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1. Introduction

Electron bunching is the basis of many microwave devices in which the
interaction between the electron beam and electromagnetic wave plays an essen-
tial role as for instance in klystrons or linear accelerators. Consequently,
the problem of electron bunching was analysed by many authors. Usually this
analysis is based upon some simplifying assumptions. The most important of

them are:

i) The electron transit times through the buncher are assumed to be negli-

gible in comparison with the period of electromagnetic oscillations.

ii) The alternating voltage Va between buncher electrodes is assumed to be

small in comparison with the DC gun accelerating voltage Vg.

iii) Space charge effects are ignored.

The measurements made at LAL [1] for the assembly prebuncher - buncher of
the linac V-pre-injector for LEP, have shown that good conditions for
electron bunching exist also for the case when the first two of the above
conditions are not fulfilled, e.q. instead of (Va/Vg) << 1 one can have
Va = (2 - 3)Vg. Also the transit times of electrons through the cavity
of prebuncher can be of the order of the period of field oscillations in
the cavity. To take these effects into account it is necessary to solve
the equations of motion of electrons in the prebuncher without the above-

mentioned assumptions 1 and 2.
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The non-relativistic case was treated by Shevtchik [7], who found that the
"ideal bunching" (the current of bunched electrons tends to infinity) is
obtained for Va = 2Vg and that the maximum of the first harmonic of current
equal to I} = 1.16 Iy (Ip - incoming current) is obtained for Vs = 3.68 Vg.
Below we shall solve the relativistic equations of motion of electrons in
strong electromagnetic fields. Two kinds of axial field distribution in the

prebuncher will be considered:

1. Constant field amplitude for which case the analytical solution is

possible.
2. Gaussian field distribution along the axis of the bunching cavity.

In both cases a broad maximum for bunched electrons was found for

Va

1.5 < Vg

S 3-5

This is in good agreement with measurements made by R. Belbéoch [1] and with
numerical calculations made at LAL for Gaussian field distribution [2]. It

agrees also with the results obtained by Shevtchik [7].

2. Equations of Motion of Electrons in the Prebuncher

We shall consider the axial motion of electrons in the prebuncher in the
approximation of zero space charge. Equations of motion can then be written

in the form of:

dy

3 = Acos ¢ (1)
o _ Y
& = 2" (2)

/vy |



where:
mc2
Y= Hbcz

m, mg = mass and rest mass of electron

0
"

the velocity of light in vacuum,

¢ =¢g+2mnft - phase of the electromagnetic field in the prebuncher

f = frequency of the electromagnetic field
s = ;-, z - distance along the axis
A = wave-length of the electromagnetic field
a- 9ER
Wo
Wo= m002 = 0,5110041 MeV - rest energy of electron
g = charge of electron
E = amplitude of the axial component of electric field intensity in the

prebuncher

Generally E is a function at least of z and Eqs. (2) and (3) can be inte-
grated only numerically. However, as it will be shown later the physical pic-
ture is similar for E(z) = const. and e.q. for gaussian field dependence.
Since for E(z) = const. some analytic results are possible, we shall begin our

considerations with this case.



3. Solution to the Equations of Motion for the Case E = const.

By elimination of ds from Eqs. (1) and (2) we obtain the equation

ydv

%'n cos ¢ do = (3)
v 72 -1
which can easily be integrated to give
7 v2 -1l = A} (sin ¢ + K) (4)

where A; = ZA , and K is a constant which can be defined by initital
T

conditions.

The left-hand side of the Eq. (4) is a normalized momentum of a particle:

p= — =yB=VY 72 -1l = Ay (sin ¢ + K) (5)
mgc
where B = X-, v = the velocity of an electron.
c

For further considerations it will be convenient to take p as a new variab-
le instead of y. Equation (5) gives then the phase trajectories in the phase
space (p, ¢), and is frequently used to calculate the separatrix and phase
acceptance when analysing, e.g. the linear accelerator. However, it does not
give directly the dependences y = y(s) and ¢ = ¢(s), which are necessary to
describe the axial motion. To obtain these relations we will follow the
method given in [4,5].

From Eq. (5) we can express y and cos ¢ as function of p:

T pdp
y =¥ 1+ p°!, dy = ——— (6)

/1 + p2
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|
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Inserting (6) and (7) into (1) gives

1 pdp
= +
®rE | |
2 P 2
Y2 +p /1-(.K1—K)
or after integration
S:iz1nfpdp (8)
/1 +plval - (p - A2

The sign (+) in the integral (8) depends upon the sign of cos ¢ as given
by (7).

The integral given by Eq. (8) can be expressed in terms of incomplete
elliptic integrals of the first and third kinds. The suitable expressions are
given in Appendix I. Since these expressions are rather complicated, for
numerical results we will prefer to integrate directly using either Eq. (8) or
Egs. (1) and (3). However, we shall see below that some interesting results

can be obtained by considering the analytical expressions (5) and (8).

4. Condition for Transmission and Reflection of Electrons by Bunchers

In the case when the alternating voltage amplitude Va is much smaller than
the gun accelerating voltage Vg, all electrons entering the bunching cavity
pass through it with some small velocity modulation and are bunched in the
drift space which follows the buncher. In the case of Va > Vg the picture is
much more complicated. Generally, depending upon the ratio of Va/Vg > 1, the
width of the bunching cavity in comparison with the wave-length and the phase

of electron, 3 cases are possible:



i)

ii)

Electron phases through the cavity without oscillations, i.e. its

velocity does not change the sign inside the cavity.

Electron passes through the cavity after one or more oscillations.

iii) Electron is reflected by the cavity.

We shall now discuss the conditions for which these 3 cases can be

realized.

