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of processes, which we dub “2p2hγ” (two-particle–two-hole + photon) can explain ∼40 of
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background from neutral-current single-π0 production, where two photons from π0 → γγ

decay are mis-identified as an electron-like shower. We construct a phenomenological
likelihood that reproduces MiniBooNE’s π0 → γγ background faithfully. Even with data-
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1 Introduction

At 4.8σ, the MiniBooNE anomaly is currently the most statistically significant unexplained
anomaly in neutrino physics. MiniBooNE — a short-baseline neutrino oscillation experiment
at Fermilab — have observed an intriguing excess of events in their search for electron
neutrino (νe) appearance in a beam consisting mostly of muon neutrinos (νµ), as well as the
corresponding anti-neutrino process [1, 2]. As the baseline (that is, the distance between
the neutrino source and the detector) in MiniBooNE is far too short for standard 3-flavor
oscillation to develop, this result has led to a flurry of studies investigating the possibility
that a fourth, sterile, neutrino is responsible for the excess, either via oscillations or via
its decays [3–16]. At the same time, MiniBooNE has also driven significant progress in
our understanding of neutrino-nucleus interactions in the Standard Model (SM) [1, 17–
39], progress that will also be invaluable for the next generation of neutrino oscillation
experiments. However, none of these studies has identified effects that would be large
enough to account for the MiniBooNE excess, so at the moment no known SM explanation
for the anomaly exists. The same conclusion has been reached in ref. [38], which critically
examined how different Monte Carlo (MC) event generators differ in their background
predictions for the MiniBooNE νe appearance search.
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In this paper, we will complement the results from ref. [38] in several ways. First, we
will use the latest MiniBooNE data from ref. [2], while ref. [38] was based on the previous
data release, ref. [1]. More importantly, though, we will introduce in section 2 a new
contribution to MiniBooNE’s background budget, namely two-particle-two-hole (2p2h)
scattering with final-state radiation (“2p2hγ”). Because 2p2h interactions can be viewed as
a neutrino interacting with a pair of tightly bound nucleons rather than a single nucleon,
the probability for photon emission can be enhanced by a coherence factor ∼2. We will
discuss this process in the context of MiniBooNE, but will also present predictions for liquid
argon detectors which may be able to identify and reconstruct 2p2hγ events.

In addition, in section 3, we will revisit the NCπ0 background. These are events in which
a single neutral pion (and no other visible particles) is produced, but its decay products are
(mis-)reconstructed as a single electromagnetic shower, thus mimicking a charged-current
quasi-elastic (CCQE) νe interaction — the signal that MiniBooNE is looking for. We
construct a purely phenomenologically-driven approach to determine this background that
matches the full approach of MiniBooNE very well. In applying this approach to other
neutrino event generators, we find that other generators tend to favor a larger NCπ0 rate
in the low-energy region where the anomaly is observed, even when data-driven methods
are used to fix the overall normalization.

Combining all these effects, we find that the significance of the MiniBooNE anomaly
may be slightly smaller than previously estimated, however it still remains tantalizingly
high. Throughout this work, we offer some perspective on how current and near-future
liquid argon detectors may be able to perform their own independent analyses of these
interesting single- and double-photon neutrino-scattering processes.

2 Single-photon events from 2p2hγ scattering

In this section, we elaborate on the contribution of 2p2h processes with final state radiation
(“2p2hγ”) to the background budget in MiniBooNE. We also discuss possible dedicated
searches for such processes in future detectors, in particular in liquid argon time-projection
chambers (TPCs).

Our goal here is not to carry out a full-fledged calculation of the cross-section for 2p2hγ
processes. Instead, we work with a toy model in which we assume that the neutrino scatters
off a bound two-particle systemX, assumed to be a tightly bound pair of protons. (Scattering
on neutron pairs can be ignored here because electrically neutral particles cannot emit final
state radiation.) We treat X as a scalar particle with mass mX = 2mN ≈ 2 GeV, interacting
with the neutrino (and possibly charged lepton) via Z/W bosons. Figure 1 demonstrates
the two Feynman diagrams that contribute to 2p2hγ processes in this toy model.

2.1 Scattering without photon emission

We begin by calculating the cross-section for charged-current scattering νµ +X → µ− +X ′

in our toy model and comparing the result to more accurate calculations from the literature.
This serves as a validation of the toy model. The relevant Feynman diagram is similar to
the diagrams shown in figure 1, with the photon removed and with W -exchange instead of
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Figure 1. Feynman diagrams for 2p2hγ emission in our toy model, in which the process is described
as the radiative scattering of a neutrino on a tightly bound 2-nucleon system X.

Z-exchange. We assume mX ≈ mX′ . This gives the matrix-element-squared (in the limit
s� m2

W )

|M|2 = 32G2
F

∣∣∣F (Q2)
∣∣∣2 [4s(s+ t)− 4m2

X(s−m2
X)−m2

µ

(
4s+ t−m2

µ

)]
, (2.1)

where GF is the Fermi constant, mµ is the muon mass, s and t are Mandelstam variables,
and F (Q2) is a form factor that parameterizes the ability of the W boson to resolve the
substructure of the two-nucleon system (leading to suppression at high Q2) as well as
Pauli-blocking of final state nucleons (leading to suppression at low Q2).

In order to compare the predictions of this toy model against existing results, we
determine the differential cross-section as a function of Q2 ≡ −t, weighted by the νµ flux
at MiniBooNE [40]. We first set F (Q2) = 1 in our calculation and then compare the
resulting flux-weighted differential cross-section against the results from ref. [41] to extract
an empirical form for F (Q2). This is shown in figure 2 (solid blue line) for Q2 between 0
and 1.5 GeV2, the range of interest for scattering of neutrinos with energy Eν . GeV. As we
extend to the case with photon emission, we assume that the form factor of the X response
to a momentum transfer Q is identical to this case. The extracted form factor includes
additional physics on top of the true form factor. For instance, binding-energy effects are
relevant for low Q2, where ejection of two nucleons from the nucleus is impossible.

