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Abstract: CP violation and the violation of baryon-minus-lepton number B−L do not
necessarily have to occur simultaneously in order to accomplish successful leptogenesis.
Instead, it suffices if new CP -violating interactions at high energies result in primordial
charge asymmetries, which are then reprocessed into a nonvanishing B−L asymmetry
by right-handed neutrinos (RHNs) at lower energies. In this paper, we study this novel
mechanism known as wash-in leptogenesis, utilizing axion inflation as the source of high-
scale CP violation. We specifically consider axion inflation coupled to the Standard Model
hypercharge sector, which results in the dual production of hypermagnetic helicity and
fermionic charge asymmetries. Although the survival of these charges is endangered by
sphaleron processes, magnetic diffusion, and the chiral plasma instability, we find a large
range of viable scenarios. We consistently account for RHN flavor effects and coherence
among the Standard Model lepton flavors across a wide range of RHN masses. We find a
lower bound of 105···9 GeV on the mass of the lightest RHN involved in wash-in leptogenesis,
depending on the onset of turbulence in the chiral plasma and the Hubble scale of inflation.

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP01(2023)053

mailto:valerie.domcke@cern.ch
mailto:kohei.kamada@resceu.s.u-tokyo.ac.jp
mailto:kyohei.mukaida@kek.jp
mailto:kai.schmitz@uni-muenster.de
mailto:m.yamada@tohoku.ac.jp
https://doi.org/10.1007/JHEP01(2023)053


J
H
E
P
0
1
(
2
0
2
3
)
0
5
3

Our model is representative of a broader class of new leptogenesis scenarios and suggests
interesting observational signatures with regard to intergalactic magnetic fields, primordial
black holes, and gravitational waves.
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1 Introduction

The observed baryon asymmetry of the Universe (BAU), typically quantified in terms of
the baryon-to-photon ratio ηobs

B = nb/nγ = (6.12± 0.04)× 10−10 [1, 2], cannot be created
within the Standard Model (SM) and hence provides clear evidence for new physics. One of
the most attractive possibilities to explain the origin of the BAU consists in baryogenesis
via leptogenesis [3], which naturally occurs in the type-I seesaw extension of the Standard
Model [4–10] and thus establishes a close connection between early-Universe cosmology
and neutrino physics [11–13]. The main idea behind leptogenesis is to employ the CP -
violating couplings of right-hand neutrinos (RHNs) in order to generate a primordial
lepton asymmetry — either via RHN decays [3] or oscillations [14] — which is then partly
reprocessed into a baryon asymmetry in consequence of the chemical transport in the SM
plasma. Here, a key role is played by the weak sphaleron processes [15], which violate
baryon-plus-lepton number B+L and hence allow for the generation of nonzero baryon
number B. Meanwhile, the generation of a primordial lepton asymmetry during leptogenesis
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can also be regarded as a violation of baryon-minus-lepton number B−L, i.e., the linear
combination of global charges that is orthogonal to B+L. Unlike other baryogenesis
scenarios, such as, e.g., GUT baryogenesis in the standard SU(5) grand unified theory
(GUT) [16–20], leptogenesis therefore does not suffer from disastrous sphaleron wash-out.
Instead, the initial B−L asymmetry remains conserved throughout and sets the scale for
the final B and L asymmetries at the time of sphaleron freeze-out during the electroweak
phase transition (EWPT).

Standard leptogenesis assumes that CP violation and the violation of B−L occur
simultaneously, namely, whenever the RHN interactions are active in the thermal bath. In
ref. [21], we, however, recently pointed out that this is, in fact, not a necessary condition in
scenarios beyond the Standard Model (BSM) that include heavy Majorana neutrinos. In BSM
models that build upon the type-I seesaw extension of the Standard Model rather than the
Standard Model itself, there may, instead, exist a large hierarchy between the temperature
scales of CP and B−L violation, which significantly relaxes Sakharov’s conditions for
successful baryogenesis [22] and thus opens up a new window for model building. The key
observation in ref. [21] was that new CP -violating interactions at high energies can readily
lead to the generation of primordial charge asymmetries, which are then converted by RHN
interactions at lower energies to a new chemical equilibrium that features nonzero B−L.1

This mechanism, which we dubbed wash-in leptogenesis no longer relies on any CP violation
in the RHN sector, but merely utilizes RHN interactions in or close to thermal equilibrium
in order to modify the chemical transport in the SM plasma. Wash-in leptogenesis is thus
based on the assumption that, just like the theoretical discovery of the weak sphaleron
in the 1980s necessitated a first revision of the SM chemical transport, the experimental
discovery of neutrino oscillations now calls for a second revision: RHN interactions should
be treated on the same footing as weak sphaleron processes; just like weak sphalerons can
wash in a baryon asymmetry in the standard leptogenesis scenarios, RHNs can wash in a
B−L asymmetry.

Going back in time in the early Universe, the number of conserved global charges in
the SM grows as a function of temperature, as less and less SM interactions are still able to
keep up with the Hubble expansion. This offers a wealth of possibilities to set the stage for
wash-in leptogenesis at lower temperatures. High-scale CP violation only needs to create
one or a few among the large number of available global charges; the existence of RHNs at
a lower mass scale will then always automatically ensure the generation of B−L 6= 0.

In this paper, we shall demonstrate the efficiency of this mechanism for a concrete
and well-motivated source of high-scale CP violation: axion inflation coupled to the SM
hypercharge sector [29–32], which spontaneously breaks CP invariance by means of the
nonzero and time-dependent value of the axion inflaton field during inflation. Axion
inflation coupled to gauge fields has been extensively studied in the literature and gives
rise to a rich phenomenology. In the version of the model that we are interested in,
the violation of CP invariance is communicated to the Standard Model via the axion-

1See also refs. [23–26] for related earlier work as well as refs. [27, 28] for some related discussions in the
more recent literature.
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vector coupling φYµν Ỹ µν , where φ is the axion inflaton field, Yµν is the hypercharge field
strength tensor, and Ỹ µν denotes its dual. This coupling results in the generation of helical
hypermagnetic fields (i.e., primordial hypermagnetogenesis) [33–35], which in turn leads
to the nonperturbative production of SM fermions via the Schwinger effect [36–38]. The
fermionic charge asymmetries generated during inflation are dictated by the SM chiral
anomaly [39, 40] and set the initial conditions for the chemical transport after inflation. At
the same time, the helicity stored in the hypermagnetic field is approximately conserved,
as long as processes such as magnetic diffusion [41–43] and the chiral plasma instability
(CPI) [44–50] can be neglected. If it survives all the way down to the EWPT, its decay
around the time of sphaleron freeze-out yields another relevant contribution to the BAU [50–
53], in addition to the leptogenesis contribution generated at higher temperatures. Following
up on ref. [21], the aim of the present paper is to provide a unified description of these
different mechanisms.

The remainder of this paper is organized as follows. In section 2, we will first review
the generation of hypermagnetic helicity and fermionic charge asymmetries during axion
inflation and compute the initial conditions at the end of inflation. Then, in section 3, we
will formulate the conditions under which hypermagnetic helicity has a chance to survive all
the way down to the EWPT, before turning to the different possibilities of violating baryon
and lepton number after axion inflation in section 4. In this section, we will specifically
discuss the chemical transport in the SM plasma (see section 4.1) as well as the mechanisms
of wash-in leptogenesis and baryogenesis from helicity decay (see sections 4.2 and 4.3,
respectively). In this analysis, we will mostly stick to an explicit benchmark scenario and
focus on the lowest possible RHN mass scale, i.e., a lightest RHN mass of around 100TeV.
In section 5, we will then generalize our analysis and discuss the whole range of viable
scenarios. To this end, we will first consider the entire allowed range of RHN masses in
section 5.1, collecting our main results in a compact format in table 2. Similarly, we will
discuss the general implications of our analysis that go beyond the simple case of axion
inflation coupled to the SM hypercharge sector in section 5.2, before studying the viable
parameter space of this specific model in more detail in section 5.3. Section 6 contains
our conclusions.

2 CP -violating initial conditions

Let us first review the generation of hypermagnetic helicity and chiral fermions during
axion inflation. In doing so, we will also illustrate how our results can be generalized to
alternatives to axion inflation that are as well capable of setting the initial conditions for
wash-in leptogenesis. A slightly more extended discussion of such alternative scenarios will
be provided in the context of our model-independent analysis in section 5.2.

2.1 Gauge-field production

We are interested in axion inflation in a generic scalar potential V (φ), which we do not
need to specify for our purposes, and in the presence of an axion-vector coupling to the SM
hypercharge gauge field of the form

L ⊃ αY
4π

φ

fφ
Yµν Ỹ

µν . (2.1)
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Here, φ is the pseudoscalar axion field that drives inflation, while Yµν and Ỹ µν = εµνρσYρσ/2
(with totally antisymmetric Levi-Civita symbol ε0123 = +1) denote the hypercharge field
strength tensor and its dual; αY = g2

Y / (4π) is the hypercharge fine structure constant,
with running hypercharge gauge coupling constant gY ; and fφ represents the axion decay
constant. We stress that the operator Yµν Ỹ µν is topological, which means that its definition
is not affected by the choice of coordinate system. For concreteness, however, we will mostly
work in the conformal frame in this section, such that indices are raised and lowered by
the Minkowski metric. Unless explicitly stated otherwise, all quantities carrying Lorentz or
spatial indices are therefore understood to denote comoving quantities in dependence of
conformal time τ and comoving spatial coordinates x. Physical quantities will enter our
discussion whenever we perform spatial averages in the Friedmann-Lemaître-Robertson-
Walker (FLRW) spacetime. Specifically, this means that the quantities Yµν , Aµ =

(
A0,A

)
,

Jµ =
(
J0,J

)
, E, B (see below) are by default comoving, while the densities hY , qi, qCS

(see below) as well as all other quantities in our discussion such as H, T , etc. (see below)
are by default physical.

The coupling in eq. (2.1) results in the explosive production of helical hypermagnetic
fields during inflation. To see this, consider the equation of motion for the comoving
hypercharge vector field Aµ as a function of τ and x. In radiation gauge, A0 =∇ ·A = 0,
this equation of motion obtains the following form,

A′′ (τ,x)−∇2A (τ,x) = −αY
π

φ′ (τ)
fφ
∇×A (τ,x) + gY J (τ,x) , (2.2)

where a prime indicates the derivative with respect to τ , and J is the comoving hyperelectric
current that is induced by fermion production, which we will discuss in more detail further
below. The first term on the right-hand side of eq. (2.2) corresponds to a source term
that originates from the axion-vector coupling in eq. (2.1) and which is responsible for the
exponential amplification of the gauge field. To study the axion-induced source term in
more detail, let us first neglect the effect of nonperturbative fermion production during
axion inflation for a moment and set the induced fermion current to zero, J = 0. In this
case, we are able to perform a Fourier transformation and analyse the equations of motion
for the gauge-field modes Aλ (τ,k),

A′′λ (τ,k) + k2
(

1− 2λ ξ (τ) a (τ)H (τ)
k

)
Aλ (τ,k) = 0 . (2.3)

Here, λ = ± and k are the helicity and comoving momentum eigenvalues of the mode
function Aλ (τ,k), respectively; the absolute value of k is denoted by k; a is the FLRW
scale factor; and H denotes the physical Hubble rate, H = a′/a2. We moreover introduced
the gauge-field production or instability parameter

ξ (τ) = 1
a (τ)H (τ)

αY
2π
|φ′ (τ)|
fφ

, (2.4)

which typically obtains values of O (1 · · · 10) in standard scenarios of axion inflation. We
note that, in writing down eq. (2.3), we assumed a negative inflaton velocity, φ′ < 0, which,
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as we will see, is going to ensure that the final baryon asymmetry will have the correct,
positive sign.2 The important message of eq. (2.3) is that, given our sign conventions,
the positive-helicity modes A+ (τ,k) will become tachyonically unstable as soon as their
physical momenta, k/a, have been redshifted to the critical value 2ξH. That is, a few
e-folds before the positive-helicity modes exit the Hubble horizon at k/a = H, they will
begin to grow exponentially. The negative-helicity modes A− (τ,k), on the other hand,
will remain in the vacuum state, such that the hypermagnetic field generated during axion
inflation ends up being maximally helical.

2.2 Hypermagnetic helicity

The helicity stored in the hypermagnetic field quantifies the spontaneous breaking of CP
invariance during axion inflation and therefore plays a central role in setting the size of the
BAU. We define the physical hypermagnetic helicity density hY in terms of an average over
spatial hypersurfaces in the FLRW spacetime,

hY = 1
V

∫
d3x

〈
ε0ijkAi∂jAk

〉
= 1

V

∫
d3x 〈A ·∇×A〉 . (2.5)

Here, V denotes the volume of spatial hypersurfaces in FLRW coordinates, V = a3 ∫ d3x,
and the brackets indicate the quantum vacuum expectation value during inflation. An
important property of hY is that its derivative with respect to conformal time τ is given by
the Chern-Pontryagin density Yµν Ỹ µν = −4 E ·B,

∂

∂τ
(VhY ) = 1

2

∫
d3x

〈
Yµν Ỹ

µν
〉

= −2
∫
d3x 〈E ·B〉 , (2.6)

where E and B denote the comoving hyperelectric and hypermagnetic fields, respectively,

E (τ,x) = − ∂

∂τ
A (τ,x) , B (τ,x) =∇×A (τ,x) . (2.7)

For the purposes of baryogenesis, we are interested in the value of the hypermagnetic
helicity at the end of primordial hypermagnetogenesis, which coincides with the end of
inflation in our scenario,

hend
Y = − 2

V

∫ τend

−∞
dτ

∫
d3x 〈E ·B〉 . (2.8)

Note that hend
Y is by construction gauge-independent. Here and in the following, the label

“end” will refer to the end of hypermagnetogenesis. In order to compute the time integral in
eq. (2.8), we make use of the fact that 〈E ·B〉 is expected to reach an attractor solution, if
the gauge-field production parameter ξ and the Hubble rate H do not vary too fast during
inflation.3 In fact, for constant values of ξ and H, one can show that the time dependence

2Alternatively, we could have also chosen a positive inflaton velocity at the cost of flipping the sign
in eq. (2.1).

3For strong axion-vector coupling, the backreaction of the gauge fields onto the axion dynamics can
lead to oscillations in the axion velocity and consequently in the instability parameter ξ [37, 54, 55].
These oscillations are, however, damped once fermion production is included, which limits the efficiency of
gauge-field production and hence reduces the effect on the axion motion [37].
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of 〈E ·B〉 becomes trivial, 〈E ·B〉 ∝ a4 (see, e.g., ref. [56] for an explicit derivation). This
indicates that, as expected for a stationary attractor solution, the product of the electric
and the magnetic field remains constant in the physical frame. The attractor solution for
〈E ·B〉 is moreover homogeneous and isotropic across the volume V� H−3, which allows
us to drop the spatial integral in eq. (2.8),

hend
Y = − 2

a3
end

∫ τend

−∞
dτ 〈E ·B〉 . (2.9)

Because of the aforementioned scaling of the integrand, 〈E ·B〉 ∝ a4, we expect the time
integral to be dominated by the contributions at late times close to the end of inflation.
This allows us to roughly estimate

hend
Y ∼ − 2 〈E ·B〉

a7

∣∣∣∣
end
×
∫ τend

−∞
dτ a4 (τ) . (2.10)

Up to slow-roll corrections, the scale factor is given by the de Sitter expression a (τ) =
−1/ (τH), such that

hend
Y ∼ − 2 〈E ·B〉

3a4H

∣∣∣∣
end

. (2.11)

This quantity will be an essential input for our discussion of the BAU in the remainder of
this paper. As we will see, it specifically sets the scale for the fermionic charge asymmetries
generated during inflation. However, before we turn to these asymmetries, let us take a
step back and discuss how the result in eq. (2.11) may be generalized to other cosmological
scenarios that result in the generation of hypermagnetic helicity.

The outcome of primordial hypermagnetogenesis during axion inflation can be quantified
in terms of four parameters and a sign: (i) the amplitude of the comoving hyperelectric
field, Eend; (ii) the amplitude of the comoving hypermagnetic field, Bend; (iii) the sign of
〈E ·B〉, i.e., the relative orientation of the comoving vectors E and B; (iv) the comoving
correlation length of the hypercharge gauge field, λend; and (v) the physical Hubble rate,
Hend. Here, all quantities are understood to be evaluated at the end of hypermagnetogenesis.
The comoving correlation length is typically determined by the Hubble length, such that
aendλend = cλH

−1
end. In the case of axion inflation, the numerical coefficient cλ turns out to

be of O (1 · · · 10), indicating that the hypercharge gauge field is correlated over superhorizon
distances.4 In hypermagnetogenesis scenarios after inflation, on the other hand, cλ is
constrained by causality to be at most cλ ∼ 1. Based on eq. (2.5) and making use of the
coefficient cλ, we thus expect the following rough relation to hold in general models,

hend
Y ∼ − sgn (〈E ·B〉) λB

2

a3

∣∣∣∣∣
end

= − sgn (〈E ·B〉) cλB
2

a4H

∣∣∣∣∣
end

, (2.12)

where the first relation simply follows from the general expectation that A · B ∼ AB

with A ∼ λB. Alternatively, we can describe the final gauge-field configuration at the
end of hypermagnetogenesis in terms of a typical length scale cλH−1

end and a typical time
4On even larger scales, it is, however, statistically homogeneous and isotropic, which justifies the step

from eq. (2.8) to eq. (2.9).
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scale cτH
−1
end. For a typical amplitude of the vector potential, Aend, we then expect

Eend ∼ AendaendHend/cτ and Bend ∼ AendaendHend/cλ, such that cτEend ∼ cλBend and

hend
Y ∼ − sgn (〈E ·B〉) cτEB

a4H

∣∣∣∣
end

. (2.13)

If we further assume that the gauge field is generated in a maximally helical state, such that
E and B are either parallel (maximal negative helicity) or antiparallel (maximal positive
helicity) to each other, we obtain

hend
Y ∼ − cτ 〈E ·B〉

a4H

∣∣∣∣
end

. (2.14)

The form of this expression matches the form of our result in eq. (2.11). We are therefore
able to identity cτ ∼ 2/3 in the case of axion inflation. Other models may be characterized
by a different value of cτ . For hypermagnetogenesis scenarios operating after inflation, we
expect in general that cλ . cτ . 1.