4.1

Conditions for Electron Transmission without oscillations
We begin with Eq. (5)
2 | .
p=vy" -1=A; (sin ¢ + K)
In this equation A} is defined by the electric field intensity in the
cavity (see Eqs. (1) and (3)). K can be obtained from initial values of

p and ¢.

Assume that we know energy y, (corresponding to Vg) and phase bo of an

electron entering the bunching cavity. We also know then

2 '
po = YYg - 1 and we obtain for K
Po
K= — - sin ¢0 (9)
A

Inserting (9) into (5) yields the following relation between p, pgy, ¢, g
P - Po . sin ¢ - sin ¢g
A
during the motion. For momentum p we have

p = po + A} (sin ¢ - sin ¢g) (10)

According to Eq. (10) p is a periodic function of ¢. Assume for a moment
that the bunching cavity is sufficiently long so that electron spends at
least one period in the cavity (the case of shorter times will be dis-
cussed below). Since p is periodic it attains its minimum and maximum

values given correspondingly by:



po - A1 (1 + sin ¢g) (11)

Pmin

po + A1 (1 - sin ¢g) (12)

Pmax

Depending upon the values of pg and A} we can have

i) Pmin > O for all values of ¢g

0 for some values of ¢g

ii)  pmin

iii)  ppin < O for some values of ¢g

It is obvious that the condition for electron transmission without
oscillations is ppin » 0. For the case ppin < 0 the electron can
oscillate and both transmission and reflection are possible. Applying

condition ppin » 0 to Eq. (11) yields

po - A} (1 +sin ¢g) > O
or

Ap € PO = AT (13)
1 + sin Py
Relation (13) then defines the limits for A} and for corresponding values
of electric field intensity in the bunching cavity for which the electron
with momentum p; and phase ¢, pass through the cavity without

oscillations.

Since we are interested in a minimum value of A; it is obtained for
sin ¢g = 1 and it is equal to

AiTmin € 22

1Tmin 2

Of course this value of Ajypin corresponds to a maximum value of elec-
tric field intensity Ey for which all electrons still pass through the
cavity without oscillations. Taking into account definitions of A and A;

we obtain the condition for electric field intensity Ey

21 Wy T W 0.511041.7 2
- AlTmin < Po = —— Yvo -1 (14)

Ey =



Er is in MV/m if A is in meters. The physical meaning of the condi-
tions (13) or (14) is clear. It states that the maximum deceleration
which according to Eq. (1) occurs if electron enters the field at phase
g = m/2 and leaves it at phase the ¢ = 3/2 = is such that change of
electron kinetic energy is just equal to the kinetic energy it had when
entering the electromagnetic field. Notice that condition given by Eq.
(14) is the sufficient condition for an electron to pass through the
cavity without oscillations. This condition depends only on the electric
field intensity and does not depend on the cavity length. Generally,
however, three different cases can occur depending upon the cavity length
in comparison with the path traversed by electron during the time when
phase changes from =n/2 to 3/2 =, i.e. momentum changes from py to ppin
> 0. According to Eq. (8) the path traversed by the electron which

changes the momentum from pg to ppin is given by

Po
1 pdp
AS = 15
2n £min (15)

I
(1 +p%) (A7 - (p- A K)?)

Now we can have:

i) AS > XP (L = cavity length) electron leaves the cavity before the

phase attains value ¢ = 3/2 n, so that its momentum p > ppin

ii) AS = %- electron leaves the cavity with p = ppin

iii) AS < %- electron leaves the cavity with p such that ppin<p<pmax

depending on the moment it arrives to the end.

We can also find the maximum energy spread for electrons leaving the
bunching cavity. According to Eq. (11) and (12) the minimum value of
Pmin is obtained for ¢¢9 = m/2 an equals to pmin = pg - 2A;, whereas
the maximum value of ppax is obtained for ¢g = - 7/2 and is equal to

Pmax = po + 2 Aj. The corresponding values of Ypin and Ymax are
then according to Eq. (6)



Y1+ p:in (16)

<
1]

min

/1+p2| 17)
max max

<
11}

The change of kinetic energy is then

8 A
MEin = moc? (Ymax-Ymin) = Po_"1 (18)
Y 1+p 2 b v s p§ l
min max

For the limiting case of A} = 1/2 pg we have ppin = 0, Ymin = 1,

1
Pmax = 2 P0s Ymax =V 1+ (2Pg)? =V 4yy -3

and maximum energy spread is equal to

2
MEin max = (Ymax - 1) * moc? = (/4 v2 =31 1)« 511.0041 kev

4.2 Conditions for Electron Oscillations and Reflection

Above the value Ey was found for the electric field intensity in the
bunching cavity below which all electrons pass through without being stopped
or returned. Now we will assume that E > Ey and we will look for
E = ER >Ey such that electrons can be stopped and reverse the direction
of their motion at leat twice (generally an even number of cases) being still
transmitted through the cavity.

According to the above considerations we will define ER as a minimum
value of electric field intensity E > Ey such that an electron entering the
field region with some initial momentum po and initial phase ¢,, after being
returned in the bunching cavity, will arrive again at the point of departure
with zero velocity and accelerating phase ¢. We can also say that this condi-
tion requires equality of paths passed by an electron from the entrance into
the cavity to the first turning point - path of AS;, and from this point to
the second turning point - path AS,. Changes of momentum p and path S for the
case ¢g = /0P and for different values of E are presented on Figs. 1.