We can compare the empirically determined F (Q2) against a simple analytical estimate
for validation. To obtain the latter, we envision the scattering off a multi-nucleon system
as relevant only for a narrow range of momentum transfers. On the one hand, the outgoing
nucleons’ momentum must be large enough to overcome Pauli blocking inside the nucleus.
But on the other hand, the momentum transfer should be low enough not to resolve the sub-
structure of the multi-nucleon system. We model the effect of Pauli blocking as a form factor

FP (Q2) ≡ min
(√

Q2

4kF
, 1
)
, (2.2)

where kF is the nucleon Fermi momentum which we estimate as kF = [3π2A/(4V )]1/3, with
the nuclear mass number A and the volume of the nucleus, V . To compute V , we use nuclear
charge radii from the table of isotopes in ref. [42]. Note that V is approximately proportional
to A, so that the dependence of FP (Q2) on A drops out approximately. The factor 4 in
the denominator of kF accounts for the fact that protons and neutrons form independent
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Figure 2. Form factor |F (Q2)| for two-particle–two-hole scattering of a neutrino off a scalar target
X with mass 2mN in our toy model as a function of the momentum-transfer-squared Q2. The blue
curve has been derived by matching the differential flux-weighted cross-section on 12C in our toy
model against the results of ref. [41] for the same target nucleus. The dashed black line corresponds
to the theoretical estimate for the form factor from eq. (2.4) for the same isotope. We find good,
but not perfect, agreement. The gray curve shows the theoretical estimate for 40Ar.

Fermi gases and that there are two spin states. As we are interested only in relatively light
nuclei (12C and 40Ar) in this paper, we neglect the fact that the proton and neutron Fermi
momenta can be slightly different when the numbers of protons and neutrons are not the
same. We model the transition to fully quasi-elastic scattering with a dipole form factor

FD(Q2) =
(

1 + Q2

m2
D

)−2
, (2.3)

where mD sets the scale of the transition, which we empirically choose to be mD = 900 MeV.
Overall, we then have

F (Q2) ≈ FP (Q2)FD(Q2) . (2.4)

Besides this form factor, we also incorporate bound-state effects by modeling the two-nucleon
system as having a randomly oriented ∼ 200 MeV initial-state Fermi momentum and a bind-
ing energy of ∼ 30 MeV so that momentum transfers below Q2 ≈ 0.2 GeV2 are suppressed.
This combination of assumptions yields the dashed black curve in figure 2, not dissimilar
from the extracted curve. We will use the extracted curve in the remainder of this work.

2.2 Scattering with photon emission

The diagrams in figure 1 can be calculated to determine the matrix-element-squared with
photon emission in our toy model. We provide the full expression for |M|2 in appendix A
as a function of dot-products between different particles’ four-momenta. Numerically, we
work in the rest-frame of the ν +X scattering, using the direction of the outgoing photon,
the photon’s energy, and the outgoing X energy as our kinematic quantities. Note that
scattering with photon emission is possible only for scattering on pairs of protons, but not
for scattering on neutron pairs.
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Figure 3. Total cross-section of neutrino scattering off a pair of nucleons, X, in our formalism,
comparing charged-current scattering νµX → µ−X (dashed) against neutral current scattering with
final-state radiation, ναX → ναXγ (colored). We take three values for the minimum (CoM-frame)
outgoing photon energy Ecm,min.

γ — 100 keV (blue), 10 MeV (orange), and 50 MeV (green). We
normalize all cross-sections here to the number of 12C targets.

The momentum transfer Q2 can be determined from the outgoing and incoming neutrino
four-momenta, k1 and p1, according to Q2 = − (k1 − p1)2. The full expression for Q2 in
terms of the observed energies and momenta, which we use in our numerical calculations,
is given in appendix A as eq. (A.6), but it is illuminating to consider also the momentum
transfer averaged over the outgoing photon directions,

Q2 =
(
s−m2

X

) (√
s− Ecm

γ − Ecm
X

)
√
s

. (2.5)

Here, s = m2
X + 2mXEν is the center-of-mass energy squared, Ecm

γ is the outgoing photon
energy, and Ecm

X is the energy of the outgoing two-nucleon system. The superscript “cm”
indicates that these quantities are in the center-of-mass frame. In calculating the cross-
section for 2p2hγ interactions, we use the form factor F (Q2) extracted for the 2p2h process
(solid blue curve in figure 2), assuming the two-nucleon response to a Z boson is the same
as that to a W boson. We utilize vegas [43] to integrate over phase space.

The resulting cross-section is logarithmically sensitive to the minimum (center-of-mass-
frame) photon energy, Ecm,min.

γ , used as an infrared cutoff in the calculation. Figure 3
compares this cross-section for neutrino energies between 100 MeV and 10 GeV for three
choices of Ecm,min.

γ : 100 keV (blue), 10 MeV (red), and 50 MeV (green). Comparing these
against the 2p2h cross-section discussed in section 2.1 (dashed black), we find a similar
dependence on Eν , but an overall suppression by about two orders of magnitude, cor-
responding to the extra factor α (electromagnetic fine structure constant) in the 2p2hγ
cross-section.

2.3 2p2hγ in MiniBooNE

Folding the cross-sections obtained in section 2.2 with the neutrino flux of the Booster
Neutrino Beam [40], we determine the 2p2hγ event rate in MiniBooNE. After simulating
2p2hγ events, we deliberately misinterpret the outgoing lab-frame photon as an electron
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from charged-current quasi-elastic (CCQE) νe scattering1 and, based on this (incorrect)
assumption, we determine the would-be reconstructed neutrino energy using [38, 45]

EQE
ν =

2m′nEγ − (m′2n +m2
e −m2

p)
2
(
m′n − Eγ +

√
E2
γ −m2

e cos θγ
) , (2.6)

where me and mp are the electron and proton masses, respectively, and m′n = mn−EB is the
neutron mass minus the binding energy. We set EB = 0 in our analyses to be consistent with
the results presented in ref. [2]. To compare against MiniBooNE’s data on the low-energy
excess, we only consider events with EQE

ν > 200 MeV. In order to determine the efficiency
of reconstructing these events, we compare the reconstructed neutrino energy distribution
that we obtain when simulating νe CCQE events with those in ref. [2], obtaining efficiencies
on the order of 20–30% (consistent with those used by the MiniBooNE collaboration in
their electron-neutrino analyses).

After applying these efficiencies, we obtain our main result for MiniBooNE: the 2p2hγ
event rate for the 18.75× 1020 proton-on-target exposure (corresponding to the neutrino-
mode data presented in ref. [2]) is 41.0 ± 6.4 events, where the quoted uncertainty is
statistical and assumed to be larger than systematic uncertainties. The green histogram in
figure 4 presents the distribution of these events as a function of EQE

ν using the same EQE
ν

binning as customarily used by the MiniBooNE collaboration [2].
Let us remark that the MiniBooNE collaboration do not predict their single-photon

backgrounds from first principles as we do here, but rather use the measured π0 production
rate for data-driven normalization. However, the translation of this control sample into a
prediction for the single-photon signal still requires theory input. If the 2p2hγ process is
not included, the data-driven single-photon prediction would be biased in the same way as
the first-principles one.