2.3 Fermionic charge asymmetries

The strong gauge-field background during axion inflation leads to the nonperturbative
production of SM fermions, which receives CP -symmetric as well as CP -asymmetric
contributions [36]. While the former corresponds to the ordinary Schwinger effect in
an inflationary background (i.e., Schwinger pair production), the later results in charge
asymmetries whose magnitude is dictated by the SM chiral anomaly,

∂µJ
µ
i = −εigiY 2

i

αY
4π Yµν Ỹ

µν + · · · , (2.15)

with Jµi denoting the comoving current of the ith SM chiral fermion species. The prefactors
εi, gi, and Yi are explained and listed in table 1. The ellipsis represents all other SM Yukawa
and sphaleron processes that can impact the evolution of the fermion currents. During
inflation, these processes are inefficient, which allows us to neglect them in the computation
of the fermion charges generated by the hypercharge gauge field.5

The charge densities that we are interested in describe the differences of fermion and
antifermion number densities, qi = ni− n̄i, and are closely related to the chemical potentials
µi of the corresponding fermion species in the thermal plasma after inflation, qi = giµiT

2/6.
Here, T denotes the temperature of the SM plasma; and the quantities qi, ni, n̄i, µi, and T
are all physical. We moreover assume that the chemical potentials always remain small at

5A possible exception to this is the top-quark Yukawa coupling, which may not be fully negligible during
inflation. If efficient, this interaction could (i) reshuffle the fermionic chemical potentials, (ii) modify the
top-quark contribution to the induced current, and (iii) contribute to the Higgs potential [57]. For the
purposes of this work, the first point is irrelevant, as the interactions in the thermal plasma after inflation
will in any case lead to a CP -conserving reshuffling of the chemical potentials. The second point will induce
at the very most an error of about 16 %; an estimate that we obtain if we completely drop all contributions
of the third quark generation from the induced current. For simplicity, we will also discard the third point,
if necessary assuming an additional Hubble-induced contribution to the Higgs potential that stabilizes the
vacuum expectation value of the Higgs field at the origin.
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i e µ τ `e `µ `τ u c t d s b Q1 Q2 Q3

εi +1 +1 +1 −1 −1 −1 +1 +1 +1 +1 +1 +1 −1 −1 −1
gi 1 1 1 2 2 2 3 3 3 3 3 3 6 6 6
Yi −1 −1 −1 −1/2 −1/2 −1/2 +2/3 +2/3 +2/3 −1/3 −1/3 −1/3 +1/6 +1/6 +1/6

Table 1. Numerical factors appearing in eq. (2.15): the index i labels the 15 SM fermion represen-
tations; εi distinguishes between left- and right-handed fermions; gi counts internal gauge degrees of
freedom; and Yi stands for the SM hypercharges.

all times after inflation, µi � T . Formally, the physical charge densities qi are defined in
terms of the spatial average of the temporal components of the corresponding currents,

qi = 1
V

∫
d3x

〈
J0
i

〉
. (2.16)

In order to compute these charge densities, we first note that the right-hand side of
eq. (2.15) is proportional to the divergence of the comoving Chern-Simons (CS) current of
the hypercharge gauge field,

JµCS = αY
π
εµνρσAν ∂ρAσ , ∂µJ

µ
CS = αY

2π Yµν Ỹ
µν . (2.17)

In the homogeneous and isotropic background during inflation, the average of JCS over the
volume V vanishes, while the average of the temporal component is nonzero and related to
the physical CS charge density,

qCS = 1
V

∫
d3x

〈
J0

CS

〉
= αY

π

1
V

∫
d3x

〈
ε0ijkAi∂jAk

〉
. (2.18)

This relation allows us to immediately identify qCS with the hypermagnetic helicity density
in eq. (2.5),

qCS = αY
π
hY = g2

Y

4π2 hY . (2.19)

Next, we consider the quantum expectation value of eq. (2.15) and integrate over x

on both sides. The integral over the spatial divergence of the current vanishes because of
homogeneity and isotropy, such that

∂τ

∫
d3x

〈
J0
i

〉
= −εigiY 2

i

αY
4π

∫
d3x

〈
Yµν Ỹ

µν
〉
. (2.20)

Making use of eqs. (2.6), (2.16), and (2.19), this relation results in the following conserva-
tion law,

∂τ (Vqi) = −εigiY 2
i

αY
2π ∂τ (VhY ) = −εigiY 2

i

1
2 ∂τ (VqCS) . (2.21)

For CP -symmetric conditions, such that qi = qCS = 0 at early times during inflation, we
therefore obtain

qend
i = −εigiY 2

i

αY
2π hend

Y = −εigiY 2
i

1
2 q

end
CS , (2.22)

which explicitly illustrates how hend
Y = π/αY q

end
CS controls the fermion charges at the end

of inflation. We stress that eq. (2.22) is a direct consequence of the anomaly equation in

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
0
5
3

eq. (2.15). Alternative scenarios of hypermagnetogenesis, not necessarily related to axion
inflation, will lead to similar relations.6

In this paper, we will work in the limit of instantaneous reheating. This facilitates
our analysis; a more rigorous treatment would require a lattice simulation [58–60] (see
also refs. [61, 62]). It is moreover justified by the fact that reheating proceeds very fast
after axion inflation, if a large amount of energy is already transferred to the hypercharge
sector towards the end of inflation, which then quickly thermalizes in consequence of the
SM gauge interactions. In this case, we are able to employ the fermion symmetries in
eq. (2.22) as initial conditions for our description of the radiation-dominated era. Similarly,
the temperature of the SM plasma shortly after the end of inflation coincides with the
reheating temperature in the limit of instantaneous reheating,

Tend ' Treh '
( 90
π2g∗

)1/4√
HendMPl . (2.23)

Here, g∗ = 427/4 denotes the effective number of relativistic degrees of freedom contributing
to the energy density of the SM thermal bath and MPl ' 2.435× 1018 GeV is the reduced
Planck mass. We thus have

qend
i = gi

6 T
3
end ×

µi
T

∣∣∣∣
end

,
µi
T

∣∣∣∣
end

= −6 εiY 2
i χ , (2.24)

where the dimensionless quantity χ sets the scale for the ratios µi/T at the onset of the
radiation era,

χ = qCS
2T 3

∣∣∣∣
end

. (2.25)

The yield variable χ is directly proportional to the hypermagnetic helicity density hend
Y [see

eq. (2.19)] and hence the CP -violating expectation value 〈E ·B〉 at the end of inflation [see
eq. (2.11)]. Together with Hend and the coefficients cλ and cτ [see eqs. (2.12) and (2.13)],
the magnitude and sign of χ fully characterize the output of hypermagnetogenesis as
far as the generation of the BAU at lower temperatures is concerned. Our discussion of
baryogenesis in sections 4.2 and 4.3 is therefore also going to apply to alternative models of
hypermagnetogenesis that allow one to calculate the expected values of these parameters at
high temperatures.

2.4 Efficiency of hypermagnetogenesis

Up to this point, our discussion has led to the result that both the hypermagnetic helicity
and the fermion charges generated during inflation are controlled by the quantity 〈E ·B〉
[see eqs. (2.11) and (2.22)],

hY ∼ −
2 〈E ·B〉

3a4H

∣∣∣∣
end

, qend
i ∼ εigiY

2
i

αY
3π
〈E ·B〉
a4H

∣∣∣∣
end

. (2.26)

6The precise outcome will then depend on the set of equilibrated SM interactions at the time of
hypermagnetogenesis. For instance, if all SM interactions are equilibrated during hypermagnetogenesis,
these will strongly suppress fermion charge generation.
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Therefore, in order to make quantitative progress, it is necessary to track the evolution of
〈E ·B〉 during axion inflation all the way to its end. This, however, represents a technical
challenge because of the highly nonlinear interplay of fermion and gauge-field production.
In the following, we will therefore discuss several different estimates for the efficiency
of gauge-field production during axion inflation that have recently been put forward in
the literature. A more detailed discussion of these estimates, including semianalytical fit
functions that describe the exact numerical results with excellent accuracy, can be found
in ref. [38].

Recall that in our discussion of the mode equations for the hypercharge gauge field, we
set the induced hyperelectric current to zero [see eq. (2.3)]. In order to properly account for
the nonlinear backreaction of the fermion current on the efficiency of gauge-field production,
we now need to revert this step and work with the explicit expression for the current
J . In the case of our interest, where the hypercharge gauge field is strongly amplified,〈
E2〉 ∼ 〈

B2〉 � H4, the typical length scale of fermion production,
〈
E2〉−1/4, is much

shorter than the correlation length of the hypercharge gauge field, H−1. Hence, one can
approximate the hyperelectric and hypermagnetic fields as homogeneous and (anti) parallel,
whose representative amplitudes are approximately given by E =

〈
E2〉1/2 and B =

〈
B2〉1/2,

respectively. Furthermore, we expect the hypercharge gauge field to reach a stationary
configuration, where the tachyonic instability and the induced current balance each other,
which implies that the physical amplitudes E/a2 and B/a2 become almost time-independent.
Under these approximations, the comoving fermion current was derived in ref. [36] as

J = J

E
E , gY J = 41g3

Y

72π2
EB

aH
coth

(
π
B

E

)
. (2.27)

If we now want to use eq. (2.27) in the equation of motion for the vector field, we can
choose between two possible strategies. In the first case, which we will call the magnetic
picture, we identity the overall B factor in eq. (2.27) as the relevant dynamical quantity
and treat all other factors of E, B, and H in eq. (2.27) as background quantities. That is,
we treat the current as a vector that is primarily controlled by the magnetic field, up to a
proportionality factor that only depends on background quantities, J = −J/BB. Given
that the electric and magnetic fields generated during inflation are antiparallel to each other
in our convention, E/E = −B/B such that EB = −〈E ·B〉, this is a viable possibility.
As a consequence, eq. (2.2) turns into

A′′ −∇2A = 2aH
[
ξ − 41g3

Y

144π2
E

a2H2 coth
(
π
B

E

)]
∇×A . (2.28)

In the magnetic picture, the gauge-field production parameter ξ thus receives a correction
that depends on the strength of the induced fermion current. This observation is the
starting point for our first estimate of the efficiency of gauge-field production, which has
been proposed for the first time in ref. [36]. Besides, there is also the electric picture,
developed in refs. [37, 38] and discussed in more detail below, in which the fermion current
is considered to be primarily controlled by the electric field, J = J/EE. Consequently,
instead of a correction to the instability parameter ξ, the fermion current induces a finite
generalized conductivity.
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Staying in the magnetic picture for the moment, we define

ξeff = ξ − 41g3
Y

144π2
E

a2H2 coth
(
π
B

E

)
(2.29)

and construct an approximate solution for 〈E ·B〉 based on this effective gauge-field
production parameter. The main idea behind this construction, which we will refer to as the
equilibrium estimate, is that, after a sufficiently long time, the system reaches an equilibrium
attractor, in which the electric and magnetic fields remain constant in the physical frame,
E/a2 = const, B/a2 = const. In this case, also ξeff remains constant, such that the mode
equations in eq. (2.3) obtain the same form as in the absence of fermion production, the
only difference being that ξ is replaced by ξeff . The equilibrium estimate therefore assumes
that the dependence of

〈
E2〉, 〈B2〉, and 〈E ·B〉 on ξeff is the same as the dependence on ξ

in the absence of fermions [31],〈
E2〉
a4 ' 2.6×10−4 e

2πξeff

ξ3
eff

,

〈
B2〉
a4 ' 3.0×10−4 e

2πξeff

ξ5
eff

,
〈E ·B〉
a4 '−2.8×10−4 e

2πξeff

ξ4
eff

.

(2.30)
These relations, together with the expression for ξeff in eq. (2.29), provide an implicit
definition of the amplitudes of the electric and magnetic fields according to the equilibrium
estimate. For given values of ξ and H, this set of equations can be solved numerically in
order to obtain an estimate for 〈E ·B〉. The outcome of this exercise is shown in figure 1,
which illustrates the dependence of the equilibrium estimate for the dimensionless yield
parameter χ on the gauge-field production parameter ξ and Hubble rate H, where we
used that

χ ∼ − αY
3π
〈E ·B〉
a4HT 3

∣∣∣∣
end

. (2.31)

Our numerical results shown in figure 1 also take into account the running of the SM
hypercharge gauge coupling constant gY in a self-consistent way, such that gY in eq. (2.29)
is always evaluated at the appropriate renormalization scale characterizing the energy
content of the gauge field, µ =

(
E2/2 +B2/2

)1/4
/a.

In addition, we include in figure 1 a second estimate that can be derived in the magnetic
picture and which we will refer to as the maximal estimate [36]. This estimate is based on
the evolution equation for the energy density of the electromagnetic field, which contains
an additional source term in the presence of the axion,(1

a
∂τ + 4H

)
E2 +B2

2a4 = 2H ξeff EB

a4 . (2.32)

Again assuming that the system will settle in a stationary attractor solution, we are able to
drop the time derivative in this equation, which results in an algebraic relation for the field
amplitudes E and B,

E2 +B2 = ξeff EB . (2.33)

While this relation must be obeyed by every attractor solution in the magnetic picture,
the maximal estimate for 〈E ·B〉 corresponds to the E and B values that satisfy this
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Figure 1. Estimates of the parameter region where the yield parameter χ [see eqs. (2.25) and (2.31)]
is of the right order of magnitude for successful baryogenesis (see sections 4.2 and 4.3). The contour
lines indicate where in parameter space we expect χ = 10−7.5, while the shaded bands cover the
corresponding range from χ = 10−8 to χ = 10−7. Here, larger values of Hend correspond to larger
values of χ, according to the scaling law χ ∝ H

3/2
end for fixed ξ [see eqs. (2.23) and (2.31)]. We

compare the equilibrium estimate (blue) and maximal estimate (red) in the magnetic picture [36]
to the GEF estimate (black) in the electric picture [38] for different values of the damping factor
∆ [see eq. (2.36)]. The reheating temperature Trh follows from the Hubble rate Hend according to
eq. (2.23).

relation while maximizing the product EB. In this sense, the maximal estimate should
not be regarded as a realistic proposal for an explicit solution; it rather presents an upper
bound on all possible solutions for 〈E ·B〉 in the magnetic picture. We therefore show the
maximal estimate in figure 1 only as a reference that is supposed to be compared to the
equilibrium estimate. The discrepancy between these two estimates roughly characterizes
the size of the theoretical uncertainty when one attempts to estimate 〈E ·B〉 solely based
on the assumption of a stationary attractor solution.

A third estimate for 〈E ·B〉, in this case based on the electric picture, has recently been
presented in ref. [38]. This estimate is based on the gradient expansion formalism (GEF)
developed in ref. [37], which describes the evolution of all relevant background quantities
during axion inflation,

〈
E2〉, 〈B2〉, 〈E ·B〉, etc., in terms of bilinear scalar functions that

are constructed from the vector fields E and B in position space (see also ref. [63] for related
earlier work). If one explicitly specifies the scalar potential V and initial conditions, this
approach allows one to explicitly track the dynamics of axion inflation, even in the presence
of nonlinear backreaction and nonperturbative fermion production, with unprecedented
accuracy. However, for the purposes of the present paper, we are rather interested in more
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general, model-independent predictions. We will therefore not use the results of ref. [37] and
implement the gradient expansion formalism for a specific model. Instead, we will resort to
the model-independent results derived in ref. [38], which are based on the assumption that
ξ and H only vary slowly during inflation. Towards the end of inflation, which is the point
in time we are most interested in, this assumption becomes violated. Still, the analysis in
ref. [38] was able to show that the model-independent results continue to represent a good
approximation, typically within less than one order of magnitude of the exact results and
in better agreement with the exact results than the equilibrium and maximal estimates.

The GEF estimate builds upon the numerical solution of a dynamical system of
equations, while the equilibrium and maximal estimates follow from simple algebraic
arguments. We therefore expect that the GEF estimate is also suitable for more dynamical
situations, while the equilibrium and maximal estimates only become relevant after a
sufficiently long equilibration time, such that all quantities of interest have reached their
time-independent attractor values. Since the results in refs. [37, 38] were derived in the
electric picture, the fermion current in eq. (2.2) is treated as a vector that is primarily
controlled by the electric field, J = J/EE. Here, the ratio gY J/E plays the role of a
generalized comoving conductivity for the fermion gas generated during axion inflation,

σ = gY J

E
= 41g3

Y

72π2
B

aH
coth

(
π
B

E

)
. (2.34)

In the electric picture, the equation of motion for the hypercharge vector field thus reads

A′′ −∇2A = 2aHξ∇×A− σA′ , (2.35)

where the new σA′ term now describes the damping of the vector field in the conduct-
ing medium.