The general expression for the path AS traversed by an electron is given
by Eq. (15) so we should find only the corresponding values of momentum
changes for both paths. For the first part AS; of the trajegtory we have

0

initial values: pg and ¢; and we can find the constant K = — -~ sin ¢4.
Ay

To calculate AS; we should consider two cases:

1) <X
%) 7

For this case the momentum p at the beginning increases and attains maxi-
mum ppay = po + A1 (1 - sin ¢g) for ¢ = m/2 and then decreases to

zero. According to this AS1 is given by

Pmax
as1= L f2-pdp N
Y 1+ p2 Y Ay - (p - po + A} sin ¢0)2
Pmax
1 pdp
*Tﬁ{ | | (19)
2
/2+p2 Y Ay —(p—po+Alsin¢o)2
2) g > X
7z

Now p decreases from pg to 0 and AS1 is

Po
ast = 1 f pdp (20)
2

2
1+ p2| /A - (p - po + A; sin ¢0)2 !

If we knew the value of A} we could also calculate the phase ¢,r for

the first turning point by putting p = 0 in Eq. (18). We should then have

sin ¢ R = sin ¢y - %% (21)

Usually ¢;R will be between ;- and-; .

The branch AS, of the trajectory is composed of two parts: firstly the
electron is accelerated in opposite direction and its momentum attains a
minimum

p. =po-A; (1 +sin ¢p) <0 at ¢ =
min

T

N W



Secondly the motion in the opposite direction is decelerated and momentum
again passes through zero. It can be verified that these two parts are

symmetric in respect to p = ppin so that AS, is given by:

= 2 (Pmin p d
4Sy = £ £ D | (22)
/(1 +p?) (A3 - (p -po + A; sin ¢;)2)
Equation: AS, - AS, = 0 (23)
determines the values of A} = AjR and the corresponding values of ER

above which electrons are reflected. Generally, as it is seen from expres-
sions for AS;, AS, and from Eq. (23), the values of A;R depend on p, and
¢g, i.e. on input energy and input phase. Solving Eq. (23) for a few
interesting values of py and for decelerating phases

LPINPER

2 2

We can obtain AjR and ER as a function of pg and ¢g9. A special program
REFLEC has been written to solve this problem. A short description of this

program is given in Appendix 2.

The main results of numercial calculations will be given below, but
before going into the details of these calculations, we would like to
explain what happens in the case ET < E < ER with these electrons
which after being returned twice begin to move forward again. Generally it
is not evident that the relation E < ER is sufficient for transmission of
these electrons through the bunching field, since now the initial condi-
tions are different. The boundary E = ER was established by taking into

account the initial values p = py > 0, and n/2 < ¢; < 3/2 n so that
ER = f(po, %0).

The initial conditions at the moment of the second turning point are:
P=poy, & =29

with additional restriction on ®p stating that cos¢pp > 0 (accelera-

tion in forward direction).



It is obvious that the condition for electrons to pass depends now only on
the value of phase & at the moment of the second turning point (generally even
turning points). To find this condition we will analyse the changes of
momentum p starting from any turning point. According to Eq. (10) the

momentum p is given by:
p=po + A (sin® - sind;)
For any turning point we have:

po = A (sin® - sindR) (24)

starting from any even turning point the motion goes as follows: at first the

electron is accelerated and its momentum p attains the maximum value equal to

Pmax = A1 (1 - sin®R) (25)

Then moving always in the same direction the electron is decelerated and its
momentum passes again through zero (odd turnig point). The path traversed by
this electron in the forward direction is then

P

2 max pdp
AS) = [ (26)

=7z |
/1 + p21 YAl - (p+ A sin<I>R)2 '

From this moment the electron begins to move in the opposite direction. The

path traversed in the opposite direction is equal to

0
min v 1 + p2| v A% -(p+ A sin‘IJR)2 I
where ppin = - A1 (1 + sin@p) (28)

The condition for electron transmission is then
ASl > A52
from which it follows

Pmax - ,Pmin|

or
- sindR > sindR

so that
sindR < 0 (29)

for any turning point.



Since the motion is periodic it is enough to consider only the first period

and phases of the first and second turning points. We aobtain then

;n > &g > ™ (30)
for the first turning point.

Taking into account that the phase ®;p of the second turning point is
placgd symmetrically to the phase &R on the other side of the phase
® = _ 7 we obtain
2 3 3
S)p==T+ (Zn-BR)=3n-Br<2m= (31)
2 2
Combining Egs. (21) and (25) we can also find the upper limit Aj1, as a

function of pg and &; for the transmission of oscillating electrons:

sin ®g = sin &y - PO <o or
A
A} < A1To = po/sin®y (32)

Equation (32) should be considered only for sin®; > 0 since for sin®; < O
relation (29) is always fulfilled.

The numerical calculations presented, e.g. in Table II have shown that we

have always the relation
A1R < A1To

It means then that all oscillating electrons are transmitted through the bun-
ching field and that the relation A; < AR is the sufficient condition for

electrons transmission.

We can now discuss some numerical results obtained with the aid of pro-
gram REFLEC. They are given in Table I and Table Il and are also presented on

Figures 1, 2.

In Table I some limiting values of electric field intensity Ey, ER,
and ETO are given for few values of Vg between 50 and 100 kV. Note that
always E7 < ER < ET,- The phase angle ¢oRmin is that entrance phase of
electromagnetic field for which the minimum amplitude of electric field is

needed to reflect the electron entering at this phase. The other quantities

with subscripts ppin correspond to that value of entrance phase ¢°Rmin.



It is interesting to note that:

1) ®yrmin practically does not depend on the gun voltage Vg, i.e. on the
input energy of electrons. It changes only from 107.7%° for Vg = 50 kV to
107.5¢° for Vg = 100 kV.