While the number of predicted 2p2hγ events is a small fraction of the excess observed
by MiniBooNE (560.6 neutrino-mode events), incorporating 2p2hγ events in the background
budget reduces the statistical significance of the neutrino-mode excess from 4.69σ → 4.27σ,
a meaningful difference when interpreting results. The expected spectrum of 2p2hγ events
is shown in figure 4. In addition to reducing the significance of the excess, we highlight here
that the shape of the excess also changes due to the fact that the 2p2hγ spectrum peaks at
low EQE

ν . This leads to an excess that is less peaked at low EQE
ν than with MiniBooNE’s

nominal background model, making it more consistent with the shape predicted by the
3 + 1 sterile neutrino hypothesis [2].

We conclude our discussion of the MiniBooNE results by summarizing: including 2p2hγ
events in the background simultaneously (a) reduces the significance of the low-energy excess
by ∼ 0.4σ and (b) can be expected to improve the goodness of a 3 + 1 sterile neutrino fit.

1We also include a 10◦ angular uncertainty and a fractional energy uncertainty of (8%/
√
Eγ [GeV]

⊕
2%)

on the outgoing photons in MiniBooNE [44]. In the last expression,
⊕

indicates that the two contributions
to the uncertainty are statistically uncorrelated and should therefore be added in quadrature.
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Figure 4. Predicted rate of 2p2hγ events in the 18.75 × 1020 POT neutrino-mode exposure of
MiniBooNE according to our toy model. The total number of predicted events is 41.0.

2.4 Predictions for liquid argon detectors

To end this section on the 2p2hγ process, we discuss implications for future experiments,
in particular those based on liquid argon time projection chamber (LArTPC) technology.
We have in mind in particular the detectors comprising the short-baseline neutrino (SBN)
program at Fermilab [46, 47], consisting of SBND [48], MicroBooNE [49], and ICARUS [50].
As part of testing the MiniBooNE low-energy excess, the SBN detectors will search for
electron-like signals, photon-like signals, and more exotic signals (such as di-electrons) [5, 7, 9–
13, 51–54]. MicroBooNE has begun this process with its first datasets, observing results
consistent with the SM in photon-based [55]2 and electron-based [56–59] searches. As more
data are collected (including at SBND and ICARUS), additional analyses will be developed
that will allow for searches for more specific final states, including an inclusive 1γ0`X
search, similar to the inclusive 1eX search presented in ref. [57].

A key feature of these detectors is their ability to distinguish between electrons and
photons, unlike MiniBooNE. Moreover, final state protons will typically be visible as well.
According to our toy model, the ideal signature to isolate 2p2hγ events in a LArTPC would
be two protons plus an electromagnetic shower displaced from the primary vertex due to
the photon conversion distance (“2p1γ” events). In reality, of course, it is possible that one
or both of the protons do not leave the nucleus, so 2p2hγ interaction will also contribute to
1p1γ and 0p1γ events.

To estimate the rate of 2p2hγ events in LArTPCs, we follow the same toy formalism as
in section 2.2, but accounting for the fact that an Ar-40 nucleus contains nine proton pairs,
compared to just three in C-12. The form factor F (Q2) from eq. (2.4) differs only slightly
between the two isotopes, given that the dependence on the nuclear mass number A almost
cancels in eq. (2.2). (We neglect here the fact that Ar-40 contains slightly more neutrons
than protons, whereas C-12 is isospin-symmetric.) We use a lower energy threshold for

2We remark that the analysis presented in ref. [55] is optimized for photons from the decays of ∆(1232)
resonances and therefore would not be as sensitive to the 2p2hγ contribution we focus on here.
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LArTPCs compared to MiniBooNE’s Čerenkov detector. In fact, MiniBooNE’s threshold
on the reconstructed neutrino energy, Ereco.

ν > 200 MeV (see eq. (2.6)) corresponds to
Eγ & 100 MeV in 2p2hγ events. Meanwhile, ArgoNeuT has demonstrated that LArTPCs
are capable of reconstructing photons down to tens of MeV [60]. For the remainder of
our discussion of LArTPCs, we consider two reconstruction threshold benchmarks: a
conservative threshold Eγ > 30 MeV, and an optimistic one Eγ > 10 MeV. We also account
for a conservative 10◦ angular resolution [55, 61] and a fractional energy resolution of
15%/

√
E [GeV]⊕ 2%. This energy resolution is based on ref. [62] and is consistent with

the results of ref. [61] for measurements of photons coming from π0 decays.
We use the predicted neutrino fluxes and spectra at the three SBN detector locations

from ref. [46], and we normalize to an exposure of 1021 POT. For this exposure, we find
that MicroBooNE can expect to observe 39.5 (25.9) events with Eγ > 10 MeV (30 MeV).
The corresponding number for SBND is 1157.0 (745.8) events thanks to its larger detector
mass and shorter baseline. For the even larger but also more distant ICARUS detector it
is 85.8 (130.4) events. The predicted photon energy spectrum and angular distribution of
these events is shown in figure 5. Photons are preferentially emitted in the forward direction
(cos θγ ≈ 1), but the distribution has a long tail reaching all the way to cos θγ = −1. Higher
energy events tend to be more forward to lower energy ones.

While we have not applied any efficiency factors in figure 5, we find it useful to consider
some in an attempt to compare against existing MicroBooNE observations. Ref. [55] searched
for single-photon events associated with ∆(1232)→ Nγ decays, and found that this analysis
yields ∼ 4–5% reconstruction efficiency, depending on whether or not there is a proton in
the final state. With this efficiency, and rescaling for the appropriate number of protons
on target, we expect a contribution of ∼ 1 2p2hγ event in the samples, compared against
expectations from other channels of 20.5±3.65 events for the single-proton (1p1γ) final state
and 145.1± 13.8 events for the proton-less (0p1γ) one. The observed rate of 1p1γ (0p1γ)
events is 16 (153). Similar to what we found for MiniBooNE in section 2.3, we conclude also
for MicroBooNE that 2p2hγ events can modify the interpretation of the results of ref. [55]
only at the . 1σ level. (This comparison should be taken with a grain of salt given that the
efficiencies used here from MicroBooNE’s analysis were highly optimized for ∆(1232)→ Nγ

events. For instance, in the 1p1γ channel, a cut on the photon-proton invariant mass was
imposed.) When projecting forward to SBN and ICARUS, the expectations can change
drastically and it may perhaps be possible to demonstrate the existence of 2p2hγ events,
even though theoretical uncertainties both on our predictions and on the predictions of
other processes with similar signatures will still be a challenge.