An important observation in refs. [37, 38] was that the damping term in eq. (2.35)
renders the description of gauge-field production during axion inflation inherently nonlocal
in time. Gauge-field modes inside the Hubble horizon experience an exponential damping
on their approach to horizon crossing because they no longer evolve in an empty de Sitter
vacuum but in a conducting medium. The amount of exponential damping, however,
depends on the conductivity of the fermion gas, which in turn is sensitive to the efficiency
of gauge-field and fermion production at earlier times. This effect can be captured by a
new damping factor7

∆ (τ) = exp
[
−
∫ τ

−∞
dτ ′σ

(
τ ′
)]
, (2.36)

7The lower integration boundary in eq. (2.36) implies that gauge-field modes on arbitrarily small scales
inside the horizon will experience damping because of the nonvanishing conductivity. This corresponds to a
technical simplification that does not necessarily reflect the actual physical situation: gauge-field modes on
scales smaller than the typical momenta in the fermion gas are expected to experience less damping up to
no damping at all. The integral in eq. (2.36) is, however, typically dominated by the contributions at late
times, i.e., contributions close to the upper integration boundary. Our simplified treatment of the lower
integration boundary is therefore expected to have no or only little phenomenological implications. See also
ref. [38] for a more comprehensive discussion.
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which describes the amount by which gauge-field modes inside the horizon get damped up
to some time τ . If one performs a model-specific analysis such as the one in ref. [37], the
evolution of ∆ is self-consistently accounted for by the gradient expansion formalism. In this
case, ∆ does not correspond to new independent parameter. However, if one is interested
in model-independent results, the parameter ∆ can be used as an effective parameter that
captures the unknown prehistory leading up to a certain moment in time, e.g., the end
of inflation. This interpretation directly applies to our analysis. In figure 1, we therefore
present the GEF estimate for χ not only as a function of ξ and H, but also for four values
of the damping factor ∆. In any given model, these parameters are of course correlated;
in particular, small ξ typically entails ∆ ∼ 1. Consequently, the region in the top left
of figure 1, where the GEF estimate crosses beyond the equilibrium estimate for small
values of ξ and ∆, corresponds to situations that are likely hard to achieve dynamically in
realistic models.8

The spread in our results for the GEF estimate illustrates the range of possible outcomes
that one may expect for different models that do lead to the same values of ξ and H at
the end of inflation, but which differ in the way in which they reach the end of inflation,
specifically, in the way in which the conductivity σ evolves prior to the end of inflation.
In addition to this model-related uncertainty, the GEF estimate features a systematic
uncertainty stemming from the fact that it is not capable of accounting for the time
dependence of the parameters ξ, H, ∆. (In a full, time-resolved GEF run for a specific
model, this is of course not a problem.) This uncertainty is comparable to the spread
in our results for different values of ∆. To first approximation, one may therefore also
completely neglect the ∆ dependence of the GEF estimate and simply work with a fixed ∆
value. This is precisely what we will do in the remainder of this paper, in which we will
focus on the GEF estimate for ∆ = 1. As shown in ref. [38], this estimate is still capable
of approximating the outcome of specific models at a level that is comparable to the full
∆-dependent GEF estimate.

Finally, we caution that all estimates presented in this section need to be taken with a
grain of salt. The ad hoc identification of the hyperelectric current with either the electric
field times a proportionality factor, J = J/EE, or the magnetic field times a proportionality
factor, J = −J/BB, does not stand on firm theoretical ground. These two approaches
merely serve the purpose to make progress by deriving simple and rough estimates for the
efficiency of gauge-field production during axion inflation. In fact, it has recently been
pointed out in ref. [65] that a self-consistent mean-field approximation automatically gives
rise to both electric and magnetic conductivities. In the two approaches that we just
explained, it is assumed that a particular form of the induced current holds even at the level
of perturbations, namely, δJ = σB δB [eq. (2.28)] or δJ = σE δE [eq. (2.35)]. However,
strictly speaking, this is not fully accurate, since the directions of the perturbed electric
and magnetic fields are not necessarily (anti) parallel at the onset of the tachyonic growth

8The efficiency of gauge-field production during axion inflation and its dependence on ∆ has recently
also been investigated in ref. [64]. The analysis in this paper is based on the electric picture, operates in
Fourier space, and confirms that small ∆ values at the end of inflation are correlated with a suppression of
the final helicity density, especially, if the axion decay constant fφ is large.
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around k/a ∼ 2ξH. As a consequence, both conductivities, the electric conductivity σE
and the magnetic conductivity σB , appear in the perturbed equation of motion. In ref. [65],
following the approach in ref. [36], a dynamical and self-consistent equilibrium solution for
the strength of the electric and magnetic background fields is constructed that utilizes both
σE and σB. Similar to the GEF estimate, this solution for the electric and magnetic fields
lies well above the equilibrium estimate, and relatively close to but below the maximal
estimate in ref. [36] (see figure 2 of ref. [65]). This is one step forward to the complete
picture. Still, the analysis is limited to the stationary equilibrium and needs to be extended
to cope with the time-dependent dynamics.

In future work, it will be necessary to validate (or revise) the estimates presented in
this section making use of more sophisticated methods. This means that, in the short term,
it will be important to combine the mean-field approximation with the gradient expansion
formalism, which should enable one to study the time-dependent dynamical evolution of
the system in a fully self-consistent way. In the long term, more complicated first-principles
calculations based on nonequilibrium quantum field theory on curved spacetime are required.
As we will see below, baryogenesis typically requires a χ value of the order of χ ∼ few×10−8.
The key lesson from the discussion in this subsection therefore is that axion inflation is
capable of generating this value; a more accurate description of the underlying parameter
dependence is left for future work.

3 Survival of the primordial helicity

In the previous section, we derived the initial conditions for the radiation-dominated era,
specifically, the initial values of the hypermagnetic helicity density and fermionic charge
asymmetries [see eq. (2.26) and figure 1]. As outlined in the Introduction, these primordial
charges set the stage for baryogenesis: the asymmetries stored in the chiral fermions lead
to wash-in leptogenesis, if they are not erased before RHN interactions become efficient;
while the helicity stored in the hypermagnetic field can act as a source of baryon number, if
it survives until the EWPT. The survival of the primordial charges in the SM plasma is,
however, endangered by several effects. In addition to weak sphaleron processes, which seek
to wash out any primordial baryon-plus-lepton number, we must pay attention to magnetic
diffusion and the chiral plasma instability. We will now discuss these two effects in the
magnetohydrodynamics (MHD) approximation [43, 66], closely following the more detailed
discussion in ref. [32]. This will provide us with lower and upper bounds on the strength of
the primordial hypermagnetic field from magnetic diffusion and the chiral plasma instability,
respectively. Remarkably, the range between these two bounds remains viable and can give
rise to the correct BAU.

3.1 Magnetic diffusion

Due to the conductivity of the SM thermal bath, diffusion processes tend to wash out
the primordial hypermagnetic fields permeating the early Universe. These processes are
particularly efficient at small scales, but reach the correlation length of the hypercharge
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gauge field at a temperature scale of around [32]

Tdiff ∼
1
c2
λ

T

σth
Hend , (3.1)

if the evolution is adiabatic. Here, Hend is the physical Hubble rate at the end of hypermagne-
togenesis, cλ parametrizes the physical correlation length at the end of hypermagnetogenesis,
cλH

−1
end [see eq. (2.12)], and σth ' 102 T denotes the physical hyperelectric conductivity of

the thermal plasma.9 Note that the ratio σth/T is temperature-independent, up to effects
related to the running of the hypercharge gauge coupling constant. Since the diffusion
processes preserve the conservation law in eq. (2.22), they threaten to erase both the CP
violation stored in the hypermagnetic field as well as in the fermion asymmetries, which
means that they endanger both wash-in leptogenesis and baryogenesis from helicity decay.

Diffusion may be avoided if the hypermagnetic field is strong enough to trigger a
turbulent evolution of the thermal plasma before diffusion processes reach the relevant
scales [41–43]. This requires an initial magnetic Reynolds number much larger than unity,10

such that magnetic induction dominates over diffusion,

Reini
mag = σthvcλ

H

∣∣∣∣
end

, (3.2)

with v denoting the typical magnitude of the plasma velocity field. In order to turn the
requirement Reini

mag � 1 into a constraint on the parameter space of our model, we need to
estimate the magnitude of the velocity field at the end of hypermagnetogenesis, vend. To
this end, one may naively assume that an equipartition among kinetic energy and magnetic
energy is reached in the plasma, which is typically found in MHD simulations in the regime
of large kinetic Reynolds numbers Rekin. However, in the region of parameter space that
we are interested in, the initial kinetic Reynolds number

Reini
kin = vcλ

νH

∣∣∣∣
end

, (3.3)

with ν ' 10/T denoting the kinetic viscosity of the plasma, is not always larger than unity.
We can thus no longer trust the MHD simulation results; in particular, it is not clear
whether the energies in the velocity and magnetic fields are indeed equally partitioned,
which makes it challenging to accurately determine vend.

In the following, we will therefore proceed by estimating the magnetic Reynolds number
based on two alternative assumptions, which we expect the cover the range of physically
conceivable scenarios,

ρv2 ∼ ρB → Reini
mag ∼ Reini,max

mag ∼
[
σthcλ
T

(
M∗
T

)(
ρB
ρtot

)1/2
]

end
, (3.4)

ρv2 ∼ Rekin ρB → Reini
mag ∼ Reini,visc

mag ∼
[
σthc

2
λ

νT 2

(
M∗
T

)2 ( ρB
ρtot

)]
end

, (3.5)

9From now on, all quantities are going to be physical; we will no longer introduce new comoving quantities
in the conformal frame.

10In the cascade regime, the magnetic Reynolds number increases monotonically. A large initial value is
therefore sufficient to ensure a turbulent regime throughout the subsequent evolution [32].
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with M∗ =
[
90/

(
π2g∗

)]1/2
MPl, ρtot = 3H2M2

Pl, and where ρ and ρB = B2/
(
2a4) denote

the energy densities of the plasma and hypermagnetic field, respectively. In the first
case, we assumed that the energy in the velocity field saturates the initial energy in the
hypermagnetic field, which acts as a source term for the velocity field. This may be regarded
as an optimistic estimate that minimizes the parameter region where Reini

mag 6� 1. Meanwhile,
in the second case, we assumed that a viscous regime is reached, where the kinetic viscosity
is balanced by the source term from the hypermagnetic field. For more details on these
analytical estimates, see ref. [32]. Besides, we stress that a more refined analysis of the
onset of turbulence after axion inflation requires a dedicated MHD analysis, which has thus
far not been performed in the regime of interest, Remag � Rekin.

3.2 Chiral plasma instability

The condition Reini
mag � 1 in combination with eqs. (3.4) and (3.5) bounds the hypermagnetic

energy density at the end of inflation from below. A second, upper bound follows from the
chiral plasma instability [44–50], which is based on the chiral magnetic effect [67–70]. For
our purposes, the essence of this effect is that large charge asymmetries in the chiral SM
fermion species will trigger an instability in gauge-field modes that carry opposite helicity
compared to the total helicity of the background field. This will wash out the helicity stored
in the hypermagnetic field as well as the charge asymmetries stored in the chiral fermions.

The strength of the chiral plasma instability is controlled by the chiral chemical potential

µ̄5 =
∑
i

εigiY
2
i µi , (3.6)

whose initial value is directly proportional to the initial hypermagnetic helicity density in
our model,

µ̄5
T

∣∣∣∣
end

= −95
3 χ = −95

6
αY
π

hY
T 3

∣∣∣∣
end

. (3.7)

Strong hypermagnetic fields therefore threaten to trigger an efficient chiral plasma instability.
In the course of the radiation-dominated era, the ratio µ̄5/T (slowly) changes by O(1)
factors as a function of temperature, in dependence of the parity-violating SM interactions
that successively enter thermal equilibrium as the Universe cools down. The temperature
scale of the chiral plasma instability then follows from the relation [50]

TCPI ∼ 105 GeV

(102

g∗

)1/2 (
αY

10−2

)2
(

102

σth/T

)(
µ̄5/T

2× 10−3

)2

TCPI

. (3.8)

At this temperature, gauge-field modes with a typical wavenumber kCPI = αY µ̄5/π begin
to become unstable.

As the Universe expands more and more slowly, the chemical transport in the SM
plasma becomes gradually more efficient. In the language of eq. (2.15), this means that a
steadily increasing number of terms on the right-hand side becomes active, which results
in the reshuffling and erasure of the asymmetries stored in the different chiral fermion
species. The last SM interaction to reach equilibrium is the electron Yukawa interaction,
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which thermalizes at a temperature of around Tye ' 105 GeV [71]. At lower temperatures,
all asymmetries are erased, µi → 0 for all fermion species i, such that no chiral chemical
potential µ̄5 remains. Therefore, if the estimate in eq. (3.8) returns a temperature below
Tye for a given input value of µ̄5/T , no chiral plasma instability occurs. Thus, the CPI does
not endanger the survival of the hypermagnetic fields until the EWPT if

TCPI < Tye ∼ 105 GeV , (3.9)

which places an upper bound on the initial values of µ̄5/T and hY [see eq. (3.7)]. If
this bound on TCPI as well as the bound on Reini

mag discussed in section 3.1 [see eqs. (3.4)
and (3.5)] are both satisfied, the helicity stored in the hypermagnetic field survives until
the EWPT, setting the stage for baryogenesis from helicity decay.

As we will see in section 5.1, in the parameter regime that is capable of reproducing
the observed BAU, the condition (3.9) is always easily fulfilled, since the large values of
µ̄5 required to trigger the CPI before the electron Yukawa interaction equilibrates would
imply an overproduction of the BAU through wash-in leptogenesis for right-handed neutrino
masses above 105 GeV. In the following, we will thus focus on this situation.

4 Baryon and lepton number violation

Axion inflation does not generate any B−L asymmetry.11 Therefore, if the radiation-
dominated era after inflation is solely described by SM physics, the global B−L charge
always remains zero and leptogenesis plays no role in the generation of the BAU. This
situation changes as soon as RHNs are added to the picture. As pointed out in ref. [21],
efficient RHN interactions alter the chemical transport in the plasma such that primordial
charge asymmetries can be reprocessed into a new B−L-violating equilibrium, even if
B−L = 0 initially. This mechanism was dubbed wash-in leptogenesis in ref. [21]. In addition,
RHNs can of course lead to the generation of a B−L asymmetry by means of standard
thermal leptogenesis. However, as shown in ref. [21], the thermal contribution to the final
BAU is independent of the wash-in contribution, up to numerically negligible corrections.
It therefore suffices to simply add it to the outcome of wash-in leptogenesis.

Let us now consider a particularly simple benchmark scenario: wash-in leptogenesis at
temperatures shortly above the equilibration temperature of the electron Yukawa interaction,
Tye , a regime in which standard thermal leptogenesis does not yield any appreciable
contribution to the final BAU. That is, we assume the RHNs Ni (i = 1, 2, 3) to have masses
Mi of a few 100TeV, say, M1 = 200TeV, M2 = 400TeV, and M3 = 800TeV, such that
they all decay into SM lepton-Higgs pairs in the temperature window T ∼ 105 · · · 106 GeV.
Wash-in leptogenesis in other temperature regimes as well as heavy-neutrino flavor effects
will be discussed in section 5.1. In figure 2, we schematically illustrate the evolution of the
global CS, B+L, B−L, B, and L charges in our benchmark scenario all the way from the
end of inflation to the EWPT in five steps, which we will discuss one by one in sections 4.2

11This immediately follows from the fact that axion inflation does not involve any B−L-violating
interactions. In addition, one may explicitly convince oneself that B −L = 0 at the end of axion inflation by
appropriately combining the charge densities in eq. (2.22).
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and 4.3. In doing so, we will express all charges in terms of charge-to-photon ratios and
work in units of ηχ, a characteristic charge-to-photon ratio whose size is controlled by the
yield parameter χ,

ηC = qC
nγ

, ηχ = χT 3

nγ
, nγ = ζ (3)

π2 gγT
3 . (4.1)

4.1 Chemical transport in the SM plasma

Right after axion inflation [see panel (a) in figure 2], the initial CS charge is given by
eq. (2.25), which translates into a charge-to-photon ratio ηCS = 2 ηχ. The corresponding
B + L charge can be either calculated based on eq. (2.22) or directly deduced from the SM
anomaly equations for the global B and L currents,

∂µJ
µ
B = ∂µJ

µ
L = Ng

(
g2
L

32π2W
a
µνW̃

aµν − g2
Y

32π2Yµν Ỹ
µν

)
. (4.2)

Here, Ng = 3 counts the number of SM fermion generations, gL is the SU(2)L isospin gauge
coupling constant, and W a

µν (a = 1, 2, 3) is the corresponding field strength tensor, with its
dual denoted by W̃ aµν . Integrating the anomaly equation in eq. (4.2) in a homogeneous
background over time results in the relation

∆qB = ∆qL = 3
(

∆qLCS −
1
4∆qYCS

)
, (4.3)

with qLCS and qYCS ≡ qCS denoting the SU(2)L and U(1)Y CS charge densities, respectively.
During axion inflation, long-range SU(2)L gauge-field fluctuations are not amplified and weak
sphaleron processes are inefficient, such that ∆qLCS = 0. This implies ∆qB+L = −3/2 ∆qYCS
at the end of axion inflation, which translates to ηB+L = −3 ηχ in panel (a) in figure 2.
Meanwhile, the global B−L charge remains conserved during axion inflation, which means
that ηB−L = 0 and ηB = ηL = −3/2 ηχ initially.

In addition, axion inflation results in the generation of further global charges that only
become violated during the radiation-dominated era as more and more SM interactions
reach thermal equilibrium. Among these charges, we will notably require the values of the
following five charges in our analysis, for reasons that will become clear shortly: the charge
asymmetries stored in right-handed electrons, muons, taus, and up quarks as well as the
difference between the charge asymmetries of right-handed up quarks and right-handed
down quarks. At the end of axion inflation, the charge-to-photon ratios for these five
charges read

ηe = ηµ = ητ = ηu−d = −ηχ , ηu = −4
3ηχ . (4.4)

Here, the relation among the charge asymmetries of the three charged-lepton flavors,
ηe = ηµ = ητ , reflects the fact that the generation of fermionic charge asymmetries during
axion inflation is a flavor-blind process.