2) ®pmin is slightly higher than ® = ®/2 corresponding to the maximum of
electron deceleration which is obtained for the case when the electron

enters the field at &; = n/2 and leaves it at ¢ = LAY
2

3) On the other hand the change of ERpin is roughly proportional to square
root of Vg: ERmin = 11.46 for Vg = 50 kV and ERmin = 16.46 for
Vg = 100 kV. The ratio is then 1.435 = V2. The behaviour of ER is
similar to ERpin. Note that the voltage VRmin which is the voltage
necessary for reflection is more than 3 times larger than Vg for Vg = 50 kV
and about 2.5 times larger for Vg = 100 kV.

Below we shall see that the optimum bunching occurs for field values in

the vicinity of E = Eppin.

The phase ¢;pmin corresponding to the phase at the first returning
point, behaves similarly to ¢gpmin: it changes from 198.51 to 198.98°
for Vg between 50 and 100 V.

Table II gives the values of Ey, ER, Eyo, ®;R as a function of
initial phase ¢, for gun voltage equal to 60, 80 and 100 kV.

One can draw now two curves Eyz Ey(¢g) and ER = ER($g). They
divide the space (E, ¢,) into three regions:

i) E<Ey - all electrons are transmitted without oscillations

ii) Ey < E < ER electrons pass through the cavity after two or more
turning points.

iii) E > ER electrons are reflected. Figs. 2, 3, 4 show these regions
for Vg = 60, 80 and 100 kV correspondingly.



Numerical Calculations Bunching

The main aim of the above analytical considerations was to find the limits
for electrical field intensity in the bunching cavity for which the transmis-
sion of all electrons through the cavity was possible. Now we will analyse
the bunching properties of RF cavities as a function of their electric field
intensities. Since we would like to treat also the spatially dependent
fields, the direct numerical solution of Eqs. (1) and (2) appeared to be more

convenient.

Generally the z-dependence of the amplitude of electric field intensity can
be written in the form
E(z) = Ey f (2) (30)

Here E; is the maximum value of electric field amplitude usually attained
in the middle of the cavity, where we place the origin of the z-axis. Since
E(o) = Eg, then f(o) is 1.

Two different functions f(z) were used for calculations:

i)  f(z) = const.

ii) f(z) ~ e—D.SC% ) - gaussian shape of electric field intensity. This
type of field dependence was proposed by R. Belbéoch [2] on the basis
of numerical calculation of field distribution in the cavity using the
program SUPERFISH. The least square fitting of calculated field and
gaussian curve gave for & = 0.0071 m. The half length of the cavity was
equal to %: 0.00742, so that & = = . Since the E; field did not fall

abruptly outside the cavity the integration was performed for |z|< 3 6.
The problem is then the following: to solve the quations of motion (1)
and (2), i.e,

%é = A f(s) cos ¢ (1)

dé¢ _ Y

T =2 M —— (2)
vy? - 1l

where now A = q AgA/Wy. For the geometry shown on Fin. 5 corresponding
to that of



LEP V prebuncher - buncher assembly. Find then the energy phase distribution
of electrons at the entrance of the 30 MeV buncher. To solve the above set
equations we used the fourth order Runge-Kutta-Merson method with the automa-
tic variation of the step length in order to obtain the desired accuracy on a
given interval of integration. The equations of motion enter into the program
as a special procedure required by the main procedure Merson. Any physically
reasonable function F(z) either analytical or experimental can be used without

restrictions for these calculations.

Since according to previous considerations we do not exclude the possibili-
ty of electron oscillations in the cavity some problems can arise in the case
when electron is stopped so that vy = 1 and the right hand side of the second
of equations of motion will become infinite. To overcome this difficulty some
modifications in the procedure Merson were made which allowed for solving
numerically the equations up to the place where the value of momentum
p = /Yz - 1! becomes smaller than some chose value n so that the kinetic

energy of electrons is maller than m o c2 v 1 + n2|

-1), e.g. for

n = 10'2 kinetic energy of electrons is smaller than 25.5 eV. The set of
Eq(s) (1), (2) is then solved analytically for |p|<n assuming that

f(z) = const. chosing properly the value n and the precision € with which the
set of equations is solved, the desired accuracy of solution can be obtained.
To obtain the bunching as a function of electric field intensity in the pre-
bunching cavity several values of field intensity EpB were used for calcula-
tions. They were chosen to be equal to Epg = 2.2, 5, 7.5, 10, 15, 18 and 20
MB/m for the gaussian shape of field and also EpB equal to 2.2 and 15 MV/m for

square field shape for aim of comparison.

To see the evolution of phase bunching in space, the phase was calculated

in 3 places:

i) at the end of the prebuncher
ii) in the middle between prebuncher and buncher

iii) at the input to the buncher

The results of calculations are presented in the form of suitable tables,
curves in the energy-phase space and histograms showing the efficiency of

bunching at different positions.



Remark Usually in the calculations we use the electric field intensity, which
is always well defined quantity. However, sometimes for illustration it is
convenient to give also the values of r.f. voltage existing on the electrodes
of bunching cavity. Since in a general case the transit time through the
cavity can be of the order of the period of electromagnetic field, it is
impossible to calculate analytically the effective potential of the cavity
which could take into account the transit time and variations of velocity of
electrons. This value can only be calculated numerically by the solution of
equations of motion and finding the energy exchange between the field and
electrons. However, to get some idea about the potential drop we will use the
static field approximation given by:

v = [ Ex(z) dz
L

where % is the length of the region where E,=0. We then have

Vpbs = Eo * L for the "square wave" field and

30

VpBG = Ey [f(z)dz
-3¢

for the gaussian form of Ez(z) distribution. In all cases when we will speak
about the potential difference VpB we will use either Vpgs or Vppg

correspondingly.