3 Double-photon events from NCπ0 scattering

Now we turn our focus to two-photon backgrounds to the electron-neutrino search at
MiniBooNE, focusing specifically on neutral-current single-pion production, ν + X →
ν + π0 + X ′. The π0 will decay into a pair of photons, both of which typically convert
into electromagnetic showers within the MiniBooNE fiducial volume. However, single-pion
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Figure 5. Expected event distributions of 2p2hγ single-photon events in the three SBN detectors
— SBND (left), MicroBooNE (center), and ICARUS (right). All distributions are normalized to
an exposure of 1021 protons on target, with the different detector masses and neutrino fluxes at
the detector locations factored into each distribution. We have not included any efficiency factors,
but we have applied Gaussian energy and angular smearing, as described in the text. Labels on
the top row indicate the total number of signal events expected with either a 10 MeV or 30 MeV
photon energy threshold. In the bottom figure, the angular distributions are divided based on those
events with low photon energy (Eγ between 10 and 100 MeV, solid blue) and high photon energy
(Eγ > 100 MeV, dashed orange).

events may be mis-reconstructed as events containing a single electromagnetic shower (and
therefore indistinguishable from CCQE νe scattering) if

1. one of the photons converts outside the fiducial volume,

2. one of the photons is lost to photo-nuclear absorption before it converts,

3. the two electromagnetic showers have significant overlap, or

4. the event is highly asymmetric in the sense that one photons carries much more energy
than the other one.

This section is structured as follows: first, in section 3.1, we detail the procedure by which
we attempt to reproduce MiniBooNE’s NCπ0 analysis using the NUANCE generator. We also
speculate on how a data/Monte Carlo disagreement, in terms of the angular uncertainty of the
detector, could impact this rate estimate. Then, in section 3.2, we investigate how predictions
for the NCπ0 background vary when considering MC generators other than NUANCE.

3.1 Cut-based approach to reproduce MiniBooNE’s background predictions

Our first goal is to reproduce MiniBooNE’s prediction for the NCπ0 background from ref. [2].
The π0/e− separation in MiniBooNE is driven by a likelihood-based analysis (see ref. [1]),
where the Čerenkov light pattern in each event is fit using both a single-shower (CCQE νe
candidate) and double-shower (π0 → γγ candidate) hypothesis, and the final classification
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of the event depends on which of the two fits yields the larger likelihood. Events classified
as single-shower (CCQE-like) represent the quoted NCπ0 background in ref. [2]. As it
is impossible to reproduce this approach without a full detector simulation, we follow a
somewhat different strategy which we will describe below.

We begin by simulating general NC neutrino interactions in MiniBooNE and selecting
events with at least one π0 in the final state. We then sample the π0 → γγ decay [63] to
obtain events with at least two photons. We account for the conversion length of 50 cm in
MiniBooNE’s liquid scintillator, ignoring photons that escape the fiducial volume, R < 5 m,
before converting. We also discard events that contain a photon conversion in the veto
region 5 m < R < 6.1 m. Finally, we include the effects of photon absorption on nuclei by
removing photons that are absorbed before converting. However, we find that this effect is
negligible in our analysis.

It is important to keep in mind that in the majority of NCπ0 events, both photons are
reconstructed and events are correctly classified by MiniBooNE. Indeed, the MiniBooNE
collaboration has published a measurement of the momentum distribution of π0 from
NC neutrino interactions in their earlier data set [64]. In order to accommodate this
measurement, we re-normalize our sample of Monte Carlo events to match the total
production rate of π0 measured in ref. [64] (but still taking the π0 momentum distribution
from the generator prediction).3 This measurement results in an effective reweighting of
the out-of-the-box generator samples by the factors given in table 1. The π0 distributions
before (left) and after (right) reweighting, are shown in figure 6 for the different generators
that we use in this work. In the following, we always work with re-weighted distributions,
but in appendix C, we present also results using the out-of-the-box generator distributions
instead of the data-constrained ones.

We endeavor to approximately reproduce MiniBooNE’s efficiency for distinguishing π0

events from CCQE νe interactions (characterized by a single electron) in a variety of ways.
We first work with simulated events from the NUANCE Monte Carlo generator (the same
used by MiniBooNE), deferring to section 3.2 a discussion of how our results depend on the
choice of event generator.) We assume the relevant kinematic parameters for the π0/e−
separation are the following:

• Evis., the total visible energy in the electromagnetic shower(s).

• cos θγγ , the opening angle between the two highest-energy photons in events with at
least one π0. If only one photon converts in the fiducial volume, then cos θγγ is set to
1 in practice.

3We have also attempted to re-weight MC events such that they match also the measured π0 momentum
spectrum. After doing so, the predicted π0 background is nearly independent of the event generator
used as the only potential remaining difference between generators is then the angular distribution of
the π0, which has a subleading effect. The reader may wonder why we do not use this seemingly even
more generator-independent approach in our baseline analysis pipeline. The reason is that it is not truly
generator-independent either: the signal efficiencies of the analysis from ref. [64], which need to be unfolded
in order to obtain the true π0 production rate, still depend on Monte Carlo simulations. We therefore choose
to use only the overall normalization from ref. [64], but not the shape of the π0 spectrum.
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Figure 6. Distribution of reconstructed neutral pion momenta in NCπ0 events from different
neutrino MC generators. The “out-of-the-box” distributions shown on the left are obtained directly
from the generators before applying MiniBooNE efficiencies, while the ones on the right have been
reweighted by the global reweighting factors listed in table 1, as well as MiniBooNE efficiencies, to
match the total NCπ0 production rate measured in ref. [64].

Generator Reweight Factor
NUANCE 1.32
GENIE G18_01a_02_11a 1.22
GENIE G18_01b_02_11a 1.26
GENIE G18_02a_02_11a 1.14
GENIE G18_02b_02_11a 1.18
GENIE G18_10a_02_11a 1.14
GENIE G18_10b_02_11a 1.18
NuWro 1.44
GiBUU 1.91

Table 1. Data-driven reweighting factors for NCπ0 events in MiniBooNE from different Monte
Carlo event generators.

• Emax./Evis., the fraction of the visible energy carried by highest-energy photon,
representing the asymmetry of the shower. Similar to the above, if only one photon
converts then this asymmetry is set to 1 in our simulations.