In the approximation of instantaneous reheating, we expect a reheating temperature
Trh ∼ 1014 GeV in the relevant part of parameter space (see figure 1). Let us now consider
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Figure 2. Evolution of the global CS, B+L, B−L, B, and L charges in the benchmark scenario
discussed in section 4 all the way from the end of axion inflation to the EWPT. Panels (a) and
(b) describe the initial conditions after axion inflation and the chemical equilibrium shortly before
wash-in leptogenesis (see section 4.1); panels (c), (d), and (e) illustrate the situation shorty after
wash-in leptogenesis, below the equilibration temperature of the electron Yukawa interaction, and
at the time of sphaleron freeze-out towards the end of the EWPT (see section 4.2). The red bars
in panel (e) indicate the outcome of baryogenesis from helicity decay (see section 4.3). Every
panel contains the bars shown in all previous panels plus new bars that indicate the relevant new
contributions to the respective charges. The total charges at the respective stages of the evolution
are indicated by the black dots and horizontal black dashed lines.
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the evolution of the primordial charges generated during axion inflation from this high
temperature scale all the way down to the temperature scale of wash-in leptogenesis, TB−L,
which we assume to be of the order of a few 100TeV in our benchmark scenario. In doing so,
it will be important to keep track of the subset of SM interactions that have already reached
thermal equilibrium in dependence of the decreasing temperature of the thermal bath. In
order to facilitate the discussion, we will split the temperature range from Trh to TB−L into
five different regimes, each of which is characterized by a certain subset of SM interactions
in equilibrium. For more details on the equilibration temperatures of the individual SM
Yukawa and sphaleron interactions, see ref. [72]. A second simplification consists in the
fact that we will neglect the chemical potentials of the three RHNs, µNi , in our discussion.
At T � Mi, these chemical potentials may temporarily obtain nonzero values. Whether
and when this happens is, however, a model-dependent question and depends on the rate
of ∆L = 1 scattering processes such as, e.g., NiQ3 ↔ `αt, and hence on the RHN Yukawa
couplings, as well as on the thermal history of the RHN population. Moreover, all effects
caused by µNi 6= 0 at high temperatures will be reverted at lower temperatures anyway
when the RHNs turn nonrelativistic and the µNi are driven to zero by the RHN Majorana
masses. At the time of wash-in leptogenesis, when T ∼Mi, we can therefore safely work
with µNi = 0. The model-dependent time evolution of the three µNi will not affect our
conclusions and is thus irrelevant for our purposes.

(i) T ∈
(
1013, 1015) GeV: immediately after reheating, most SM interactions are still too

slow to compete with the Hubble expansion. In addition to the SM gauge interactions, the
only process in thermal equilibrium is the top-quark Yukawa interaction. As a consequence,
a large number of global charges remains conserved in the thermal bath. Indeed, given
that the SM particle content can be described by 16 chemical potentials (15 fermion
representations, see table 1, plus the SM Higgs doublet Φ), one Yukawa interaction in
equilibrium means that one is able to define 15 linearly independent global charges. One
possible choice is, e.g., [21]{

ηu, ηB, ηd−b, ητ , ηu−c, ηµ, ηB1−B2 , ηd−s, ηu−d, η2B1−B2−B3 , ηe, η∆e , η∆µ , η∆τ , ηY
}
,

(4.5)
where ∆α = B/3− Lα (α = e, µ, τ). These 15 charges span an orthonormal basis of a 15-
dimensional vector space. Any other orthonormal basis of this vector space also corresponds
to a set of conserved charges. The basis in eq. (4.5) is, however, a particularly convenient
choice for the following reason: as the temperature of thermal bath drops, new interactions
will enter thermal equilibrium and begin to violate the charges listed in eq. (4.5) from left
to right. For instance, as the strong sphaleron processes reach thermal equilibrium, ηu will
become violated; as the weak sphaleron processes reach thermal equilibrium, ηB will become
violated; and so on and so forth, until at temperatures below Tye , all SM interactions are
equilibrated, such that all charges in eq. (4.5) are violated, except for the three lepton flavor
asymmetries ∆α and the global hypercharge Y .

Moreover, note that the list in eq. (4.5) contains the five charges that we introduced in
eq. (4.4). In view of eq. (4.5), we can now rephrase more precisely which global charges
of interest are in fact generated during axion inflation: in the 15-dimensional vector space
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spanned by the charges listed in eq. (4.5), axion inflation populates the six-dimensional
subspace spanned by ηu, ηB , ητ , ηµ, ηu−d, and ηe. Among the nine charges in the orthogonal
co-space, the six charges ηd−b, ηu−c, ηB1−B2 , ηd−s, η2B1−B2−B3 , and ηY remain zero at all
times throughout the cosmological evolution, while the three lepton flavor asymmetries η∆α

can only be generated by RHN interactions. In the following, we will therefore need to work
with in total nine charges that can in principle obtain nonzero values: ηu, ηB , ητ , ηµ, ηu−d,
ηe, η∆e , η∆µ , and η∆τ . The charge asymmetries of the 16 SM fermion and Higgs fields live
precisely in the vector space spanned by these nine charges.

In other words, each of the 16 SM chemical potentials, µi (i = e, µ τ, `e, `µ, `τ , u, c, t, d, s,

b,Q1, Q2, Q3,Φ), can be expressed in terms of a linear combination of the nine chemical
potentials µ̄C (C = u,B, τ, µ, u − d, e,∆e,∆µ,∆τ ).12 In order to work out these linear
combinations, we employ the linear-algebra formalism developed in the appendix of ref. [21].
The essence of this formalism is to write down a system of 16 linear equations — one
constraint equation for each conserved charge and one equilibrium condition for each
interaction in chemical equilibrium — which can be solved for the 16 SM chemical potentials.
Working with 15 constraint equations and one equilibrium condition for the top-quark
Yukawa interaction, we thus obtain

µe
µµ
µτ
µ`e
µ`µ
µ`τ
µu
µc
µt
µd
µs
µb
µQ1

µQ2

µQ3

µΦ



=



0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1/6 0 0 0 −1/2 −1/2 0 0
0 1/6 0 −1/2 0 0 0 −1/2 0
0 1/6 −1/2 0 0 0 0 0 −1/2

1/3 0 0 0 0 0 0 0 0
1/3 0 0 0 0 0 0 0 0
1/27 2/27 1/9 1/9 −7/27 1/9 −1/9 −1/9 −1/9
1/3 0 0 0 −1/3 0 0 0 0
1/3 0 0 0 −1/3 0 0 0 0
1/3 0 0 0 −1/3 0 0 0 0
−1/3 1/6 0 0 1/6 0 0 0 0
−1/3 1/6 0 0 1/6 0 0 0 0
−5/27 7/54 −1/18 −1/18 8/27 −1/18 1/18 1/18 1/18

2/9 −1/18 1/6 1/6 −5/9 1/6 −1/6 −1/6 −1/6





µ̄u
µ̄B
µ̄τ
µ̄µ
µ̄u−d
µ̄e
µ̄∆e

µ̄∆µ

µ̄∆τ


, (4.6)

where the chemical potentials associated with the global charges on the right-hand side are
initially given by
µ̄u
T

= −8χ , µ̄B
T

= −9χ , µ̄τ
T

= µ̄µ
T

= µ̄u−d
T

= µ̄e
T

= −6χ , µ̄∆e

T
=
µ̄∆µ

T
= µ̄∆τ

T
= 0 .
(4.7)

12Here, the bar over the chemical potentials associated with global charges, µ̄C , indicates that all internal
gauge degrees of freedom have been summed over, which is not the case for the ordinary chemical potentials
µi. As a consequence, we have, e.g., µu = 1/3 µ̄u. This distinction is not necessary for quantities like the
charge densities qi = giµiT

2/6 and qC = µ̄CT
2/6 or the charge-to-photon ratios ηi = qi/nγ and ηC = qC/nγ ,

all of which include the same gi factors. For more details on our conventions, see ref. [21].
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In passing, we also mention that, if we were to include the chemical potentials of the
three RHNs in our discussion, we would have to work with 19 chemical potentials and
19 linear equations. As explained above, this would, however, require us to fix the size
of the Yukawa couplings in the RHN sector and specify the thermal history of the RHN
population, while no net effect would survive down to low temperatures anyway.

(ii) T ∈
(
1011···12, 1013) GeV: around T ∼ 1013 GeV, strong sphaleron processes, i.e.,

thermal fluctuations in the topological charge in the SM SU(3)C sector, reach thermal
equilibrium. As a consequence, the charge asymmetry stored in right-handed up quarks no
longer represents a conserved global charge, which means that our linear system of equations
now consists of 14 constraint equations and two equilibrium conditions. Solving this system
for the 16 SM chemical potentials results in the following new equilibrium solution,

µe
µµ
µτ
µ`e
µ`µ
µ`τ
µu
µc
µt
µd
µs
µb
µQ1

µQ2

µQ3

µΦ



=



0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

1/6 0 0 0 −1/2 −1/2 0 0
1/6 0 −1/2 0 0 0 −1/2 0
1/6 −1/2 0 0 0 0 0 −1/2
1/12 −1/46 −1/46 17/69 −1/46 1/46 1/46 1/46
1/12 −1/46 −1/46 17/69 −1/46 1/46 1/46 1/46
1/12 5/46 5/46 −16/69 5/46 −5/46 −5/46 −5/46
1/12 −1/46 −1/46 −2/23 −1/46 1/46 1/46 1/46
1/12 −1/46 −1/46 −2/23 −1/46 1/46 1/46 1/46
1/12 −1/46 −1/46 −2/23 −1/46 1/46 1/46 1/46
1/12 1/46 1/46 −11/138 1/46 −1/46 −1/46 −1/46
1/12 1/46 1/46 −11/138 1/46 −1/46 −1/46 −1/46
1/12 −1/23 −1/23 11/69 −1/23 1/23 1/23 1/23

0 7/46 7/46 −9/23 7/46 −7/46 −7/46 −7/46





µ̄B
µ̄τ
µ̄µ
µ̄u−d
µ̄e
µ̄∆e

µ̄∆µ

µ̄∆τ


. (4.8)

(iii) T ∈
(
109, 1011···12) GeV: in the temperature interval T ∼ 1011···12 GeV, four

linearly independent SM interactions reach thermal equilibrium, which leads to the violation
of two global charges that are relevant for our discussion. More precisely, the interactions
reaching equilibrium consist of the weak sphaleron processes, i.e., thermal fluctuations in the
topological charge in the SM SU(2)L sector, as well as of the bottom-quark, charm-quark,
and tau Yukawa interactions. Here, the weak sphalerons violate global baryon number,
µ̄B, while the tau Yukawa interaction violates the global charge stored in right-handed
tau leptons, µ̄τ , which reduces the number of relevant global charges from eight to six. In
addition, we now observe a reshuffling of all chemical potentials across the quark and lepton
sectors, apart from the chemical potentials of right-handed electrons and muons, which are
not yet in contact with the rest of the thermal bath. Our system of linear equations for the
16 SM chemical potentials now consists of ten constraint equations (for the last ten charges
in eq. (4.5)) and six equilibrium conditions (for the six SM processes alluded to thus far),
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which yields

µe
µµ
µτ
µ`e
µ`µ
µ`τ
µu
µc
µt
µd
µs
µb
µQ1

µQ2

µQ3

µΦ



=



0 0 1 0 0 0
1 0 0 0 0 0

−4/589 45/589 −4/589 56/589 56/589 −139/589
39/589 3/589 −511/1178 −503/1178 43/589 30/589

−511/1178 3/589 39/589 43/589 −503/1178 30/589
41/589 −39/1178 41/589 15/589 15/589 −195/589
33/2356 421/1767 33/2356 127/2356 127/2356 29/589
213/2356 −67/1767 213/2356 −37/2356 −37/2356 −27/589
129/1178 −63/589 129/1178 −39/1178 −39/1178 −41/589
33/2356 −56/589 33/2356 127/2356 127/2356 29/589
33/2356 −56/589 33/2356 127/2356 127/2356 29/589

−51/1178 66/589 −51/1178 125/1178 125/1178 71/589
123/2356 −235/3534 123/2356 45/2356 45/2356 1/589
33/2356 253/3534 33/2356 127/2356 127/2356 29/589
39/1178 3/1178 39/1178 43/1178 43/1178 15/589
45/589 −129/1178 45/589 −41/589 −41/589 −56/589





µ̄µ
µ̄u−d
µ̄e
µ̄∆e

µ̄∆µ

µ̄∆τ


. (4.9)

(iv) T ∈
(
106, 109) GeV: at T ∼ 109 GeV, the muon Yukawa interaction and the

remaining Yukawa interactions of the second and third quark generations equilibrate.
The latter include the strange-quark Yukawa interaction, but also off-diagonal Yukawa
interactions such as the interaction of right-handed strange quarks with left-handed bottom
quarks. The muon Yukawa interaction violates the global charge stored in right-handed
muons, which leaves us with five conserved global charges that are relevant for our discussion.
The constraint equations for the last seven charges in eq. (4.5) and nine equilibrium
conditions then lead to

µe
µµ
µτ
µ`e
µ`µ
µ`τ
µu
µc
µt
µd
µs
µb
µQ1

µQ2

µQ3

µΦ



=



0 1 0 0 0
15/358 1/358 31/358 −133/537 46/537
15/358 1/358 31/358 46/537 −133/537
1/179 −155/358 −151/358 10/179 10/179

−11/716 47/716 25/716 −172/537 7/537

−11/716 47/716 25/716 7/537 −172/537
91/537 6/179 7/179 5/179 5/179

−39/716 69/716 −9/716 −8/179 −8/179

−39/716 69/716 −9/716 −8/179 −8/179

−88/537 6/179 7/179 5/179 5/179
43/716 −21/716 65/716 18/179 18/179
43/716 −21/716 65/716 18/179 18/179
1/358 6/179 7/179 5/179 5/179
1/358 6/179 7/179 5/179 5/179
1/358 6/179 7/179 5/179 5/179

−41/716 45/716 −37/716 −13/179 −13/179




µ̄u−d
µ̄e
µ̄∆e

µ̄∆µ

µ̄∆τ

 . (4.10)
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(v) T ∈
(
105, 106) GeV: finally, at T ∼ 106 GeV, the Yukawa interactions of the first

quark generation equilibrate, including the down-quark Yukawa interaction, but also the
Yukawa interaction of right-handed down quarks with left-handed strange quarks. The
former violates the global charge accounted for by µ̄u−d, which means that the SM chemical
potentials now live in a vector space spanned by a four-dimensional basis. Working with
constraint equations for the last five charges in eq. (4.5) and eleven equilibrium conditions,
we find 

µe
µµ
µτ
µ`e
µ`µ
µ`τ
µu
µc
µt
µd
µs
µb
µQ1

µQ2

µQ3

µΦ



=



1 0 0 0
7/481 1/13 −29/111 8/111
7/481 1/13 8/111 −29/111

−415/962 −11/26 2/37 2/37
59/962 1/26 −35/111 2/111
59/962 1/26 2/111 −35/111
3/37 0 −1/37 −1/37
3/37 0 −1/37 −1/37
3/37 0 −1/37 −1/37

−6/481 1/13 3/37 3/37

−6/481 1/13 3/37 3/37

−6/481 1/13 3/37 3/37
33/962 1/26 1/37 1/37
33/962 1/26 1/37 1/37
33/962 1/26 1/37 1/37
45/962 −1/26 −2/37 −2/37




µ̄e
µ̄∆e

µ̄∆µ

µ̄∆τ

 . (4.11)

In our benchmark scenario, wash-in leptogenesis is supposed to occur in this last
temperature regime. The equilibrium solution in eq. (4.11) therefore represents the initial
conditions for wash-in leptogenesis, i.e., the chemical configuration of the SM thermal bath
that it will act upon. Compared to the situation right after the end of axion inflation, the
chemical equilibrium in eq. (4.11) now features reduced baryon and lepton asymmetries in
consequence of the continuous B+L wash-out by weak sphalerons since reheating. Combining
eq. (4.11) with the input data in eq. (4.7), we find ηB = ηL = −198/481 ηχ, which indicates
sphaleron-induced shifts in the global baryon and lepton charges of 1047/962 ηχ, respectively
[see panel (b) in figure 2]. This observation concludes our detailed discussion of the chemical
transport in the SM plasma from T ∼ 1014 GeV all the way down to T ∼ 105···6 GeV and
sets the stage for our analysis of wash-in leptogenesis.