We will discuss now the results obtained. Since most of the calculations
were done for the gaussian field distribution then if nothing has been men-
tioned to the contrary the results are for this form of electric field in the
cavity. The value of electric field intensity Epg then corresponds to the

maximum value in the middle of the cavity.

Fig. 3A shows the distribution of electrons in the energy-phase space at
the three above defined places whereas the Figs. 3B, 3C and 3D give the histo-
grams of phase distribution at these place for Epg = 2.2 MV/m
(VpB =~ 30 kV). It is seen from these figures that in the case of VpB<<Vg
we have the so called velocity bunching at the end of the bunching cavity, the
phase distribution is almost not changed but there is a velocity modulation
which in the drift space after the cavity produces the phase bunching. The
process of bunching is already well visible in the middle between prebuncher

and buncher, but its is much more pronounced at the buncher input.



Figures 4A, 4B, 4C, 4D until 5A, 5B, 5C, 5D present the same pictures as
those of Figs.3A, 3B, 3C, 3D but for Epp corresponding to: 7.5, and 15 MV/m.

It is seen from these figures that already for Epg = 7.5 MV/m
(VpB = 111 kV) the picture is radically changed. Now, at the end of
prebuncher the electrons are already fairly bunched and there are only small
changes in electron phase distribution in the drift space. With increasing
value of the electric field intensity Epg this behaviour becomes more and
more pronounced and in the limit of high electric fields e.qg. EpB > 10 MV/m
(Vpg = 150 kV) the best bunching is produced already at the end of the
prebuncher. It means then that the bunching is now produced not in the drift

space as for small EpB but in the region of strong electric field.

Another interesting feature of bunching with high electric field intensity
is that, although there are some electrons with very small energies well below
the output energy from the gun, most of them have energy higher than their
energy when entering the cavity. This creates a good chance for electrons to
be accepted by the accelerating structure which follows the bunching cavity.
As shown by the calculations this occurs in fact (it will be a subject of the

second note).

The results for the case of "square wave" field distribution for two values
of EpB: EpB = 2.2 MV/m and 15 MV/m are presented on Figs. 6A,B, C, D and
7A, B, C, D, Also the cases of Vg = 60 kV, Epg = 2.2 MV/m and 15 MV/m
(gaussian distribution) were calculated. The results are similar to the

corresponding previous ones.

DISCUSSION

The analytical considerations made for the case of constant field have
shown that even for the case of Vpg = (2.5 - 3)Vg all electrons pass through
the bunching cavity. These values can be regarded as the lower limits since
for the case of non uniform fields the time of transit through the field
region will be as a rule longer and energy exchange less effective, e.g. the
calculations made for the gaussian type have shown that the limit for reflec-
tion is higher by more than 10%, e.g. for Vg = 80 kV the momentum p of
eletrons can become negative when Epg > 10.75 for Gaussian field

distribution whereas it occurs already for Epg> 9.3 MV/m for the constant
field.



The results of numerical calculations presented on Figs. 3A, B, C, D up to
7A, B, C, D have shown that there exists a very good bunching for electric
field as high as 15 MV/m and more which corresponds to Vpg/Vg ~ 3 and Vpp
of the order of 200 kV (for Vg = 80 kV). An important thing obtained in the
case of high fields is that now the electrons are fairly bunched already at
the exit of the bunching cavity so that no additional drift space is needed

for bunching.
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APPENDIX I

According to Eq. (14) the path traversed by the electron which changes the

momentum from pg to ppin is given by:

AS =1 f X dx (A1)
Y (1 +x%) (AL - (x - a2 |

Pmin

Taking into account the expression (9) for K and exp. (10) for p the

integral of (A1) can be written in the form of

1= X dx (A2)

Pmin ¥ (1 + x?) (ppax - x) (x - pmin)|

where:
Pmin = Po - Ap (1 + sin ¢g) (A3)
Pmax = Po + Ay (1 - sin ¢g) (A4)
This integral is of the type [3]

/ (a- x) (x = b) (x - ¢) (x - 231 Y (a-x) (x -b) [(x - by)?+af ] (A5)

where in our case we have

a = Pmax
b = ppin
c=i=-1,c¢c =-i
by =0, a] =1

denoting also

2

A° = (a - bl)2 + 3% =1 +pm521x = Ymgxs

2

2
B =(b-bl)" +af =14+ pm%n = Ymin



1 1
g:«——— Z ———e
/ AB "Ymax Ymin
2 2
K2 = (a-b)? - (A-B)? _ (Prax = Pmin’ - Ymax = Ymin’ ,
4 A8 4 Ymax Ymin
(pmax - x) Ymin ~ (x - pmin) Y max
R PY— r = p )
pmax X Ymin pmin Ymax
cnu = cosine amplitude function;
(Jacobian elliptic function)
cnu = cosy, (pmax_ p) Yoin (p - pmin) Y

max )

Y = amu; = arcos (-
(Pmax= P) Ymin + P = Pmin) Ymax

amu = amplitude u

Now according to [3] (see 259.03, 341.02, 341.03 and 361.54 of this book)
we have

p x d x

1= , . g (aB+bA),
b/ (@ =X X =B (x = ¢ (x | A-B
[ o F (v, k)+%.‘._:A (1 (y,1a2a,k)-af1)] (A6)
- “2 = %2
a2 + 1
where, _ A - B _ Ymax ~ Ymin
A+ B Ymax = Ymin

F(y, k) - incomplete elliptic integral of the first kind
IO(y, az,k) - Legendre - incomplete elliptic integral of the third kind

k - modulus of Jacobian elliptic functions and integrals



k' = ¥ 1 - k% - complementary modules
1 - o2 | 2+ k22 o2 )
f1 =7 arctg (/.______75__ sdu ), if < Kk,
k2+k'a2 1-a a“-1
a2 2
= sdu, if 5 = ks
a“-1
1 %4 ' v k2+k'2a2| dnu + ¥ o? - 1I snu
:.2.1/.—————1[1( )
k2+k ' 2a? Y kKe+k'2a?! dnu - v o? - 1l snu
2
if = > K2
a”-1

dnu, snu, sdu = .%%% - Jacobian elliptic functions

In our case we have

a? _ (A - B)?
a?-1 - 4AB

(a-b)2 (A-B)2 (a-b)?2 o «?