For events with a single π0 (the vast majority of NCπ0 events), these three variables fully
describe the kinematics of the π0 — its angle with respect to the beam is not used in
our electron/pion discrimination, but impacts results in how it enters the reconstructed
neutrino energy EQE

ν . Based on the reasoning at the beginning of section 3, for a given
Evis., we expect that NCπ0 events with {cos θγγ , Emax./Evis.} near {1, 1} will tend to pass
the likelihood cut and contribute to the background in the νe appearance search in which
the MiniBooNE anomaly is manifest.

Motivated by this, we construct the likelihood using three different empirical methods.
For each of them, we sort events by a parameter r(cos θγγ , Emax./Evis.) and then impose
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an Evis.-dependent cut, r < rcut(Evis.), that is chosen in order to reproduce the Evis.
distribution of MiniBooNE’s sample of NCπ0 background Monte Carlo events shown in
figure 7 (left). The three different prescriptions for r are the following (see figure 8 for an
illustration):4

• Circle1: cut along a circle centered at {1, 1} in the {cos θγγ , Emax./Evis.} plane.
Events inside the circle are assumed to be mis-reconstructed as CCQE νe interactions.
The cut parameter is

r2
Circle1 =

(1− cos θγγ
2

)2
+
(

1− Emax.
Evis.

)2
. (3.1)

• Circle0: cut along a circle centered at {−1, 0} in the {cos θγγ , Emax./Evis.} plane.
Events outside the circle are assumed to be mis-reconstructed as CCQE νe interactions.
The cut parameter is

r2
Circle0 =

(1 + cos θγγ
2

)2
+
(
Emax.
Evis.

)2
. (3.2)

• Diagonal: cut along a diagonal in the {cos θγγ , Emax./Evis.} plane. The cut parame-
ter is

rDiagonal = 1− 1
2

(1 + cos θγγ
2 + Emax.

Evis.

)
. (3.3)

figure 8 demonstrates the event distribution as a function of cos θγγ and Emax./Evis. for
events with Evis. between 220 MeV and 240 MeV, along with curves corresponding to the
cut values of rCircle1, rCircle0, and rDiagonal that allow us to match the expected rate of
accepted events by MiniBooNE in that visible energy range. Events to the right and above
the cuts are the ones mis-identified as CC νe interactions. We note already here that the
event distributions are rising sharply in the part of the parameter space in which the cuts
lie, implying that the final distributions of mis-reconstructed events depend sensitively on
the shape of these event distributions. Cut values for these three prescriptions for each
range of Evis. can be found in appendix B.

After deriving the above cuts, we are equipped to perform detailed comparisons against
various NCπ0 kinematic distributions presented in ref. [2]. We start in figure 7 (right) with
the EQE

ν distribution of NCπ0 events mis-reconstructed as CC νe, using uniform bins of
50 MeV width (instead of the uneven bin sizes more commonly seen in MiniBooNE plots).
We see that all three cut methods (represented by different line styles) reproduce the EQE

ν

distribution predicted by the MiniBooNE collaboration (red histogram) very well. However,
we only achieve this agreement when setting the binding energy EB in eq. (2.6) to zero
instead of its baseline value for 12C, 34 MeV. Histograms calculated with EB = 34 MeV

4We have explored a number of other cuts in the cos θγγ-vs.-Emax./Evis. plane, all yielding qualitatively
similar results to the ones shown here. This includes a cut only on cos θγγ , similar to the analysis of ref. [38].
However, we find that this approach yields significantly larger Monte Carlo uncertainties than the others
and therefore do not include it here.
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Figure 7. Left: event spectrum in terms of total visible energy of photons in NCπ0 events mis-
reconstructed as CCQE νe interactions. While similar distributions have been shown in ref. [2], the
one presented here has been obtained directly from MiniBooNE’s sample of NCπ0 Monte Carlo
events, which the collaboration has kindly provided to us. This allows for finer binning and avoids
inconsistencies stemming from the fact that the distributions shown in ref. [2] include a cut on EQE

ν .
Right: distribution of reconstructed neutrino energy EQE

ν for NCπ0 events obtained via the method
described in section 3.1 with the NUANCE MC generator and three different cut prescriptions as listed
in the legend, compared against the results presented in ref. [2] (red histogram). Dark (faint) lines
assume EB = 0 (34MeV) in determining the reconstructed energy.

−1.0 −0.5 0.0 0.5 1.0
cos θγγ

0.5

0.6

0.7

0.8

0.9

1.0

E
m

ax
./
E

v
is
.

220 MeV < Evis. < 240 MeV, Three Cut Prescriptions

1

2

3

4

5

Figure 8. Distribution in cos θγγ and Emax./Evis. of NUANCE NCπ0 events with visible energy
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discussed in section 3.1, determined by requiring that the number of events in this Evis. bin from
our full sample of NUANCE events matches MiniBooNE’s prediction in the same Evis. bin. The bright
dot in the upper right-hand corner is from events in which one photon has been absorbed or exits
the detector before converting.
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Figure 9. Distributions of NCπ0 background events in MiniBooNE obtained with the NUANCE
generator and the Circle0 cut, as a function of total visible energy, Evis., and of the direction of
the highest-energy photon in the shower with respect to the beam axis, θ` (thick green lines). Each
panel corresponds to a different Evis. range, as labelled at the top. We apply the derived Circle0
cuts to 1000 different NUANCE subsamples, each similar in size to MiniBooNE’s MC sample, and
display the 1σ and 2σ uncertainty on the event rates from this MC process. The red histogram in
the background of each panel presents MiniBooNE’s official background prediction from ref. [2].

are shown in fainter colors in figure 7 (right). They are similar in shape to the ones with
EB = 0, but shifted by about one bin. Indeed, we have confirmed with the MiniBooNE
collaboration [65] that EB = 0 has been used when plotting EQE

ν distributions (even though
the collaboration’s sterile neutrino fits use EB = 34 MeV). Going forward, we will use
EB = 0 unless otherwise noted.

Another distribution of interest for comparison is the angular distributions of would-be
electrons (that is, for NCπ0 background events, the angular distributions of the highest-
energy electromagnetic shower) for various slices of Evis.. We present our comparison for
this distribution (obtained using the Circle0 cut method) in figure 9. We have generated
1000 NUANCE samples with comparable Monte Carlo statistics to those used in MiniBooNE’s
determinations of this background [2], and show the expected MC uncertainty inferred in
this process as colored bands (for ±1σ and 2σ ranges).5 This can also be presented in terms
of the overall number of events that pass the cuts we have derived for each of the different
MC subsamples, which we present in figure 10. We find that our rates here agree very well
with the level of MC statistical uncertainty (≈ 19 events) considered in MiniBooNE’s error
budget for this background [2].