4.2 Wash-in leptogenesis

Let us now add RHN interactions to the picture, especially, the typical RHN wash-out
processes known from standard thermal leptogenesis, which are dominated by RHN inverse
decays, `αΦ → Ni and ¯̀

αΦ∗ → Ni, in our benchmark scenario. At T ∼ Mi, these
interactions are equilibrated, unless we choose exceptionally small RHN Yukawa couplings,
which allows us to impose three more conditions on the SM chemical potentials,

µ`α + µΦ = 0 , (4.12)
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where the zero on the right-hand side stems from the fact that the three RHNs correspond
to heavy Majorana fermions with zero chemical potential at the time of their decay. Next,
we rewrite the wash-in condition in eq. (4.12) with the help of eq. (4.11) as a condition for
the global charges µ̄e and µ̄∆α in matrix form,µ`e + µΦ

µ`µ + µΦ
µ`τ + µΦ

 =

−5/13
4/37
4/37

 µ̄e −
6/13 0

0 41/111 4/111

0 4/111 41/111


µ̄∆e

µ̄∆µ

µ̄∆τ

 =

0
0
0

 . (4.13)

This condition is imposed by the interactions of each of the three RHN species independently,
which reflects the fact that all three RHNs decay in the same temperature regime in our
benchmark scenario. Thanks to eq. (4.13), it is now straightforward to determine the new
chemical equilibrium in the presence of efficient RHN interactions. The lepton-number-
violating (LNV) RHN interactions drive the system to a new chemical attractor and thereby
wash in nonzero ∆α charges whose size is controlled by the primordial input charge µ̄e,µ̄∆e

µ̄∆µ

µ̄∆τ

=

6/13 0
0 41/111 4/111

0 4/111 41/111


−1−5/13

4/37
4/37

 µ̄e =

13/6 0
0 41/15 −4/15

0 −4/15 41/15


−5/13

4/37
4/37

 µ̄e =

−5/6
4/15
4/15

 µ̄e .
(4.14)

The stage of wash-in leptogenesis hence results in the generation of a total B−L
charge-to-photon ratio

ηB−L =
(5

6 −
4
15 −

4
15

)
ηχ = cwin

B−Lηχ , cwin
B−L = 3

10 , (4.15)

where we used that ηe = −ηχ [see eq. (4.4)] and where we introduced the coefficient
cwin
B−L = ηB−L/ηχ to record the outcome of wash-in leptogenesis. This expression for the
wash-in contribution to the primordial B−L asymmetry is our main result in this section.
In view of this result, several comments are in order:

(i) First of all, we note that eq. (4.15) is completely independent of the details of CP
violation in the RHN sector. CP violation in RHN decays is typically quantified by CP
asymmetry parameters εiα [73]; these parameters, however, do not appear in our analysis
and are in any case severely suppressed for RHN masses as low as a few 100TeV (barring a
resonant enhancement). This observation is in accord with our discussion in section 1 and
reflects the fact that wash-in leptogenesis allows us to separate the scales of CP and B−L
violation. The RHN interactions at low temperatures only serve the purpose to violate
lepton number; the violation of CP invariance is delegated to higher temperatures and
accomplished by axion inflation. At the time of wash-in leptogenesis, the CP -violating
initial conditions set by axion inflation are then encoded in the remaining conserved global
charges, i.e., the global right-handed electron number in our benchmark example.

(ii) The RHN mass scale in our benchmark scenario is determined by the requirement
that at least one of the primordial input charges generated during axion inflation, µ̄e, has
not yet been altered by the chemical transport in the SM plasma. This implies an absolute
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lower bound on the RHN mass scale that applies to any RHN mass spectrum in the context
of wash-in leptogenesis: at least one RHN species needs to decay and hence reshuffle the
chemical potentials in the thermal bath at temperatures above the equilibration temperature
of the electron Yukawa interaction,

M3 & Tye ∼ 105 GeV , (4.16)

provided that the LNV interactions of the other RHN species do not become efficient before
sphaleron freeze-out.13 Wash-in leptogenesis thus successfully operates at RHN masses as
low as a few 100TeV, which is four orders of magnitude below the typical mass range of
standard thermal leptogenesis, Mi & 109 GeV [74, 75]. Moreover, it does not require small
mass splittings in the RHN mass spectrum as in the case of resonant leptogenesis [76, 77].
A hierarchical spectrum as in our benchmark scenario is indeed a perfectly viable option.

(iii) In order to ensure a sufficient efficiency of wash-in leptogenesis, one only needs
to assume that the standard RHN decay parameters Kiα = Γiα (T = 0) /H (T = Mi),
which normally quantify the efficiency of wash-out processes, are large enough. In other
words, wash-in leptogenesis is particularly efficient in regions of parameter space that are
otherwise characterized by a large asymmetry wash-out. We refer to this parameter regime,
otherwise known as the strong wash-out regime, as the strong wash-in regime. In the type-I
seesaw model, light-neutrino masses of O (0.1) eV imply RHN decay parameters as large as
Kiα ∼ 10 · · · 100 and hence naturally point to this regime (see, e.g., ref. [78]). As shown in
ref. [21], the result in eq. (4.15) is in this case in excellent agreement with the exact solution
that one may obtain by explicitly solving the Boltzmann equations for the three flavored
B−L charges at the time of RHN decay. In the strong wash-in regime, any deviations
from eq. (4.15) are exponentially suppressed by factors of the form e−ciαKiα with some
coefficients ciα. This situation changes in the weak wash-in regime, i.e., if we choose weaker
RHN couplings, such that only a fraction of the totally available asymmetry is washed into
the plasma, requiring one to resort to a description in terms of Boltzmann equations [21].
In the following, we will, however, ignore this possibility and focus on the strong wash-in
regime, which is well motivated by the low-energy neutrino data.

(iv) As discussed in section 3, a necessary condition for successful wash-in leptogenesis is
that the primordial fermion charges generated during axion inflation, alongside the helicity
stored in the hypermagnetic field, are not erased by magnetic diffusion or the chiral plasma
instability. This requirement constraints the parameter space of axion inflation, as we will
investigate in more detail in sections 5.2 and 5.3. Here, we merely remark that the chemical
equilibrium in eq. (4.11) now allows us to precisely calculate the chiral chemical potential
µ̄5 in eq. (3.6), which controls the temperature scale of the chiral plasma instability, TCPI,

13In the remainder of this paper, though, we will mostly focus on RHN mass spectra with M1,2,3 & 105 GeV,
assuming that all three RHN species reach chemical equilibrium at one point or other, in which case the
bound in eq. (4.16) turns into M1 & Tye ∼ 105 GeV.
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in eq. (3.8),14

µ̄5
T

= 711
481

µ̄e
T

+ 5
13

µ̄∆e

T
− 4

37

(
µ̄∆µ

T
+ µ̄∆τ

T

)
. (4.17)

As evident from this relation, the numerical value of µ̄e changes in consequence of wash-in
leptogenesis, even though the set of equilibrated SM interactions remains the same across
the interval T ∼ 105 GeV · · · 106 GeV. Before wash-in leptogenesis, the three flavored B−L
charges vanish, while after wash-in leptogenesis, we need to work with the nonzero flavored
B−L charges in eq. (4.14). Together with eq. (4.7), we thus obtain

µ̄5
T

∣∣∣∣
T>TB−L

= −6 c>5 χ , c>5 = 711
481 , (4.18)

µ̄5
T

∣∣∣∣
T<TB−L

= −6 c<5 χ , c<5 = 11
10 . (4.19)

(v) Similarly, we can study the evolution of the global baryon charge across the stage of
wash-in leptogenesis. Using again the solution in eq. (4.11), we find the following relation
among the relevant asymmetries,

ηB = 6
481

[
33 ηe + 37 η∆e + 26

(
η∆µ + η∆τ

)]
, (4.20)

which results in ηB = −198/481 ηχ at T > TB−L, as already stated at the end of section 4.1
[see panel (b) of figure 2]. In the course of wash-in leptogenesis, the baryon asymmetry,
however, evolves into ηB = −1/5 ηχ, corresponding to a shift of 509/2405 ηχ. Together with
our result in eq. (4.15), ηB−L = 3/10 ηχ, this implies a lepton asymmetry ηL = −1/2 ηχ as
well as a baryon-plus-lepton asymmetry ηB+L = −7/10 ηχ after wash-in leptogenesis. This
observation tells us that the violation of baryon-minus-lepton number by RHN interactions
during wash-in leptogenesis is in fact accompanied by the violation of baryon-plus-lepton
number by weak sphalerons: while ηB−L changes from 0 to 3/10 ηχ, ηB+L receives a shift
of 593/4810 ηχ [see panel (c) of figure 2].

(vi) We stress that the baryon asymmetry in eq. (4.20) corresponds to the global baryon
charge in the temperature regime T ∼ 105 GeV · · · 106 GeV. In order to compute the baryon
asymmetry in the present Universe, we still need to track the chemical transport in the
SM plasma all the way down to the time of sphaleron decoupling at T ' 135GeV [81]. To
this end, we first determine the chemical equilibrium at temperatures below Tye and above
the EWPT, where all SM interactions are equilibrated, including the electron Yukawa
interaction. As before, we can write down a system of linear equations, this time consisting

14The chiral plasma instability terminates as soon as µ̄5 = 0. From eq. (4.17), we can now read off
that the flavored B−L charges generated during wash-in leptogenesis, µ̄∆α 6= 0, have a nontrivial impact
on this condition. If the chiral plasma instability occurs at Tye . TCPI . TB−L, it will not result in
µ̄e, qCS = 0 as usual, but leave behind nonvanishing charge asymmetries and hypermagnetic helicity. This
observation generalizes to other baryogenesis mechanisms (e.g., leptoflavorgenesis [79], which is characterized
by
∑

α
µ̄∆α = 0 and at least two µ̄∆α 6= 0) and can source nonvanishing µ̄e and helicity, even if these two

quantities are initially zero [80].
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of four charge constraints (for ∆α and Y ) and twelve equilibrium conditions, which gives
rise to the following equilibrium solution,

µe
µµ
µτ
µ`e
µ`µ
µ`τ
µu
µc
µt
µd
µs
µb
µQ1

µQ2

µQ3

µΦ



=



−185/711 52/711 52/711
52/711 −185/711 52/711
52/711 52/711 −185/711

−221/711 16/711 16/711
16/711 −221/711 16/711
16/711 16/711 −211/711

−5/237 −5/237 −5/237

−5/237 −5/237 −5/237

−5/237 −5/237 −5/237
19/237 19/237 19/237
19/237 19/237 19/237
19/237 19/237 19/237
7/237 7/237 7/237
7/237 7/237 7/237
7/237 7/237 7/237

−4/79 −4/79 −4/79



µ̄∆e

µ̄∆µ

µ̄∆τ

 . (4.21)

This solution coincides with the chemical equilibrium shortly above the EWPT in standard
leptogenesis scenarios. In particular, it implies the well-known relation between the global
B−L and B charge asymmetries

ηB = csph
(
η∆e + η∆µ + η∆τ

)
= csph ηB−L , csph = 28

79 , (4.22)

where csph is referred to as the sphaleron conversion factor (in the symmetric phase of the
SM plasma). In combination with the outcome of wash-in leptogenesis, ηB−L = 3/10 ηχ, we
therefore obtain

ηB = csph c
win
B−L ηχ = 42

395ηχ , ηL = (csph − 1) cwin
B−L ηχ = −153

790ηχ , (4.23)

or equivalently,

ηB−L = cwin
B−L ηχ = 3

10ηχ , ηB+L = (2 csph − 1) cwin
B−L ηχ = − 69

790ηχ . (4.24)

Compared to the situation in the previous temperature regime, T ∼ 105 GeV · · · 106 GeV,
the global B−L charge hence remains unchanged, while the global B+L charge receives a
shift of 242/395 ηχ [see panel (d) of figure 2].

Finally, we need to account for the evolution of the SM chemical potentials through the
EWPT, especially, from the onset of the phase transition at T ' 160GeV [82], when the
Higgs field begins to develop a nonzero vacuum expectation value, to the freeze-out of the
weak sphaleron processes at T ' 135GeV [81]. The chemical transport in this temperature
regime, i.e., the electroweak-broken phase, differs in several aspects from the chemical
transport in the electroweak-symmetric phase [83]: weak isospin symmetry is spontaneously
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broken, the global hypercharge is no longer conserved, and the chemical potential of the
Higgs boson vanishes. Instead, the global electric charge is conserved (µ̄Q = 0), and the W
boson is allowed to pick up a nonzero chemical potential. The vanishing chemical potential
of the Higgs boson implies in particular that we no longer need to distinguish between the
chemical potentials of left- and right-handed Weyl fermions. Instead, all fermions except for
the three SM neutrino species correspond to massive Dirac fermions whose left- and right-
handed components possess the same chemical potential. Meanwhile, the three SM neutrino
species can still be treated as massless left-handed Weyl fermions; neutrino oscillations
caused by their tiny Majorana masses will only begin to affect their chemical potentials at
much later times [84, 85]. Accounting for these aspects of the electroweak-broken phase, we
are able to write down a system of linear equations, consisting of four charge constraints
(for ∆α and Q) and nine equilibrium conditions, that is solved by

µe
µµ
µτ
µνe
µνµ
µντ
µu
µc
µt
µd
µs
µb
µW+



=



−95/333 16/333 16/333
16/333 −95/333 16/333
16/333 16/333 −95/333

−107/333 4/333 4/333
4/333 −107/333 4/333
4/333 4/333 −107/333
1/111 1/111 1/111
1/111 1/111 1/111
1/111 1/111 1/111
5/111 5/111 5/111
5/111 5/111 5/111
5/111 5/111 5/111

−4/111 −4/111 −4/111



µ̄∆e

µ̄∆µ

µ̄∆τ

 , (4.25)

where µe, µµ, µτ , µu, µc, µt, µd, µs, and µb now denote the chemical potentials of the
corresponding Dirac fermions. This chemical equilibrium implies the following relation
between the global B−L and B charges,

ηB = c̄sph
(
η∆e + η∆µ + η∆τ

)
= c̄sph ηB−L , c̄sph = 12

37 , (4.26)

where c̄sph represents the sphaleron conversion factor in the broken phase of the SM
plasma [83, 86].

The baryon and lepton asymmetries originating from wash-in leptogenesis hence freeze
out at

ηB = c̄sph c
win
B−L ηχ = 18

185ηχ , ηL = (c̄sph − 1) cwin
B−L ηχ = −15

74ηχ , (4.27)

or equivalently,

ηB−L = cwin
B−L ηχ = 3

10ηχ , ηB+L = (2 c̄sph − 1) cwin
B−L ηχ = − 39

370ηχ , (4.28)

which is displayed in panel (e) of figure 2. After the EWPT, the baryon asymmetry no
longer evolves, apart from the trivial dilution of the baryon-to-photon ratio caused by the
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decreasing number of relativistic degrees of freedom in the thermal bath. The wash-in
contribution to the present-day baryon asymmetry thus reads

ηwin
B = g∗,s (T0)

g∗,s (TB−L) c
win
B ηχ = g∗,s (T0)

g∗,s (TB−L)
π2

ζ (3) gγ
cwin
B χ , cwin

B = c̄sph c
win
B−L = 18

185 ,

(4.29)
where we used eq. (4.1) in the second step, and where g∗,s (T0) = 43/11 and g∗,s (TB−L) =
427/4 denote the effective numbers of entropic degrees of freedom today and at the time
of wash-in leptogenesis, respectively. This expression is the final result of our discussion
of wash-in leptogenesis in this section. We conclude that, in order to obtain a baryon
asymmetry of the right order of magnitude, ηB ∼ 10−(9···10), the CP asymmetry parameter
χ needs to be of the order of χ ∼ 10−(7···8), which is exactly what we anticipated in figure 1,

ηwin
B ' 0.15 cwin

B χ ' 4.4× 10−10
( cwin

B

18/185
)( χ

3× 10−8

)
. (4.30)

4.3 Baryogenesis from helicity decay

In the context of our benchmark scenario in this section, we shall assume that the helicity
stored in the hypermagnetic field survives and the field itself remains fully helical all the
way down to the EWPT.15 The necessary conditions for this to happen were outlined in
section 3; in section 5.3, we will identify the viable region in the parameter space of axion
inflation where these conditions are indeed satisfied. For the time being, let us, however,
solely focus on the implications for the BAU if the primordial helicity of the gauge field is
not erased before the EWPT. The crucial observation in this case is that the decay of the
hypermagnetic helicity during the EWPT will result in another contribution to the baryon
asymmetry in accord with the chiral anomaly of the baryon-number current in eq. (4.2)
and the relation among the involved global charges in eq. (4.3). We refer to this mechanism
as baryogenesis from helicity decay, which has been first proposed in refs. [88, 89] and
then studied in more detail in refs. [51–53] as well as in refs. [29, 31, 32] in relation to
axion inflation.

The helicity stored in the hypermagnetic field decreases for two reasons. On the one
hand, it decays in consequence of Ohmic dissipation because of the finite conductivity of the
SM plasma [88]. On the other hand, it is driven to zero by electroweak symmetry breaking,
which rotates the physical vector fields in the electroweak sector in a way such that the
Abelian contribution to the chiral anomalies of the global B and L currents is removed. In
other words, baryon and lepton number are anomalously violated by the hypercharge gauge
field, but they are preserved in electromagnetic interactions. This change on the right-hand
side of the anomaly equation (4.2) is reflected in a corresponding change on the left-hand
side, i.e., the generation of an additional contribution to the baryon asymmetry. The
effect of electroweak symmetry breaking on the hypermagnetic helicity can be parametrized

15If the hypermagnetic field is only partially helical, its coherence length and field strength at a fixed
value of the total helicity are larger than in the fully helical case. This results in large baryon isocurvature
perturbations and hence severe constraints from inhomogeneous big-bang nucleosynthesis [87]. In the
parameter space of our interest, the hypermagnetic field is, however, in the turbulent regime and its
coherence length is sufficiently short so that no constraint from baryon isocurvature perturbations arises.
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in terms of the temperature-dependent weak mixing angle θw (T ), which determines the
unscreened mode among the electroweak gauge fields. For the electroweak crossover found
in the SM for a 125GeV Higgs boson, the angle θw (T ) vanishes before the onset of the
EWPT and smoothly evolves to its low-temperature value during the EWPT [82, 90].