4AB 4AB 4AB -1 -1

Then according to (A7) we should take for f1:

- a? | 2 12,2
f1 =7 J?r-fi—77—75 arctg ( v EL—JLJS7§£- * sdu )
k™ + k' a 1-a«a

The integral I as given by (A6) is now completely defined. The values of

the incomplete elliptic integral of the third kind can be found in reference

[6].



APPENDIX 2

A short description of program REFLEC

It was shown above that the limiting value of electric field intensity ER

where electrons are reflected is defined by the Eq. (23).

AS7 - ASp = O A2(1)

ASq and ASz are given by Egs. (19), (20) and (22) which can be expressed
in terms of elliptic integrals of the first and third kinds (see Appendix 1).

Electric field intensity E, which we are looking for, enters into Eq. A2(1)
through the quantity A; which appears both in the integrands of integrals
(19), (20) and (22) and also in the limits of these integrals. Besides Ay
these integrals depend also on initial values of ¢ = ¢y and p = pg. Taking p,
as a parameter by solving Eq. A2(1) for different values of ¢, we obtain A, as

a function ¢g.

To solve the Eq. A2(1) the CERN Library subroutine Gauss was used to calcu-
late the above-mentoned integrals and CERN Library subroutine RZERO was

applied to find the zeros of this equation.

The subroutine RZERO requires the lower and upper limits A and B between
which the zero of the considered equations should be found. In our case the
lower limit is given by A = Aq1 = pg/(1 + sindy). The upper limit B is a
little more complicated if we try to define it with some precision. It can be
taken to be equal:

B = A1g = E%%$bfor 0° < ¢g < 15C°

B = a few times lower limit A for 150° < ¢ < 27C°. There are no reflections
for -90° < ¢4 < °.

Having found the solution of Eq. A2(1) we have the value of A; and we can
calculate now other interesiting quantities such as the electric field inten-

sity ER, minimum value of p = pmin, the phases ¢r1 and ¢Rr?2 correspon-

ding to the first and the second turning points, the distance Az71= AMagq of
the first turning points. The program also draws two curves Er = fr(%)
and Eg = fR(®g), which divides the space (E, ¢g) into 3 regions:

1) E<Ey - transmission without oscillations

2) Ef <E < ER =~ transmission with oscillations

3) E > ER - reflections



%4 s0° L2z 68 86°86L | 0S°LOL AL XA 9 9L Lg°9sL ¢6°0l
62 8876l LL°8 06°86L | Ss°L0L X AN S 4 LS°6lL 19° Lyl n6°6
Lz 99°8L 89°L 6L°86L | 09°L0L 92" L1z €9 1l se8el £€°6
1852 BE LL L 89°86lL | <9°L0l §6°202 79°¢lL s0° 621 69°8
6°L€2 20° 91 LL"9 66°86L | 0L°L0L 96°981 65°21 G6°8LL L0°8
6°6le nstylL 6L 9 L6 861 | SL°LOL gL 0Ll 9 Ll 96°L0L LZ°L
W/ AW ww saaiabap [saaibap M W/ AW M W/ AW
Z/r = 09)
NIW oh> NIW ohu NIW di NIW xee NIW moe NIW m> NIW d 4*hu - h> (6 = oevhu

ool
06
08
0L
a9

0s

M

ba

bA 39v170A NN 40 NOTILINO4 V SY H3HINNG3Yd IHL NI

SNOY1J373 40 NOT1337434 ONV NOTLV11I3SO “NDILISNvYL ¥04 SLIWIT ALISNIINI Q1314

I

3lgvil




Lg $0°12Z 26°8 86°86L | 0s°LOL ¢ uwz | 9n°9lL LE° 951 €5°0L 00l

62 88° 61 LL°8 06°86L | $s°LOL 127 1€z | L§°SL 19° Lyl 76°6 06

L2 99°8lL 89°L 6L°86L | 09°L0L 9z LIz | €9°mL 138:19) €€°6 08

L° 862 8E Ll L 89°86L | $9°L0L gs*zoz | w9°<1L S0° 621 69°8 oL
6°LET Z0°91 LL*9 65°861 | OL°LOL 96°98L | 65°2L $6°8LL 10°8 09
6°S1Z 95yl $L°9 15861 | sL°zoL 8L'0LL | 9v'LL 96° L0l Lzt 0
w/AW ww saaibap |saaibap A W/ AW M W/ AW M

z/x = 09)
NIW 01 |  NIN OL| NIN ¥l |  NIW dL,| NIW ¥0, | NIW ¥, NIW ¥l 13 = 1y 1 g6 = Ooyla| Ba

BA 39V170A NN 40 NOTILONOS V SV ¥3IHINNEIYd 3HL NI

SNOY1J3713 40 NOT1331334 OGNV NOILVIII3SO ‘NOILISNVYL ¥04 SLIWNIT ALISNIINI Q1314

I 317489vl




‘L =

]