As a side remark, note that our phenomenological approach to determine MiniBooNE’s
ability to separate pion-like and electron-like events can also be applied in the context of

5It is important to note that Monte Carlo events are weighted, therefore the total number of generated
events cannot be used directly to estimate the Monte Carlo statistical uncertainty. Rather, one needs to
consider how many of the weighted events lie in the tails of the phase space distributions where they are
prone to mis-reconstruction as e−. The bin-to-bin jitter of the histograms in figure 9 is a good proxy for
this final uncertainty.
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Figure 10. Number of predicted NCπ0 events in MiniBooNE for different Monte Carlo realizations,
each of them similar in statistics to MiniBooNE’s. The e−/π0 separation cut has been derived based
on our full MC sample and has then be applied to 1000 subsamples.

new-physics explanations to the MiniBooNE LEE. For instance, scenarios which posit new
particles decaying into e+e− pairs in MiniBooNE’s detector [5, 7] often lead to overlapping
and/or asymmetric electromagnetic showers. The cuts derived here, which depend only on
those shower kinematics, can be applied rapidly to estimate the efficiency with which these
beyond-the-Standard-Model processes could contribute to the MiniBooNE LEE.

Our NUANCE samples above are all generated assuming the same 10◦ photon angular
uncertainty, both when deriving the electron/pion separation cuts, as well as when deter-
mining which events pass these cuts, effectively as “simulated data” in figure 9 and figure 10.
Such a method assumes that the MC and data are well calibrated and that the detector’s
directional reconstruction abilities are well known. As an extreme example, we consider the
case that MC simulations are performed (and electron/pion separation determined) with
a 10◦ angular uncertainty, but that the collected data actually exhibits a 20◦ uncertainty.
This is, of course, an unrealistically large discrepancy for a well-understood detector such
as MiniBooNE. The resulting events passing cuts are shown in figure 11. Such a data/MC
discrepancy could account for ∼320 additional NCπ0 events passing the electron/pion sepa-
ration cuts and appearing in the low-energy νe search. Figure 11 includes the MiniBooNE
low-energy excess in addition to the NCπ0 background for comparison (with error bars
according to the data statistical uncertainty) — we see that in this extreme scenario, the
additional NCπ0 events passing cuts share similar characteristics to the low-energy excess.

The data/MC discrepancy that we have injected here is, of course extreme, but
demonstrative of how such a difference could lead to an enhanced event rate. We leave
further exploration of this effect to future work and turn to another difference that could
lead to distinct NCπ0 predictions: those coming from different Monte Carlo neutrino event
generators.
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Figure 11. NCπ0 background events expected in MiniBooNE in an extreme scenario, in which
the data/MC disagreement is significantly large: MC events are generated assuming a 10◦ angular
uncertainty, but simulated data assume 20◦. We superimpose the MiniBooNE event excess (with
statistical uncertainty according to the data collected) for comparison. We stress again that the
large mismatch between the angular resolution in the simulation compared to the data which we
have assumed here serves only to make the resulting bias in the number of events passing cuts
clearly visible. We are not insinuating that this could explain the MiniBooNE excess, given that
MiniBooNE is a very well understood detector.

3.2 Comparison against other Monte Carlo generators

Given the difference in pπ0 distributions from different MC generators which we have seen in
figure 6, we now turn to the question of whether the event generator used for predicting the
NCπ0 background has an impact on the significance of the MiniBooNE low-energy excess.
This question was previously addressed in ref. [38], which concluded that the substitution
of one generator for another can reduce the significance by ∼0.5–1σ even when normalizing
the MC sample to the measured π0 production rate as a function of pion energy.

In this section, we re-consider this question using the more advanced modeling of the
π0/e− separation cuts developed in section 3.1. We apply these cuts to MC samples from
the generators listed in table 1, namely NUANCE v3.000 [66], GENIE v3.00.04 [67], NuWro
v19.02.2-35-g03c3382 [68], and GiBUU (2019 release) [69]. For NUANCE, we use the same input
parameters as the MiniBooNE collaboration (input file nuance_defaults_may07.cards,
flux april07_baseline_rgen610.6_flux_8gev.hbook). For GENIE, we consider several
different tunes, which are explained in more detail in ref. [70] (see also the summary in
ref. [14]). In the naming convention G18_XXy_02_11a, XX=01 stands for GENIE’s baseline
tune, tunes with XX=02 feature updated models of coherent and resonant scattering, and
XX=10 indicates theory-driven tunes. The letter y=a,b indicates two different implementa-
tions of final state interactions. The raw MC samples used in this work are for the most part
identical to the ones used in ref. [38]. Here, we normalize all of them with the reweighting
factors from table 1. The resulting EQE

ν distributions are shown in figure 12, presenting a
finer binning/slightly wider range of this variable than figure 7 (right).
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Figure 12. Predicted distributions of NCπ0 background events in MiniBooNE (neutrino mode) as
a function of the reconstructed neutrino energy, EQE

ν , from different Monte Carlo generators. In
each case, we derive the π0/e− separation cut using our NUANCE (the generator used by MiniBooNE)
MC samples and apply them to the various generators. The three panels correspond to the three
different cut shapes introduced in section 3.1. The official MiniBooNE background prediction [2] is
shown in red.

Each panel in figure 12 corresponds to one of the three cut strategies from section 3.1.
In contrast with the NUANCE curves (green) in each panel, we find that every other generator
considered — GENIE, NuWro, and GiBUU — prefers a larger rate of NCπ0 events at low EQE

ν

where the MiniBooNE LEE is most prevalent. However, these generators only tend to predict
∼30 events more than NUANCE in the energy range of interest (200 MeV < EQE

ν < 1250 MeV),
because the data-deriven normalization that we impose leads to moderately fewer events
at larger energies. Nevertheless the fact that, once events are normalized, NUANCE is the
only to predict such small rates at low energies is a curious takeaway. For completeness, in
appendix C, we repeat this generator comparison without this data-driven normalization.