Around the time of sphaleron freeze-out at T ' 135GeV, the temperature dependence of
the weak mixing angle represents the dominant effect on the evolution of the hypermagnetic
helicity, which allows us to neglect Ohmic dissipation in our estimate of the baryon
asymmetry. In this approximation, the transport equation for the charge density qB in the
broken phase obtains the following form [53],

(
d

dt
+ 3H

)
qB = 111

34 Γws
[
cdec
B χT 3 − (qB − c̄sph qB−L)

]
. (4.31)

Here, the first term inside the brackets represents the source term originating from the
decaying hypermagnetic helicity, while the second term is the standard sphaleron term that
is responsible for the conversion from B−L to B. The rate Γws correspondingly denotes
the rate of weak sphaleron processes [81],

Γws ' T exp
[
−146.6 + 0.83

(
T

1GeV

)]
, (4.32)

which is valid in the broken phase, T . 160GeV. The coefficient 111/34 in eq. (4.31) has
also be found in ref. [53] and follows from the chemical equilibrium in the broken phase in
the limit of slow sphaleron processes. To see this, note that the sphaleron conversion term
in eq. (4.31) must be proportional to the sum of the chemical potentials of the fermion
fields that belong to SU(2)L doublets in the symmetric phase,

Σ = 3
[
3 µu + µd

2 + 3 µc + µs
2 + 3 µt + µb

2 + µe + µνe
2 +

µµ + µνµ
2 + µτ + µντ

2

]
. (4.33)

Here, the overall factor of 3 counts the units of baryon charge generated per sphaleron
transition; the factors of 3 in front of the quark chemical potentials count color degrees of
freedom; and the chemical potentials of species whose left-handed components originally
belonged to the same SU(2)L doublets in the symmetric phase are averaged over. This
last factor of 1/2 may also be regarded as an overall normalization that ensures a smooth
matching with the corresponding linear combination of chemical potentials in the symmetric
phase. In the next step, we need to evaluate Σ as a function of conserved and slowly violated
charges, including baryon number, which is conserved by all SM processes except for the
weak sphalerons. To do so, we need to modify the result in eq. (4.25), which describes
the chemical equilibrium in the broken phase assuming fast sphalerons. If we drop this
assumption and treat the sphalerons as slow, we obtain a system of linear equations — five
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charge constraints (for ∆α, Q, and B) and eight equilibrium conditions — that is solved by

µe
µµ
µτ
µνe
µνµ
µντ
µu
µc
µt
µd
µs
µb
µW+



=



−49/153 2/153 2/153 11/102
2/153 −49/153 2/153 11/102
2/153 2/153 −49/153 11/102

−55/153 −4/153 −4/153 2/17

−4/153 −55/153 −4/153 2/17

−4/153 −4/153 −55/153 2/17

−1/51 −1/51 −1/51 3/34

−1/51 −1/51 −1/51 3/34

−1/51 −1/51 −1/51 3/34
1/51 1/51 1/51 4/51
1/51 1/51 1/51 4/51
1/51 1/51 1/51 4/51

−2/51 −2/51 −2/51 1/102




µ̄∆e

µ̄∆µ

µ̄∆τ

µ̄B

 . (4.34)

Evaluating the linear combination Σ in eq. (4.33) in this chemical equilibrium then gives in
the desired result,

Σ = 111
34 (µ̄B − c̄sph µ̄B−L) . (4.35)

The coefficient csph
B in eq. (4.31), finally, accounts for the evolution of the weak mixing

angle θw (T ) [53],

cdec
B = 17

37

(
1 + g2

L

g2
Y

)
H Θ
Γws

, Θ = −T dθw
dT

sin (2θw) , (4.36)

and hence parametrizes the source term in units of χT 3. Here, the factor 17/37 simply
ensures that the source term enters the transport equation with an overall numerical
prefactor of 17/37× 111/34 = 3/2 [53]. In order to estimate the temperature dependence
of θw (T ), we will use the analytical one-loop result in ref. [90], which is based on the
dimensionally reduced effective thermal field theory description of the Standard Model,

cos2 θw (T ) = cos2 θw (T = 0)
[
1 + 11

6π sin2 θw (T = 0) gLT

v (T )

]
. (4.37)

Here, v (T ) denotes the temperature-dependent Higgs vacuum expectation value,
〈

Φ†Φ
〉

=
v2 (T ) /2 during the EWPT, which has been studied in a numerical lattice simulation in
ref. [82]. A simple fit formula describing these numerical lattice results, valid at 130GeV .
T . 160GeV, has been worked out in ref. [52],

v (T ) ≈ 0.23T

√
162− T

1GeV . (4.38)

This expression, together with gL ' 0.64, gY ' 0.35, cos2 θw(T = 0) ' 0.78 and
sin2 θw(T = 0) ' 0.22, then allows us to evaluate cdec

B at the time of sphaleron freeze-
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out, when the final value of the BAU is determined,16

Tsph = 135GeV : cdec
B ' 0.05

(
H/Γws

0.19

)( Θ
0.14

)
. (4.39)

For definiteness, we will work with cdec
B ' 0.05 in the following. We, however, caution

that this estimate comes with a considerable numerical uncertainty of up to three orders
of magnitude. On the one hand, the ratio H/Γws is exponentially sensitive to the chosen
freeze-out temperature, simply because Γws decreases exponentially fast during the EWPT
[see eq. (4.32)]. On the other hand, the accuracy of the one-loop result in eq. (4.37) is
limited, which is, e.g., reflected in the fact that it only roughly agrees with the numerical
lattice results in ref. [82] (for more details, see also the discussion in refs. [53, 87]). A more
accurate determination of the temperature dependence of the weak mixing angle during the
EWPT is, however, not available at present, which is why we will content ourselves with
cdec
B ' 0.05 as a representative benchmark value in our analysis.

In order to solve the transport equation (4.31), we can make use of the fact that it is
linear in the baryon charge density. This allows us to split the total charge density into
two contributions, qB = qdec

B + qlep
B , where qdec

B denotes the outcome of baryogenesis from
helicity decay and qlep

B is the combined contribution to the baryon asymmetry from wash-in
and standard thermal leptogenesis. These partial asymmetries then satisfy(
d

dt
+3H

)
qdec
B = 111

34 Γws

(
cdec
B χT 3−qdec

B

)
,

(
d

dt
+3H

)
qlep
B = 111

34 Γws

(
c̄sph qB−L−qlep

B

)
,

(4.40)
which immediately allows us to read off their freeze-out values at the time of sphaleron
decoupling. The contribution originating from leptogenesis clearly agrees with the result in
eq. (4.26), i.e., it simply follows from the standard sphaleron conversion formula, qlep

B =
c̄sph qB−L, while the baryogenesis contribution from helicity decay is directly determined by
the dimensionless helicity density χ produced during axion inflation,

qdec
B = cdec

B χT 3 . (4.41)

In terms of charge-to-photon ratios, we thus obtain the following additional asymmetries
from helicity decay,

ηB = cdec
B ηχ , ηL = cdec

B ηχ , ηB−L = 0 , ηB+L = 2cdec
B ηχ , (4.42)

where we used the fact that baryogenesis from helicity decay preserves baryon-minus-
lepton number.

In addition to the extra baryon charge density qdec
B , we therefore also obtain an extra

contribution to the lepton charge density of equal size, qdec
L = qdec

B . At the same time,
the hypermagnetic field is transformed into the usual magnetic field of electromagnetism,
which means that no hypermagnetic helicity that would be capable of sourcing a baryon
asymmetry survives after the EWPT. Meanwhile, the magnetic field emanating from the

16In doing so, we take into account the one-loop running of gL and gY from the Z pole to energy scale of
sphaleron freeze-out.
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EWPT does remain helical. But instead of hypermagnetic helicity, it now features magnetic
helicity, which is of phenomenological interest in its own right,17 even if it is no longer
relevant for the evolution of the baryon asymmetry. In panel (e) of figure 2, we indicate
this behavior of the helicity density by setting the CS charge-to-photon ratio ηCS to zero
towards the end of the EWPT, which completes our discussion of figure 2.

The only remaining step, as far as the discussion of our benchmark scenario in this
section is concerned, thus consists in relating qdec

B to the present-day baryon asymmetry. In
analogy to eq. (4.29), we have

ηdec
B = g∗,s (T0)

g∗,s (Tsph) c
dec
B ηχ = g∗,s (T0)

g∗,s (Tsph)
π2

ζ (3) gγ
cdec
B χ , (4.43)

which happens to be of the same order of magnitude as the wash-in contribution in eq. (4.30),

ηdec
B ' 0.15 cdec

B χ ' 2.3× 10−10
(
cdec
B

0.05

)(
χ

3× 10−8

)
. (4.44)

We therefore conclude that it is indeed necessary to account for both contributions to
the final baryon asymmetry. This statement applies in particular to earlier studies of
baryogenesis from helicity decay, whose outcome can receive important corrections as soon
as RHNs are added to the theory. In summary, we find that wash-in leptogenesis after
axion inflation in combination with baryogenesis from helicity decay leads to

ηtot
B = ηwin

B + ηdec
B ' 0.15

(
cwin
B + cdec

B

)
χ ' 6.6× 10−10

(
cwin
B + cdec

B

18/185 + 0.05

)(
χ

3× 10−8

)
,

(4.45)
which is one of our main results in this paper. As expected the final asymmetry is controlled
by the dimensionless helicity density χ, which quantifies the amount of CP violation during
axion inflation and which needs to take a value of around χ ∼ 10−(7···8) in order to set the
stage for successful baryogenesis.

5 Range of viable scenarios

Our extensive discussion of the specific benchmark scenario in the previous section now
enables us to readily generalize our analysis and map out the full range of viable scenarios
without much additional effort. To this end, we will first extend our investigation of wash-in
leptogenesis to larger RHN masses, Mi � 105 GeV, and correspondingly larger leptogenesis
temperature scales TB−L (see section 5.1). In a second step, we will then combine all of our
results obtained in sections 3, 4, and 5.1 and identify the viable region in parameter space

17Similar to hypermagnetic fields, maximally helical magnetic fields experience an “inverse cascade”
evolution in the turbulent regime (see also section 3), which can lead to strong present-day magnetic fields
with large coherence length in cosmic voids [43, 91, 92]. The search for and a possible hint of helical
intergalactic magnetic fields, based on the parity-odd correlation functions of diffuse gamma rays emitted
by blazars, is discussed, e.g., in refs. [93–96] (see also ref. [97]). The ηχ values required for successful
baryogenesis after axion inflation, however, lead to magnetic fields that are not strong enough to explain
these blazar observations [31, 32].
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that allows to produce the BAU while avoiding the constraints from magnetic diffusion and
the chiral plasma instability. First, we will do this in a slightly more model-independent
way in section 5.2, which will provide us with general results that can also be applied
to alternative mechanisms of primordial magnetogenesis beyond our scenario of axion
inflation. Then, in section 5.3, we will finally turn to the main case our interest, primordial
magnetogenesis during axion inflation, and discuss the constraints on its parameter space.

5.1 Temperature regimes

In section 4.2, we saw that the action of wash-in leptogenesis in the temperature regime
T ∼ 105 · · · 106 GeV can be parametrized in terms of three dimensionless coefficients: (i)
cwin
B−L, which relates the dimensionless helicity density χ to the primordial B−L asymmetry
produced during wash-in leptogenesis [see eq. (4.15)]; equivalently, one may also work
in terms of the coefficient cwin

B = c̄sph c
win
B−L where c̄sph = 12/37, which relates χ to the

primordial baryon asymmetry produced during wash-in leptogenesis [see eq. (4.29)]; (ii)
c>5 , which relates χ to the chiral chemical potential shortly before wash-in leptogenesis
[see eq. (4.18)]; and (iii) c<5 , which relates χ to the chiral chemical potential shortly after
wash-in leptogenesis [see eq. (4.19)].

In the temperature window T ∼ 105 · · · 106 GeV, we found cwin
B−L = 3/10, cwin

B = 18/185,
c>5 = 711/481, and c<5 = 11/10. By contrast, if we attempted to realize wash-in leptogenesis
at lower RHN masses, Mi . 105 GeV, all of these coefficients would turn out to vanish,
cwin
B−L = cwin

B = c>5 = c<5 = 0, for the following reason: around T ∼ 105 GeV, the electron
Yukawa interaction enters thermal equilibrium, such that, from this point on all the way
down to the EWPT, all SM interactions are equilibrated. Thus, if no lepton asymmetry has
been generated by the time the temperature has reached T ∼ 105 GeV, all chemical potentials
in the thermal bath will vanish, as immediately follows from eq. (4.21) with µ̄∆α = 0 on
the right-hand side. This means that no primordial global charges survive in the plasma
that could be reprocessed by the RHN interactions around T ∼Mi . 105 GeV. Similarly,
no chiral chemical potential survives that could trigger the chiral plasma instability.

At higher temperatures, the situation is more interesting. To see this, let us now
consider increasingly larger values of the leptogenesis temperature scale TB−L, which we
are going to estimate as follows,

TB−L ∼ min {TNi , T∆L=2} , TNi 'Mi , T∆L=2 ' 6× 1012 GeV
(0.05 eV

mν

)2
.

(5.1)
Here, TNi denotes the decay temperature of the respective RHN species Ni, and T∆L=2 is
the freeze-out temperature of the dimension-5 Weinberg operator in the seesaw extension
of the Standard Model [72], with mν ∼ 0.05GeV representing the mass scale of the light
SM neutrinos. Interactions mediated by the Weinberg operator violate total lepton number
by two units, ∆L = 2, and can thus play the role of the LNV interactions required for
wash-in leptogenesis in the limit of very large RHN masses. That is, for Mi & 1013 GeV,
LNV processes do not yet freeze out at the time of RHN decay, but only when lepton-
Higgs scatterings with heavy off-shell RHNs in the intermediate state become inefficient
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at T ∼ T∆L=2.18 The estimate in eq. (5.1) tells us that we can easily realize wash-in
leptogenesis at higher temperatures simply by increasing the RHN masses Mi. Wash-in
leptogenesis can in particular occur in the temperature regimes (iv), (iii) and (ii), which
we introduced in section 4.1, if we choose the lightest RHN mass, M1, to lie in one
of the intervals

(
106, 109) GeV,

(
109, 1011···12) GeV, and

(
1011···12, 1013) GeV, respectively.

For completeness, we will also consider wash-in leptogenesis in temperature regime (i),
T ∈

(
1013, 1015) GeV, in the following. In this way, we will be able to account for the

uncertainty in the freeze-out temperature of the Weinberg operator T∆L=2, which, as can
be seen from eq. (5.1), may not be too different from the lower boundary of temperature
regime (i).

First, we consider RHN masses in the range Mi ∼ 106 · · · 109 GeV. In this case, we
can evaluate the strong wash-in condition in eq. (4.12) by making use of the chemical
equilibrium solution in eq. (4.10)µ`e + µΦ

µ`µ + µΦ
µ`τ + µΦ

 =

−37/716 −265/716

−13/179 23/179

−13/179 23/179

(µ̄u−d
µ̄e

)
−

339/716 3/179 3/179
3/179 211/537 32/537
3/179 32/537 211/537


µ̄∆e

µ̄∆µ

µ̄∆τ

 =

0
0
0

 .

(5.2)
This equilibrium condition results in the following flavored B−L charges after wash-in
leptogenesis, η∆e

η∆µ

η∆τ

 =

−41/51 −5/51
16/51 −8/51
16/51 −8/51

(ηu−d
ηe

)
=

 46/51

−8/51

−8/51

 ηχ , (5.3)

where we used in the last step the primordial input charges after axion inflation in eq. (4.4).
The sum of the three flavored B−L charges yields the total B−L asymmetry and hence
the coefficient cwin

B−L,

ηB−L = − 7
17 ηu−d −

3
17 ηe = cwin

B−Lηχ , cwin
B−L = 10

17 , (5.4)

which immediately translates to a coefficient for the primordial baryon asymmetry of
cwin
B = 120/629. Similarly, we can use the chemical equilibrium in eq. (4.10) in order to
determine the chiral chemical potential,

µ̄5
T

= 173
1074

µ̄u−d
T

+ 513
358

µ̄e
T

+ 151
358

µ̄∆e

T
− 10

179

(
µ̄∆µ

T
+ µ̄∆τ

T

)
. (5.5)

Making use of the primordial chemical potentials in eq. (4.7) and the flavored B−L charges
in eq. (5.3), we are able to explicitly evaluate this expression right before as well as right
after wash-in leptogenesis, which provides us with the coefficients c>5 and c<5 in temperature
regime (iv), c>5 = 856/537 and c<5 = 61/51.

18Renormalizable interactions such as the Yukawa interactions of the SM fermions begin to enter thermal
equilibrium as the temperature of the thermal bath steadily decreases. The electron Yukawa interaction
is, e.g., inefficient at temperatures above Tye and efficient at temperatures below Tye . By contrast, the
interactions mediated by the Weinberg operator scale differently with temperature because of the dimensionful
coupling constant and thus leave thermal equilibrium at temperatures around T∆L=2.
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Next, we repeat the analysis for temperature regime (iii), i.e., for RHN masses Mi ∼
109 · · · 1011···12 GeV. If we evaluate the strong wash-in condition in eq. (4.12) based on the
equilibrium in eq. (4.9), we obtainµ`e+µΦ
µ`µ+µΦ
µ`τ +µΦ

=

 84/589 −123/1178 −421/1178

−421/1178 −123/1178 84/589
86/589 −84/589 86/589


 µ̄µ
µ̄u−d
µ̄e

−
585/1178 −2/589 26/589

−2/589 585/1178 26/589
26/589 26/589 251/589


µ̄∆e

µ̄∆µ

µ̄∆τ

 .

(5.6)
However, unlike in the previous case, it is now no longer guaranteed that all three linear
combinations of chemical potentials on the left-hand side of this relation must vanish in
the course of wash-in leptogenesis. The crucial difference compared to temperature regime
(iv) is that, at temperatures above T ∼ 109 GeV, the muon Yukawa interaction has not
yet equilibrated, which effectively reduces the lepton sector to a two-flavor system. In
temperature regime (iii), the SM interactions are only able to probe the tau-flavor content
of a given lepton state; coherent superpositions of electron- and muon-flavor states remain
unperturbed. For our purposes, this means that the labels α = e and α = µ in eq. (5.6) are
meaningless to some extent. They merely denote a possible basis of the two-dimensional e –
µ flavor space; but this basis does not necessarily need to coincide with the physical electron
and muon flavors at lower temperatures. As far as the SM interactions are concerned,
any orthonormal basis of the e – µ flavor space is as good as any other at T & 109 GeV.
Meanwhile, the same statement does not hold true with regard to the RHN interactions
during wash-in leptogenesis. A priori, each RHN species interacts with one specific linear
combination of lepton flavors, i.e., along one specific direction in the three-dimensional e –
µ – τ flavor space, which follows from the relation among its Yukawa couplings to the SM
lepton-Higgs pairs. In temperature regime (iii), the tau Yukawa interaction then probes
the tau-flavor content of these states; but the coherence in the e – µ flavor space remains
preserved. For each RHN species, there is hence a particular direction in e – µ flavor space
along which it interacts with SM lepton-Higgs pairs as well as an orthogonal direction in e –
µ flavor space along which it does not interact.