0¢ -3eyounqaid ayy ut 8943 A31suejur praTy 4o sanTeA JuslayyTp
104 30+0¢ = ¢ jo uotjouny e se z 3due]STP TeTIXE pue d wWNIUSWOW 16ty

e

ghic8 =73

-

AP ‘, o
ol . 09g i O8)

lf

i

! i
T !
| L™
oL

|

i

BN AN S T i

——te e e + —

d L

P YIS TN

P LI DN AR N . A
. i P PR
: N H . H A~ o 4
N . . v RS R RS -

T sseibop




of 6t? oh=z o o3+ oSk o,o.x.zu& ., Q6 ., .09 O @ .0~ 06 ~
s34, " __ } 7
| | t h
Iy 9
P 1
SNO/ILWTTIDSO UMOHLING NOISS I SN m% ANSS 8¢ = §§>/Mw
§ _ _— = —_ = - - - - —_— o L
| M S'8hk 10F
| Al
|m &\N \N \_UWWD \%\ \/XN..#\N..HI,_EQ)‘IV
AN 08 = OA \ v S oot
3 19
A1 08 = Unby [#
*uU0T308T481 pue 462 1 00
uoTsSsTwsuely} Joj
auetd 0¢ - mau ut suotbay gz bty
S'Shh T 9%
+oh
hbS
Aurs oy _ LX) 2w Jexea)
XpXx .wu (29
- [ -20= &Q:ﬁ
l.&ﬂt . \/\b % Mr 4
SThi ;Mm
AAT/AU
ddNV 893




aouBIjue J3younq 3B - +

Jayounq pue Jayounqald uaaMilaq ITPPTW ayjz ur - X
3TX3 A3}TABI 3B - 4

‘w/pW 27 = Xewedy

uoT3NQTIISTP PTITJ UBTBENEBY YJTM
A31ABD Jayoungaid Jajje sa1dor3Ied jo

AJW Y3IHINNEd INdIND A9HINJ

uoT3NQTI}STp aseyd - Abieuj B¢ °bT4

gt €sot* SN0’ L2880’ 60L0" 08S0° Ln0° 2§60° 8620° 180N 0000°
[ i I T | T T T | [ T T T ! T
X . » A
*
»* —
. %
1Y
X x ]
*
X xx + —
¥ |
X +
*
» X —
* VA + .
»
, T -
» A
»* + + + + X M
+ o + —
+ + x
+ +2 +
+ + ¢.+ -
»
X
* x -
* » X
IA
* X
) X
+ » X 4
. x b B
X X .
xxix *
X ]
X + *
xx v N
X + x

b LY

‘o9t

‘912

414

‘982

‘096

NAE NI SN1d 88d AYMW X NN8d LNO HYYLS 3SHHJ



‘one

w/AW z°z = 893 *31xe@ A3TAEBD @y3 38 LOTINQTIISTp aseyd jo weaboystH q¢ BTy

L

SNIE N



‘08¢ ‘oz ‘aez

84

o

MW 1B Hd

'l

w/MN z°z = 893 -3ayoung
pue Jayounqaid ueem3aq aTPPTW ayj uOTINQTIISTP aseyd jo weiboisty o¢ ‘614

i

-8

‘ot

SNIS N



IN3 NN8 LB Hd
‘002

‘o9t

IR AN

W/ANW 2°2 = gd3 -aoueijua Iayoung 38 UOTINQTIISTp @seyd jo welboystH pg °bry

SNI8 N




€622° €902°

L1310

AW HIHINNEGd LIN4LNO AJY3INT

S091°

et

ghit”

L160° $890°

6220°

1

aJueIjua Jayoung 38 - +

Iayoung pue Jayoungaid
uasMilaq STPPIW ayj ur - X

ITX3 AJTABD 3B - 4
‘Ww/AW gL = xewgdy
uoTINQTIISTp pTaTj ueTISSNB]
y3t™ A31ABO Jayounqald 1334e
saTor3Ied jo UOTINQTIISIp @sByd - Abaau3z 8y bty

T

I

_ T

1
X

¥

I

T

I T

‘9¢

43

‘801

“hhi

‘081

‘gt

"2se

‘882

“heE

‘09¢

SN1d 88d AUMW X NN8d 1IN0 HYLS 3SHYHJ

M
1

NNg N



1I1X3 8d 1Y Hd

‘oo2 ‘091

‘o2t

L] ‘0

T

w/AW ¢°£ = 893 ¢31xa A3TABO Byj 38 LOTINQTIISTP @seyd jo weiboisTH qy BT

I

‘o1

SNI8 N



puB Jayoungald uaamiaq BTPpPTW 8yl ur

‘o8¢ ‘o2e ‘082

W/AW G°L = 8d3 -1ayounq
uotyngrajstp a@seyd jo weiboisty O °bT4

o2

0°¢

SNIS N



‘09¢ ‘02¢ ‘082

‘0N

INJ NN 1
*002

H Hd

‘o8t

‘o2t

“oh

W/AW G°L = 8d3 -aousijus Jayoung 3B UOTINQTIISTP 8seyd jo welboISTH Py ‘bry

1

SNIB N



L9’ 0SLE” heEE "

AW H3IHINNEd 1NdINO L19Y3NJ

es2t-

(e’

o0ose*’

Naoe

3110

€€60°

(A%

0006 °

aouBJIjuUe Jayoung 3B - +

layounq pue Jayoungald uasM}aq STPPTW 3yz UutT - X
1TX8 A3TABD 3B - &

‘w/pW gL = XBwgd3
uoT3NQTIISTp PI3T4 UBTESNE]
yjTM A3TAB3 Jayoungeld Iajye
sa7oT3ded jo uOTINQTIISTP 3sBYJ -~ Abiauy Bg ‘b1