3.3 Prospects for liquid argon detectors

We now discuss the implications which the above musings on MiniBooNE’s NCπ0 background
have for liquid argon detectors. In particular, the parameterized description of the π0/e− sep-
aration cut could be used to predict this background for MiniBooNE based on observations
at MicroBooNE, SBND, and ICARUS, but independent of MiniBooNE’s own data. A possi-
ble strategy is outlined in figure 13: starting from well-reconstructed NCπ0 events in liquid
argon, it should be possible to extract the flux-weighted cross-section as function of the pion’s
momentum and direction. Multiplying by the theoretically predicted ratio of cross-sections
on C-12 vs. Ar-40 and hydrogen vs. Ar-40, one can then predict the rate of NCπ0 events
in MiniBooNE. The cuts from section 3.1 can then be applied to describe the likelihood
of a π0 being misidentified as an electron. As shown in the preceding sections, these cuts
are rather robust, and an excellent approximation to MiniBooNE’s full likelihood analysis.

A background prediction based on this procedure would benefit from the large sample
of well-reconstructed NCπ0 events that can be expected from the liquid argon detectors
comprising Fermilab’s short-baseline neutrino program. It is relatively — though not
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completely — robust against theoretical uncertainties, given that only a ratio of cross-
sections needs to be predicted, and that this prediction is mainly needed for neutrino
energies large enough for nuclear effects to be subdominant.

4 Summary

To summarize, we have presented some reflections on the 4.7σ excess of low-energy (few×
100 MeV) νe-like events in MiniBooNE. In the first part of the paper, we have considered
two-particle–two-hole (2p2h) interactions with final state radiation. In such events, only
the final state photon would be visible to MiniBooNE and would mimic a νe-induced
electromagnetic shower. We have developed a simple toy model for 2p2h interactions with
and without extra radiation, and while this model is certainly not suitable for precision
calculations, it has proven useful in estimating the impact of such interactions on the
MiniBooNE anomaly. As shown in figure 4, we predict about 40 extra background events
from this channel, which would reduce the significance of the anomaly by about 0.4σ. While
the contribution to the MiniBooNE excess from this class of events is not too dramatic, we
hope that identifying this class leads to more detailed investigations, especially as we look
forward to future measurements from the liquid argon SBN experiments.

We have then turned our attention to MiniBooNE’s NCπ0 background. In doing so,
we have constructed a phenomenological approach that quickly and faithfully reproduces
MiniBooNE’s ability to distinguish between electron-like (single-shower) and pion-like (two-
shower) events. This approach is based off the kinematical quantities of the π0 → γγ showers,
subject to detector uncertainties on the energy/direction of the photons. We have demon-
strated how, with an unrealistic level of data/Monte Carlo disagreement, significantly larger
rates of events could pass these cuts and contribute to the MiniBooNE low-energy excess.

Our method for reproducing MiniBooNE’s cuts can prove useful in scrutinizing other
beyond-the-Standard-Model explanations of the MiniBooNE excess, including those that
propose novel physics processes that lead to multiple-electron final states in the detector.

Additionally, we have compared how different neutrino event generators lead to different
predictions for the NCπ0 background. We have observed that, if all generator predictions
are normalized to MiniBooNE’s measurement of π0 production, then every generator other
than NUANCE predicts a significant upturn of NCπ0 events at low energies, exactly where
the MiniBooNE excess occurs. While this upturn is not enough to account for the 4.7σ
excess, it still highlights the importance of neutrino event generators in the search for new
physics in neutrino facilities.

One aspect that we have not commented on so far is the impact that our results have
on explanations of the MiniBooNE anomaly in terms of sterile neutrino oscillations [71–73]
or other physics beyond the Standard Model (see for instance refs. [74, 75] and references
therein). In fact, any decrease in the number of excess events engendered by updated
background predictions will move the favored regions in the sterile neutrino parameter
space towards lower mixing angles. This should significantly reduce the tension between the
MiniBooNE anomaly and null searches for muon neutrino disappearance. Simultaneously,
the tension between MiniBooNE on the one side and the LSND and gallium anomalies on
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the other side may be modified, changing the likelihood that all anomalies have a common
new physics explanation.

While our results indicate that the significance of the MiniBooNE anomaly may be
slightly lower than previously thought, we note that the significance of the anomaly remains
very high. In any case, it is clear that the “Altarelli cocktail” we propose here is still missing
some ingredients — either within the Standard Model or beyond. Fortunately, we have
every reason to expect that the upcoming short-baseline experiments at Fermilab will reveal
these secret ingredients.
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A Complete expressions for cross-sections

In this appendix, we provide complete expressions for the 2→ 3 process of 2p2hγ scattering,
as well as for the squared 4-momentum transfer, Q2, that enters the form factor for this
process. The matrix elements for the diagrams in figure 1,M1 andM2, combine into the
total squared matrix element via

|M|2 = |M1|2 + |M2|2 +M1M†2 +M2M†1 . (A.1)

The individual pieces in this expression may be expressed as

|M1|2 = −512c4
we

2G2
F

(p2kγ)2

[
m2
X − (p2kγ)

][
(p1(k2 − kγ + p2))× (k1(k2 − kγ + p2))

+ (p1k1)
(
k2kγ − k2p2 + p2kγ −m2

X

) ]
,

(A.2)

|M2|2 = 512c4
we

2G2
F

(k2kγ)2

[
m2
X + (k2kγ)

][
− (p1(k2 + kγ + p2))× (k1(k2 + kγ + p2))

+ (p1k1)
(
k2kγ + k2p2 + p2kγ +m2

X

) ]
,

(A.3)

2Re(M1M†2) = −512cw64e2G2
F

(p2kγ)(k2kγ)
[
2(p2k2) + (p2kγ)− (k2kγ)

][
(k1kγ)(p1kγ)

− (p1k2 + p1p2)(k1k2 + p2k1) + (p1k1)(m2
X + p2k2)

]
,

(A.4)
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where dot products between different four-momenta are implied. Furthermore, GF is the
Fermi constant, cw is the cosine of the weak mixing angle, and e is the electric charge. The
total differential cross-section of 2p2hγ scattering is then.

dσ

dEcm
X dEcm

γ d cos θγdη
=

∣∣F (Q2)
∣∣2

16(2π)4(s−m2
X) |M|

2 . (A.5)

It is given here in terms of the center-of-mass-frame energies of the two-nucleon system, Ecm
X ,

and the photon, Ecm
γ , the direction of the outgoing photon with respect to the incoming

neutrino direction, cos θγ , and a second angle, η. The latter gives the orientation of the
(x, z) plane spanned by the incoming neutrino and the outgoing photon relative to the plane
spanned by the outgoing particles (incoming particles are travelling in the ±z direction).
See ref. [76] for a more detailed discussion of this parameterization of the geometry. In terms
of the lab-frame neutrino energy, Eν , the squared center-of-mass energy appearing on the
right-hand side of eq. (A.5) is given by s = m2

X + 2EνmX . As the differential cross-section
is logarithmically divergent for Eγ → 0, we impose a lower cutoff on Eγ when integrating
over phase space, as demonstrated in figure 3.