In view of this situation, we must now distinguish between different scenarios. First,
let us assume that wash-in leptogenesis is driven by only one RHN species, N1, which
is, e.g., possible if the heavier RHN species N2 and N3 have masses above the reheating
temperature, M2,3 & Trh, such that they are never produced after inflation. In this case,
which we will refer to as N1-dominated wash-in leptogenesis in the following, we only have
to deal with two relevant directions in flavor space: the tau-flavor direction and the direction
in e – µ flavor space along which the N1 interactions are active. Therefore, given the basis
freedom in e – µ flavor space from the SM perspective, we are able to identify, w.l.o.g.,
α = e in eq. (5.6) with the N1 wash-in direction and α = µ with its orthogonal complement.
In the strong wash-in regime, we thus have to impose

(
µ`e+µΦ

µ`τ +µΦ

)
=
(

84/589 −123/1178 −421/1178

86/589 −84/589 86/589

) µ̄µ

µ̄u−d

µ̄e

−(585/1178 −2/589 26/589

26/589 26/589 251/589

)µ̄∆e

µ̄∆µ

µ̄∆τ

=
(

0
0

)
.

(5.7)
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Solving these two conditions for µ̄∆e and µ̄∆τ results in the following asymmetries after N1
freeze-out,

(
η∆e

η∆τ

)
=
(

4/247 64/247 −45/247 −187/247

−2/19 6/19 −6/19 8/19

)
η∆µ

ηµ
ηu−d
ηe

 =
(

168/247

−8/19

)
ηχ , (5.8)

where η∆µ (i.e., the asymmetry along the flavor direction that is orthogonal to the N1
wash-in direction in e – µ flavor space) is now treated as yet another conserved charge. In
the second step in eq. (5.8), we replaced the primordial charges ηµ, ηu−d, and ηe by their
input values listed in eq. (4.4) and set η∆µ = 0. This is in line with our assumption of
N1-dominated wash-in leptogenesis, where no pre-existing asymmetries (possibly caused by
N2 or N3 wash-in leptogenesis) are present. The two nonzero flavored B−L charges sum to

ηB−L =
∑
α=e,τ

η∆α = − 22
247 η∆µ + 142

247 ηµ −
123
247 ηu−d −

83
247 ηe = cwin

B−Lηχ , cwin
B−L = 64

247 ,

(5.9)
and correspondingly cwin

B = 768/9139. In addition, we use the chemical equilibrium in
eq. (4.9) to find µ̄5,

µ̄5
T

= 828
589

(
µ̄e
T

+ µ̄µ
T

)
+ 109

589
µ̄u−d
T

+ 188
589

(
µ̄∆e

T
+
µ̄∆µ

T

)
− 88

589
µ̄∆τ

T
, (5.10)

which, together with µ̄∆µ = 0 and the attractor solution in eq. (5.8), yields c>5 = 1765/589
and c<5 = 671/247.

Let us now discuss these results. First, recall that, in our derivation, we identified
α = e with the N1 wash-in direction in e – µ flavor space and α = µ with its orthogonal
complement. In passing, we mention that we would have obtained the same coefficients for
the opposite identification. This immediately follows from the flavor-blind initial conditions
after inflation (in particular, µ̄e = µ̄µ) and the fact that the system of equations in eq. (5.6)
is invariant under the exchange of all e and µ indices. In fact, given the symmetric
initial conditions after axion inflation, we can relate µ̄e and µ̄µ to the trace over chemical
potentials in e – µ flavor space and write µ̄e = µ̄µ = 1/2 (µ̄e + µ̄µ). This relation allows us
to symmetrize the result in eq. (5.9),

ηB−L =
∑
α=e,τ

η∆α = 59
494 (ηe + ηµ)− 123

247 ηu−d −
22
247 η∆µ , (5.11)

which is consistent with the discussion in the appendix of ref. [21].
Next, let us relax our assumption regarding the role of the N2 and N3 RHNs and

assume that both species are able to generate primordial lepton asymmetries at temperatures
T & 1011···12 GeV, either via wash-in or standard thermal leptogenesis. In this case, N1
wash-in leptogenesis in temperature regime (iii) will be subject to heavy-neutrino flavor
effects. That is, if the N2 and N3 RHNs should be responsible for a first stage of leptogenesis
at high temperatures, we will no longer be able to assume η∆µ = 0 in our calculation.
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Instead, we have to keep η∆µ throughout our analysis and include it in our sum over the
flavored B−L charges,

ηB−L =
∑

α=e,µ,τ
η∆α = 59

494 (ηe + ηµ)− 123
247 ηu−d + 225

247 η∆µ , (5.12)

which results in the following modification of the four coefficients cwin
B−L, cwin

B , c>5 , and c<5 ,

cwin
B−L = 64

247 + 225
247 c

∗
⊥ , cwin

B = 768
9139 + 2700

9139 c
∗
⊥ , (5.13)

c>5 = 1765
589 −

188
589

(
c∗∆e

+ c∗∆µ

)
+ 88

589 c
∗
∆τ
, c<5 = 671

247 −
84
247 c

∗
⊥ . (5.14)

Here, the coefficients c∗∆α
= η∆α/ηχ quantify the three pre-existing flavored B−L asym-

metries generated during N2,3 leptogenesis, while c∗⊥ specifically measures the pre-existing
asymmetry along the flavor direction in e – µ flavor space that is immune to N1 wash-in
leptogenesis. Given our convention chosen above, c∗⊥ = η∆µ/ηχ, while more generally, one
may give the protected flavor direction a new name and write c∗⊥ = η∆⊥/ηχ (see also the
notation and conventions in ref. [21]). The explicit value of c∗⊥ is model-dependent but
calculable. Given a specification of all parameters in the RHN sector, one is able to use
standard results for thermal leptogenesis or the formalism for wash-in leptogenesis developed
here and in ref. [21] to compute the coefficient c∗⊥.

The coefficients in eqs. (5.13) and (5.14) encode our results for N1 wash-in leptogenesis
at temperatures T ∈

(
109, 1011···12) GeV in the two-flavor regime, both for scenarios with

(c∗⊥ 6= 0) and without (c∗⊥ = 0) a pre-existing asymmetry along the blind flavor direction.
In addition, it is possible to construct a three-flavor scenario in temperature regime (iii),
which can be realized when at least two RHN species contribute to wash-in leptogenesis.
In this case, if the two lepton states interacting with the active RHN species plus the tau
flavor are linearly independent, all three dimensions in flavor space can be accessed and
strong wash-in leads toµ`e+µΦ

µ`µ+µΦ
µ`τ +µΦ

=

 84/589 −123/1178 −421/1178

−421/1178 −123/1178 84/589
86/589 −84/589 86/589


 µ̄µ
µ̄u−d
µ̄e



−

585/1178 −2/589 26/589

−2/589 585/1178 26/589
26/589 26/589 251/589


µ̄∆e

µ̄∆µ

µ̄∆τ

=

0
0
0

 , (5.15)

after all. Wash-in leptogenesis at T ∈
(
109, 1011···12) GeV in the three-flavor regime hence

yields η∆e

η∆µ

η∆τ

 =

 20/81 −5/27 −61/81

−61/81 −5/27 20/81
32/81 −8/27 32/81


 ηµ
ηu−d
ηe

 =

 56/81
56/81

−40/81

 ηχ , (5.16)

and correspondingly the following total B−L asymmetry and coefficients for the chiral
chemical potential,

ηB−L =−1
9 (ηe+ηµ)− 2

3 ηu−d = cwin
B−Lηχ , cwin

B−L = 8
9 , cwin

B = 32
111 , c>5 = 1765

589 , c<5 = 67
27 .

(5.17)
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Moving on to temperature regime (ii), T ∈
(
1011···12, 1013) GeV, we have to keep paying

attention to coherence / decoherence as well as heavy-neutrino flavor effects. Similarly as
before, we first naively evaluate the relevant chemical potentials, this time making use of
the chemical equilibrium in eq. (4.8),

µ`e + µΦ
µ`µ + µΦ
µ`τ + µΦ

 =

1/6 7/46 7/46 −9/23 −8/23
1/6 7/46 −8/23 −9/23 7/46
1/6 −8/23 7/46 −9/23 7/46



µ̄B
µ̄τ
µ̄µ
µ̄u−d
µ̄e

−
15/23 7/46 7/46

7/46 15/23 7/46
7/46 7/46 15/23


µ̄∆e

µ̄∆µ

µ̄∆τ

 .

(5.18)
This system of equations is invariant under the exchange of any two lepton flavor indices
(e↔ µ, e↔ τ , µ↔ τ), which reflects the fact that the SM interactions do not distinguish
between the three lepton flavors at temperatures above the equilibration temperature of the
tau Yukawa interaction, Tyτ ∼ 1012 GeV. The SM interactions rather preserve the coherence
of lepton flavor states at T & 1012 GeV, which leads us to consider three different scenarios:
wash-in leptogenesis in the one-flavor, two-flavor, and three-flavor regime.

First, let us investigate the one-flavor regime, assuming that the N2 and N3 RHN
species are not active in temperature regime (ii). In this case, wash-in leptogenesis only
occurs along one direction in e – µ – τ flavor space. As before, we can use the basis freedom
in flavor space to identify this direction, in a slightly abusive notation but w.l.o.g., with
α = e, while α = µ and α = τ now span the two-dimensional co-space that is immune to
N1 wash-in. In the one-flavor regime, there is hence only one strong wash-in condition,

µ`e+µΦ = 1
6 µ̄B+ 7

46 (µ̄µ + µ̄τ )− 9
23 µ̄u−d−

8
23 µ̄e−

15
23 µ̄∆e−

7
46
(
µ̄∆µ + µ̄∆τ

)
= 0 , (5.19)

with µ̄∆µ + µ̄∆τ = µ̄∆⊥ quantifying the pre-existing asymmetry in the two-dimensional flavor
subspace that N1 wash-in has no access to. Solving eq. (5.19) for µ̄∆e then immediately
provides us with the total B−L charge,

η∆e = 23
90 ηB + 7

30 (ηµ + ητ )− 3
5 ηu−d −

8
15 ηe −

7
30 η∆⊥ = 17

60 ηχ −
7
30 η∆⊥ ,

(5.20)

ηB−L = η∆e + η∆⊥ = 23
90 ηB + 7

30 (ηµ + ητ )− 3
5 ηu−d −

8
15 ηe + 23

30 η∆⊥ = cwin
B−L ηχ ,

(5.21)

where we used again eq. (4.4) in order to relate the various input asymmetries to the
reference asymmetry ηχ. Hence, employing the notation c∗⊥ = η∆⊥/ηχ introduced above,
the coefficients cwin

B−L and cwin
B now read

cwin
B−L = 17

60 + 23
30 c

∗
⊥ , cwin

B = 17
185 + 46

185 c
∗
⊥ . (5.22)

Here, c∗⊥ = 0 corresponds to the case of N1-dominated wash-in leptogenesis, while c∗⊥ 6= 0
occurs in scenarios where the N2 and N3 RHNs are responsible for the generation of pre-
existing asymmetries at T & 1013 GeV. Finally, we can use the chemical equilibrium in
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eq. (4.8) to evaluate µ̄5 in temperature regime (ii),
µ̄5
T

= 1
8
µ̄B
T

+ 121
92

(
µ̄e
T

+ µ̄µ
T

+ µ̄τ
T

)
+ 6

23
µ̄u−d
T

+ 17
92

(
µ̄∆e

T
+
µ̄∆µ

T
+ µ̄∆τ

T

)
, (5.23)

which allows us to deduce the coefficients

c>5 = 1617
368 −

17
92 c

∗
B−L , c<5 = 521

120 −
17
120 c

∗
⊥ , (5.24)

where c∗B−L = c∗∆e
+ c∗∆µ

+ c∗∆τ
accounts for the possible pre-existing B − L asymmetry

from N2,3 leptogenesis.
Similarly as in temperature regime (iii), we would have obtained the same results

for cwin
B−L, cwin

B , c>5 , and c<5 , if we had picked a different convention in eq. (5.19) and used
µ`µ + µΦ = 0 or µ`τ + µΦ = 0 as our strong wash-in condition in the single-flavor regime.
Moreover, we can symmetrize our result for the total B−L charge by introducing the trace
over chemical potentials in e – µ – τ flavor space, µ̄e = µ̄µ = µ̄τ = 1/3 (µ̄e + µ̄µ + µ̄τ ),

ηB−L = 23
90 ηB −

1
45 (ηe + ηµ + ητ )− 3

5 ηu−d + 23
30 η∆⊥ , (5.25)

which is again consistent with the discussion in the appendix of ref. [21].
If the interactions of two RHN species, N1 andN2, are efficient at T ∈

(
1011···12, 1013) GeV

and if we assume that these two RHN species interact with linearly independent combina-
tions of lepton flavor states, wash-in leptogenesis will operate in the two-flavor regime. In
this case, strong wash-in results in two conditions,

(
µ`e + µΦ
µ`µ + µΦ

)
=
(

1/6 7/46 7/46 −9/23 −8/23
1/6 7/46 −8/23 −9/23 7/46

)

µ̄B
µ̄τ
µ̄µ
µ̄u−d
µ̄e

−
(

15/23 7/46 7/46
7/46 15/23 7/46

)µ̄∆e

µ̄∆µ

µ̄∆τ

 ,

(5.26)
where we now identify, w.lo.g., α = e and α = µ with the basis of the two-dimensional flavor
space that accommodates the N1 and N2 wash-in directions, while the α = τ direction
remains immune to wash-in, i.e., µ̄∆τ = µ̄∆⊥ in the two-flavor regime. As before, we shall
allow for the possibility of a nonvanishing initial value, µ̄∆⊥ 6= 0, which may originate from
N3 leptogenesis at T & 1013 GeV. The solution of eq. (5.26) then reads,

(
η∆e

η∆µ

)
=
(
−7/37 23/111 7/37 14/37 −18/37 −23/37

−7/37 23/111 7/37 −23/37 −18/37 14/37

)


η∆τ

ηB
ητ
ηµ
ηu−d
ηe


=
(

17/74− 7/37 c∗⊥
17/74− 7/37 c∗⊥

)
ηχ ,

(5.27)
which translates to the following outcome for the total B−L asymmetry,

ηB−L = η∆e + η∆µ + η∆⊥ = 46
111 ηB + 14

37 ητ −
9
37 (ηe + ηµ)− 36

37 ηu−d + 23
37 η∆τ (5.28)

= 46
111 ηB −

4
111 (ηe + ηµ + ητ )− 36

37 ηu−d + 23
37 η∆⊥ = cwin

B−L ηχ .

(5.29)
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Where, in the second line, we set η∆τ = η∆⊥ and symmetrized the result using ηe = ηµ =
ητ = 1/3 (ηe + ηµ + ητ ). Together with eq. (5.23), we thus obtain the following coefficients
in the two-flavor regime,

cwin
B−L = 17

37 + 23
37 c

∗
⊥ , cwin

B = 204
1369 + 276

1369 c
∗
⊥ , c>5 = 1617

368 −
17
92 c

∗
B−L , c<5 = 2551

592 −
17
148 c

∗
⊥ .

(5.30)
Again, this result is independent of our concrete identification of the various directions in
flavor space.

Finally, let us turn to wash-in leptogenesis at T ∈
(
1011···12, 1013) GeV in the three-

flavor regime, which is realized when all three RHN species are active in temperature regime
(ii) and operate along three linearly independent directions in flavor space. In this case, we
deduce three strong wash-in conditions from eq. (5.18),

µ`e+µΦ
µ`µ+µΦ
µ`τ +µΦ

=

1/6 7/46 7/46 −9/23 −8/23
1/6 7/46 −8/23 −9/23 7/46
1/6 −8/23 7/46 −9/23 7/46



µ̄B
µ̄τ
µ̄µ
µ̄u−d
µ̄e

−
15/23 7/46 7/46

7/46 15/23 7/46
7/46 7/46 15/23


µ̄∆e

µ̄∆µ

µ̄∆τ

=

0
0
0

 ,

(5.31)
which we solve for the three flavored B−L asymmetries,

η∆e

η∆µ

η∆τ

 =

23/132 7/22 7/22 −9/22 −15/22
23/132 7/22 −15/22 −9/22 7/22
23/132 −15/22 7/22 −9/22 7/22



ηB
ητ
ηµ
ηu−d
ηe

 =

17/88
17/88
17/88

 ηχ , (5.32)

and which in turn yield the following total B−L charge and coefficients for the chiral
chemical potential,

ηB−L = 23
44 ηB −

1
22 (ηe + ηµ + ητ )− 27

22 ηu−d , (5.33)

cwin
B−L = 51

88 , cwin
B = 153

814 , c>5 = 1617
368 , c<5 = 1509

352 . (5.34)

Last but not least, we turn to wash-in leptogenesis in temperature regime (i), T ∈(
1013, 1015) GeV, where, qualitatively, the analysis proceeds in exactly the same way as
in temperature regime (ii). Therefore, in order to quote our results in regime (i), it will
suffice if we merely state how the various equations that we encountered in our discussion
of regime (ii) need to be updated. We begin with eq. (5.18), which gets replaced by

µ`e + µΦ
µ`µ + µΦ
µ`τ + µΦ

 =

2/9 1/9 1/6 1/6 −5/9 −1/3
2/9 1/9 1/6 −1/3 −5/9 1/6
2/9 1/9 −1/3 1/6 −5/9 1/6





µ̄u
µ̄B
µ̄τ
µ̄µ
µ̄u−d
µ̄e


−

2/3 1/6 1/6
1/6 2/3 1/6
1/6 1/6 2/3


µ̄∆e

µ̄∆µ

µ̄∆τ

 . (5.35)
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In the one-flavor regime, we need to update the numbers in eqs. (5.20) to (5.25), which
leads us to

η∆e = 1
3 ηu+ 1

6 ηB+ 1
4 (ηµ+ητ )− 5

6 ηu−d−
1
2 ηe−

1
4 η∆⊥ = 5

36 ηχ−
1
4 η∆⊥ ,

(5.36)

ηB−L = η∆e+η∆⊥ = 1
3 ηu+ 1

6 ηB−
5
6 ηu−d+ 3

4 η∆⊥ , (5.37)

µ̄5
T

= 229
162

µ̄u
T
− 37

162
µ̄B
T

+ 38
27

(
µ̄e
T

+ µ̄µ
T

+ µ̄τ
T

)

− 127
162

µ̄u−d
T

+ 5
54

(
µ̄∆e

T
+
µ̄∆µ

T
+ µ̄∆τ

T

)
, (5.38)

and

cwin
B−L = 5

36 + 3
4 c
∗
⊥ , cwin

B = 5
111 + 9

37 c
∗
⊥ , c>5 = 4841

972 −
5
54 c

∗
B−L , c<5 = 1073

216 −
5
72 c

∗
⊥ .