T _ ' I 7 [ I L T T T T+ 7 I
+
X
X
*
+ + + —
+ + N N
+ 4
4+
+
+ —
+ *
+ X X 8 ) * * H » i
»  x %
x + * —
* .fwA X X %
X + % X .
+
x ¥ X B
* . + + % y * ]
» -
+
x —
x -
X X X +
N X X X ) x .
X X
X X -
X x.l
X X
x —
X X .
X X —
N
X X

g€

‘e

‘eot

“hhi

‘08t

‘9t

rese

‘e8¢

‘096

SN1d 88d LMW X NNB8d 1ND HYY1S 3SHHJ

N8 Ni



1Y ‘02¢ ‘082 LTS

1IX3 84 1Y Hd
‘002 ‘o8t

‘a2t

‘08

‘oh

w/AW gL = 893 c3Txa A3TABD 8y3 38 UOTINQTIISTP 9sByd 4o weIbO3ISTH qg °*Bry

I

‘ot

SNI8 N



g 8d MW LU Hd

"09€ ‘oce “08e ‘ohe ‘go2

*091

‘o2t

*08

‘oh

Ww/AW Sl = 8d3 -1ayoung
pue Jayoungeld usaMi}aq STPPTW 8Yj UT UOTINQTISTP aseyd jo weabojsTtH a¢ °bT4

[

‘ot

SNI8 N



IN3 NNE 1Y Hd

‘09€ ‘02e ‘082 ‘0he ‘o002 08t

‘o2t

“ge

‘oh

w/AW gL = 893 -eoueajue Jayounq e uoT3INQTIISTp aseyd jo weiboisTH Pg *b14

e

"ol

SNIG N



AW HIHINMGS L[N4L70 LOHIANS
181" €901 Sheg” L280” 60L0° 0650° 2Lho” hGen” ge20” gli0-” 0000°
T — T3¢ _ T _ T T M+ T M T _ T
* X
. 4
S X *
x h—
* X " N
* + o+ 4 +
+ t +
x * + + X + |
+ A
+ % R
+ 5 X A
+
x
+ X —
e
+ v X |
+ x X
+ . X B
. X _
* % xx
+ X m X X m
Y ¥ oK x
X + X * B
. X . 1
X X + %
X X I
8duBIjUe Ieyoung 3B - + Y N <
Iayoung pue layounqgaid X x 7
usaMileq STPPTW 8yj UT - X X
»
JTx0 AJTABD 3B - X * x i
w/AW 2z = 893 X x -
"UOTINQTIISTP PTaTy ,8Jenbs, X o
43T™ Jeyoungaid Jajje * .
S3TaT13Jed jo X *
uoTINQTI}STP aseyqd - Abasuj % + —
X x
B9 bty *
s X + ]
%
X _

0
i

1SHHd

ki

‘08!

D
0
"

NNd NI

“hee

duls

X NNdd 1n3

SN1d ddd AUMNW



*adeys ,9ienbs,,

W/AW 2°2 = mau *31TXa@ A3TABD ayj 3e uot3inqriysip aseyd 4o weibolsty q9 6T

‘086

‘02e

‘082

‘ohe

1IX3 8d 1Y Hd

"oo2

‘o8l ‘oet ‘08 “oh

I _ I

SNIE N



"edeys ,aIenbs, W/MN Z°Z = gdy *Jayounq

pue Isyounqeld ueamjaq STPPTW 8Y3 UT uoTINqTISTPp @ssyd jo weiboisTH 29 By
s o2 - e B8 8d MW 1Y Hd - o 0

T _ | | T o

.

_ ERENREREEN

L

i

|

SNIS N



W/AW Z°z = 893 -aoueajua Jayoung 3B UOTINGTIISTP

IN3 NNG 1Y Hd

‘002 ‘08t

*adeys ,2ienbs,,
aseyd jo weiboisty p9 bty

‘o2t “08

T

- m

“o1

N

SNI8



8L6h"

08hh"

286€"°

AJW HIHINNGd LNd1N0 LAIHINI

hehe*

Le6e”

68h2*°

1661°

€6h1°

9660°

86ho"

0000°

2JueIjus Jayoung e - +

Iayounq pue Jayounqald uaami3aq aTPPTIW 8ayj utr - X
3TXa A3}TABO 3B - 4

w/AW gL = 893

*uoT3INQTISTP PTRTy ,2Ienbs, YITM
A3TABD J3youngald Jajlje

safor3ied jo uotr3nqriysip aseyd - Abasuj ey *bt4

I

*
*
»*
*

I
*

T

“9€

‘eL

‘8ot

“hhi

‘081

114

"ese

‘882

‘hee

‘08¢

N8 NI SN1d 88d AGMW X NN8d LNO HYLS 3SHHJ



-adeys ,21enbs,,
W/AW SL = gd3 -31xa A3TABO 3y3 3B UOTINQTIISTP aseyd jo weibojistH q7 °*b6T4

1I1X3 84 14 H

‘09¢

“02e

‘g8

“ohe

‘002

‘o9t

"ot

‘o8

‘oh

I

‘a1

SNIE N



*adeys ,aienbs,, w/AW Gl = gdy *Jayoung
pue Jayoungaid uaamjaq ITPPTW 3aYy3 UT UCTINQTIISTP aeseyd jo weibojstH o7 °*bBT4

8 8d MW 1B Hd

‘o082 “Che ‘002 ‘09t ‘ozt ‘o8 “oh ‘0

[N

SNIE N



_ gd- . *adeys ,szenbs
W/AW gL = 893 -souesjue zayounq 3B UOTINGTI3STP mwmcamo Emumouwﬂn vm.mﬂu

IN3 NN8 1B Hd

‘09e ‘oce “08g ‘Ohe pelit4 “e9t ‘o021 “08 ‘oh

T l I

SNIE N