The form-factor
∣∣F (Q2)

∣∣2 in the numerator of eq. (A.5) has been discussed in section 2.1
(see in particular figure 2), where we extracted it by comparison of the 2p2h cross-section
(without final-state radiation) in our toy model against the results of ref. [41]. In the
two-body 2p2h process, Q2 is a simple combination of four-momenta and can be expressed
in terms of Mandelstam variables as Q2 = −t. For the three-body 2p2hγ process, however,
the expression for Q2 = −(k1 − p1)2 is more complex. (Here, k1 and p1 are the outgoing
and incoming neutrino 4-momenta, respectively.) In terms of the same kinematical variables
as above, Q2 is given by

Q2 = s−m2
X

2
√
sEcm

γ

×
(
−cosη sinθγ

√
−
(
s+m2

X−2
√
sEcm

X

)(
s+m2

X−2
√
s(Ecm

X +2Ecm
γ )+4Eγ(Ecm

X +Ecm
γ )

)
+cosθγ

(
s+m2

X+2(Ecm
γ −
√
s)(Ecm

X +Ecm
γ )

)
+2Ecm

γ

(√
s−Ecm

γ −Ecm
X

))
. (A.6)

Integrating this expression over cos θγ and η yields eq. (2.5).

B Cut values used in NC single-pion analysis

For completeness, table 2 provides the cut values used for π0/e− separation discussed in
section 3.1 for the three different cut prescriptions we use. These are all derived based on
NUANCE MC events.
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Visible Energy Range Cut Values
Evis.,min. [GeV] Evis.,max. [GeV] rDiagonal rCircle1 rCircle0

0.140 0.160 0.334 0.520 1.000
0.160 0.180 0.283 0.441 1.046
0.180 0.200 0.244 0.381 1.091
0.200 0.220 0.237 0.366 1.098
0.220 0.240 0.203 0.315 1.140
0.240 0.260 0.181 0.281 1.168
0.260 0.280 0.165 0.256 1.188
0.280 0.300 0.150 0.232 1.209
0.300 0.320 0.140 0.217 1.221
0.320 0.340 0.136 0.209 1.227
0.340 0.360 0.112 0.174 1.260
0.360 0.380 0.118 0.183 1.250
0.380 0.400 0.113 0.174 1.257
0.400 0.420 0.110 0.170 1.261
0.420 0.440 0.106 0.163 1.267
0.440 0.460 0.100 0.155 1.274
0.460 0.480 0.105 0.162 1.268
0.480 0.500 0.096 0.148 1.281
0.500 0.520 0.091 0.140 1.288
0.520 0.540 0.089 0.138 1.289
0.540 0.560 0.084 0.130 1.297
0.560 0.580 0.083 0.128 1.299
0.580 0.600 0.095 0.147 1.281
0.600 0.620 0.087 0.134 1.293
0.620 0.640 0.089 0.138 1.290
0.640 0.660 0.092 0.142 1.286
0.660 0.680 0.083 0.128 1.298
0.680 0.700 0.091 0.140 1.287
0.700 0.720 0.085 0.130 1.296
0.720 0.740 0.074 0.115 1.310
0.740 0.760 0.095 0.147 1.282
0.760 0.780 0.093 0.144 1.285
0.780 0.800 0.089 0.138 1.290
0.800 0.820 0.091 0.142 1.287
0.820 0.840 0.090 0.141 1.288
0.840 0.860 0.068 0.104 1.320
0.860 0.880 0.090 0.141 1.289
0.880 0.900 0.088 0.139 1.291
0.900 0.920 0.081 0.127 1.301
0.920 0.940 0.076 0.120 1.307
0.940 0.960 0.090 0.143 1.289
0.960 0.980 0.072 0.112 1.313
0.980 1.000 0.080 0.126 1.303
1.000 1.020 0.095 0.151 1.282
1.020 1.040 0.083 0.131 1.299
1.040 1.060 0.095 0.153 1.283
1.060 1.080 0.056 0.088 1.336
1.080 1.100 0.109 0.181 1.264
1.100 1.120 0.101 0.168 1.275
1.120 1.140 0.156 0.279 1.207
1.140 1.160 0.081 0.130 1.301
1.160 1.180 0.095 0.155 1.283
1.180 1.200 0.091 0.151 1.288
1.200 1.220 0.102 0.174 1.273
1.220 1.240 0.100 0.167 1.277
1.240 1.260 0.097 0.163 1.280
1.260 1.280 0.115 0.202 1.257

Table 2. Threshold values for the π0/e− separation cuts discussed in section 3.1, derived using
NUANCE.
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Figure 14. Distributions of NCπ0 background events in MiniBooNE (neutrino mode) predicted
by different Monte Carlo generators. This figure is similar to figure 12 in the main text, but here,
we do not normalize the events from the MC generators based on the MiniBooNE measurement of
NCπ0 events in ref. [64].

C Results using out-of-the-box generators

In our discussion of MiniBooNE’s NCπ0 background in section 3, specifically in the cal-
culations that produced figure 12, we started by re-normalizing the expected NCπ0 event
rate from an MC generator to match the total number of (correctly identified) π0 spectra
presented in ref. [64]. The corresponding reweighting facors were shown in table 1.

We repeat these analyses here, but now using the generators “out of the box,” i.e. not
re-normalizing their predictions. We note that this means re-deriving cut thresholds for
electron/pion separation based on an out-of-the-box NUANCE prediction that is ∼75% of the
one we studied in the main text. We then apply these cuts to the various neutrino event
generator samples without any normalization according to the measured NCπ0 rate from
ref. [64]. The result is presented in figure 14. Because the generators’ π0-production rates
have not been normalized to the MiniBooNE measurement, we now observe much more
spread between their predictions, ranging from as low as 493 NCπ0 events misidentified as
CCQE νe (from the GiBUU generator using the Circle1 cut) to as high as 874 (for GENIE
tune G18_02a_02_11a using the Circle0 approach). In general, GENIE predictions are
characteristically high.

Thus, we conclude by saying that, if the GENIE Monte Carlo predictions were to
be trusted blindly, the MiniBooNE low-energy excess would be far less significant than
previously stated. In reality, however, the data-driven methods used in the main text (and
also by the MiniBooNE collaboration) are more robust and should be trusted more.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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