a smaller energy offset and 
vice versa. The error acceptance will be reduced, when considering a mismatched linac beam. 
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