(5.39)
Here, we used the relation ηe = ηµ = ητ = 1

3 (ηe + ηµ + ητ ) in eq. (5.37), which results
in the cancellation of all three chemical potentials in ηB−L. In the two-flavor regime, we
update eqs. (5.27) to (5.30) and thus find

(
η∆e

η∆µ

)
=
(
−1/5 4/15 2/15 1/5 2/5 −2/3 −3/5

−1/5 4/15 2/15 1/5 −3/5 −2/3 2/5

)


η∆τ

ηu
ηB
ητ
ηµ
ηu−d
ηe


=
(

1/9− 1/5 c∗⊥
1/9− 1/5 c∗⊥

)
ηχ , (5.40)

alongside the total B−L asymmetry

ηB−L = η∆e+η∆µ+η∆⊥ = 8
15 ηu+ 4

15 ηB+ 2
5 ητ−

1
5 (ηe+ηµ)− 4

3 ηu−d+ 3
5 η∆τ (5.41)

= 8
15 ηu+ 4

15 ηB−
4
3 ηu−d+ 3

5 η∆⊥ , (5.42)

and the coefficients

cwin
B−L = 2

9 + 3
5 c
∗
⊥ , cwin

B = 8
111 + 36

185 c
∗
⊥ , c>5 = 4841

972 −
5
54 c

∗
B−L , c<5 = 1607

324 −
1
18 c

∗
⊥ .

(5.43)
In the three-flavor regime, finally, we update eqs. (5.32) to (5.34) and thus obtain

η∆e

η∆µ

η∆µ

 =

2/9 1/9 1/3 1/3 −5/9 −2/3
2/9 1/9 1/3 −2/3 −5/9 1/3
2/9 1/9 −2/3 1/3 −5/9 1/3





ηu
ηB
ητ
ηµ
ηu−d
ηe


=

5/54
5/54
5/54

 ηχ , (5.44)

– 44 –



J
H
E
P
0
1
(
2
0
2
3
)
0
5
3

together with

ηB−L = 2
3 ηu+ 1

3 ηB−
5
3 ηu−d , cwin

B−L = 5
18 , cwin

B = 10
111 , c>5 = 4841

972 , c<5 = 1204
243 .

(5.45)
These results complete our discussion of wash-in leptogenesis in temperature regimes (i)

to (v). An overview of all the numerical coefficients cwin
B−L, cwin

B , c>5 , and c<5 that we derived
in this section can be found in table 2. Our results for cwin

B in table 2 can in particular be
used in eq. (4.45), repeated here for convenience,

ηtot
B = ηwin

B + ηdec
B ' 0.15

(
cwin
B + cdec

B

)
χ ' 6.6× 10−10

(
cwin
B + cdec

B

18/185 + 0.05

)(
χ

3× 10−8

)
,

to evaluate the total BAU that originates from fermion and gauge-field production during
axion inflation. At the same time, our results for c>5 and c<5 can be used in eqs. (4.18)
and (4.19) to evaluate TCPI in eq. (3.8).

5.2 Model-independent results

We are now able to combine all results derived in the previous sections and identify the viable
regions in parameter space. In doing so, let us first be slightly more general and discuss
the implications of our analysis for a broader class of models of primordial magnetogenesis.
Thus far, our main focus has been on primordial magnetogenesis during axion inflation,
which comes with two distinct advantages: (i) First of all, the dual production of helical
gauge fields and fermionic charge asymmetries during axion inflation is not impeded by
plasma effects. The electric currents in a thermal plasma induce additional friction in the
equation of motion of the gauge field, which renders gauge-field production less efficient.
This problem is avoided if primordial magnetogenesis occurs during inflation. (ii) A second
advantage is that, during inflation, the axion field continuously rolls in the same direction in
field space. The sign of its velocity is hence fixed, which in turn leads to the amplification
of only one helicity (negative or positive) in the gauge field. This needs to be compared to
scenarios in which an oscillating axion field is responsible for gauge-field production after
inflation. In such scenarios, the axion velocity repeatedly flips its sign as the axion oscillates
around the minimum of its potential, which results in the amplification of both helicities
and hence a reduced total helicity.

Nonetheless, if the axion-vector coupling is large enough, it might become feasible
to generate a sufficiently large hypermagnetic helicity, alongside a corresponding set of
fermionic charge asymmetries, in models of postinflationary axion evolution. An important
aspect in this case consists in the fact that an oscillating axion field is also subject to
Hubble friction, which leads to damped oscillations around the potential minimum. It is
therefore possible to generate a nonvanishing net helicity from asymmetric oscillations;
see, e.g., refs. [30, 98], which discuss axion-driven magnetogenesis at the time of inflaton
oscillations during reheating. Meanwhile, it is challenging to realize efficient axion-driven
magnetogenesis at later times in the cosmological evolution, e.g., in scenarios where the
axion field begins to oscillate during the radiation-dominated era, without requiring a
prohibitively large axion-vector coupling. To overcome this problem, one could imagine
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T [GeV]
(
0, 105) (

105, 106) (
106, 109) (

109, 1011−12) (
1011−12, 1013) (

1013, 1015)
Three-flavor regime

cwin
B−L 0 3

10
10
17

8
9

51
88

5
18

cwin
B 0 18

185
120
629

32
111

153
814

10
111

c>5 0 711
481

856
537

1765
589

1617
368

4841
972

c<5 0 11
10

61
51

67
27

1509
352

1204
243

Two-flavor regime

cwin
B−L

64
247 + 225

247 c∗⊥
17
37 + 23

37 c∗⊥
2
9 + 3

5 c∗⊥

cwin
B

768
9139 + 2700

9139 c∗⊥
204
1369 + 276

1369 c∗⊥
8

111 + 36
185 c∗⊥

c>5
1765
589 −

188
589 c∗∆e+µ

+ 88
589 c∗∆τ

1617
368 −

17
92 c∗B−L

4841
972 −

5
54 c∗B−L

c<5
671
247 −

84
247 c∗⊥

2551
592 −

17
148 c∗⊥

1607
324 −

1
18 c∗⊥

One-flavor regime

cwin
B−L

17
60 + 23

30 c∗⊥
5
36 + 3

4 c∗⊥

cwin
B

17
185 + 46

185 c∗⊥
5

111 + 9
37 c∗⊥

c>5
1617
368 −

17
92 c∗B−L

4841
972 −

5
54 c∗B−L

c<5
521
120 −

17
120 c∗⊥

1073
216 −

5
72 c∗⊥

Table 2. Numerical coefficients describing the outcome of wash-in leptogenesis. cwin
B−L and cwin

B

relate the B−L and B asymmetries generated during wash-in leptogenesis to the ηχ reference
asymmetry, ηB−L = cwin

B−L ηχ and ηB = cwin
B ηχ [see eqs. (4.27) and (4.28)], which is valid at the time

of sphaleron freeze-out, i.e., before the entropy injection in consequence of the decreasing number
of relativistic degrees of freedom. c>5 and c<5 can be used in eqs. (4.18) and (4.19) to evaluate
our estimate of TCPI in eq. (3.8). The three different flavor regimes correspond to realizations
of wash-in leptogenesis along one, two, or three linearly independent directions in the e – µ – τ
flavor space, respectively. In the two-flavor scenario, c∗⊥ measures the possibly nonzero pre-existing
flavor asymmetry along the direction in e – µ flavor space that is immune to RHN wash-in, while
in the one-flavor scenario, c∗⊥ measures the possibly nonzero pre-existing flavor asymmetry in the
two-dimensional flavor space that is orthogonal to the active flavor direction. Correspondingly, the
coefficients c∗∆α

measure the possibly nonzero pre-existing flavor asymmetries along the respective
directions in flavor space, α = e, µ, τ , where we write c∗∆e+µ

= c∗∆e
+ c∗∆µ

for the ease of notation
and where c∗B−L stands for c∗B−L = c∗∆e

+ c∗∆µ
+ c∗∆τ

.
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that the onset of axion oscillations is delayed by an additional time-dependent contribution
to the axion mass, or one could consider axion oscillations during an early stage of matter
domination. A third option would be to replace the axion field by a complex field rolling
in the complex plane [99–102], similarly as in the Affleck-Dine mechanism [103–105], such
that the sign of the axion velocity remains unchanged during magnetogenesis and helicity
production becomes more efficient.

Precisely estimating the resultant helicity and fermion asymmetries in these alternative
cases is more involved than in our scenario based on axion inflation. We therefore do not
make an attempt at such an estimate, leaving a more detailed investigation for future
work, but simply remark that we expect the parametrization introduced in section 2 to
be useful for alternative scenarios of magnetogenesis as well. That is, we expect that,
also in postinflationary scenarios, it should be possible to characterize the outcome of
magnetogenesis in terms of (i) the Hubble rate at the end of magnetogenesis, Hend; (ii)
a typical length scale, cλH−1

end; (iii) a typical time scale, cτH−1
end; and (iv) a dimensionless

helicity yield parameter, χ. In addition, helicity production after inflation will also be
accompanied by the creation of fermionic charge asymmetries. During axion inflation, the
relation among the various charges is determined by eq. (2.22); in other scenarios, the
precise relations are going to depend on the set of equilibrated SM interactions at the time
of magnetogenesis.

If magnetogenesis occurs during radiation domination, the Hubble rate Hend can be
readily related to the corresponding temperature scale,

Tend =
( 90
π2g∗

)1/4
(HendMPl)1/2 . (5.46)

In the case of axion inflation, the end of magnetogenesis coincides with the end of inflation.
In the approximation of instantaneous reheating, which we have been relying upon thus far,
the temperature Tend thus coincides with the reheating temperature Trh. Together with the
parameter χ, this temperature scale spans the two-dimensional parameter space that we are
going to be interested in now. In the following, we shall identify the viable regions in the
χ – Trh plane (or equivalently, χ – Tend plane in postinflationary scenarios) that are safe
from magnetic diffusion and the chiral plasma instability and that at the same time yield
the correct baryon asymmetry. In doing so, we will first assume cλ ∼ cτ for concreteness,
which implies the following simple relation between the magnitudes of the electric and the
magnetic field at the end of magnetogenesis,〈

E2
〉
∼
〈
B2
〉
∼ |〈E ·B〉| , (5.47)

and allows us to rewrite the magnetic Reynolds numbers in eqs. (3.4) and (3.5) as functions
of χ, where

ρB =
〈
B2〉
2a4 ∼

3π
2αY

χHendT
3
end . (5.48)

Up to possible modifications by the coefficients cλ and cτ , we expect this rough estimate to
be representative of a broader class of magnetogenesis models that goes beyond the specific
case of axion inflation.

– 47 –



J
H
E
P
0
1
(
2
0
2
3
)
0
5
3

Figure 3. Viable parameter space for successful baryogenesis after primordial hypermagnetogenesis.
In each temperature regime, (i) to (v), the vertical bars respectively indicate the required values of
the dimensionless helicity density χ if the BAU receives contributions from wash-in leptogenesis
and baryogenesis via helicity (green bars) or from wash-in leptogenesis only (orange bars). In
temperature regime (vi), Tsph . T . 105 GeV, we indicate the χ value that leads to correct baryon
asymmetry if baryogenesis via helicity decay yields the only contribution to the BAU, χ ' 7.9×10−8.
Smaller χ values are typically harmless, while larger values will lead to the overproduction of baryon
number, barring cancellations with other contributions of different origin. The shaded region in the
lower right corner highlights where the chiral plasma instability would occur, around T ∼ TCPI [see
eq. (3.8)], if it were not already rendered ineffective at higher temperatures by the electron Yukawa
interaction. If the initial conditions after the end of hypermagnetogenesis are located in the shaded
region in the top left corner, the initial magnetic Reynolds number (either Reini,max

mag or Reini,visc
mag )

is expected to be smaller than unity [see eqs. (3.4) and (3.5)], which results in magnetic diffusion
setting in at temperatures T ∼ Tdiff [see eq. (3.1)]. The temperature Tdiff can be read off from the
brown axis in dependence of the initial temperature Trh (or Tend). The requirement TB−L > Tdiff
can moreover be turned into a lower bound Mmin

1 on the N1 mass. See text for more details.
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We now have all ingredients at our disposal to discuss the constraints on the χ – Trh
plane (see figure 3). For illustrative purpose, figure 3 highlights the χ values that are
necessary to obtain the correct BAU in temperature regimes (i) to (v) assuming wash-in
leptogenesis to be driven exclusively by N1 RHNs. That is, in temperature regimes (i) and
(ii), we assume one active wash-in direction in flavor space; in temperature regime (iii), two
active wash-in directions in flavor space; and in temperature regimes (iv) and (v), three
active wash-in directions in flavor space. Furthermore, we indicate the required χ values for
wash-in leptogenesis in isolation [see eq. (4.30)] and for wash-in leptogenesis in combination
with baryogenesis from helicity decay [see eq. (4.45)]. In both cases, we use the respective
coefficients cwin

B listed in table 2, and in the latter case, we set cdec
B = 0.05. The temperature

regime in which χ needs to be read off from figure 3 is determined by the value of TB−L.
In order to assess whether or not the different baryogenesis scenarios presented in

figure 3 are actually viable, we need to evaluate our estimates for the CPI temperature
in eq. (3.8) and the magnetic Reynolds number in eqs. (3.4) and (3.5). As for the CPI
temperature, we use the coefficients c<5 listed in table 2, setting the contributions from any
pre-existing asymmetries to zero, c∗⊥ = 0. The resulting values of TCPI as functions of χ
are shown by the solid purple lines in the lower right corner of figure 3. In view of these
estimates of the CPI temperature, several comments are in order.

(i) First of all, we note that using c>5 rather than c<5 would result in very similar results.
All of these coefficients are of the same order of magnitude c>5 ∼ c<5 ∼ 1; the precise value
of the numerical coefficient entering our estimate of TCPI is therefore less relevant for our
qualitative and quantitative conclusions.

(ii) In almost the entire χ range displayed in figure 3, TCPI turns out to be smaller than
Tye . This means that, when the temperature of the thermal bath drops to T ∼ TCPI,
the chiral plasma instability will actually not occur because, at T ∼ Tye , the electron
Yukawa interaction will have already erased the entire chiral chemical potential µ̄5. The
corresponding region in figure 3, T ≤ TCPI, is therefore labeled “(would-be) chiral plasma
instability”, in order to indicate that baryogenesis in this region would be endangered if
the chiral plasma instability were not already rendered ineffective by the electron Yukawa
interaction at earlier times.

(iii) Successful baryogenesis after axion inflation requires χ values in the range χ ∼
10−(7···8). For such small values, our estimate of the (would-be) CPI temperature turns out
to be negligibly small. The scenarios we are interested in therefore always feature a strong
hierarchy of temperature scales, TCPI � TB−L.19

(iv) For completeness, let us also comment on the parameter region at very large χ values
where TCPI > Tye and the chiral plasma instability can actually occur. In this case, we need
to distinguish between two possible scenarios, Tye < TB−L < TCPI and Tye < TCPI < TB−L.
The former scenario is less interesting, as it simply leads to the erasure of the hypermagnetic

19This hierarchy is also the reason why we evaluate TCPI using the coefficients c<5 in figure 3; see, however,
also comment (i) above.
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helicity and all fermion asymmetries, so that no baryon asymmetry is created. However, in
the latter scenario, Tye < TCPI < TB−L, we observe an interesting interplay between wash-in
leptogenesis, baryogenesis from helicity decay, and the chiral plasma instability. Our first
observation is that, for the large χ values that are necessary to realize this scenario, wash-in
leptogenesis drastically overproduces the baryon asymmetry. Since B−L remains preserved
during the chiral plasma instability, this contribution to the final BAU notably survives
down to low temperatures. At same time, the chiral B−L charges generated during wash-in
leptogenesis affect the outcome of the chiral plasma instability in a nontrivial way. Consider,
e.g., a scenario where TCPI falls into temperature regime (iv), T ∈

(
106, 109) GeV, such that

the chiral plasma instability strives to erase the chiral chemical potential in eq. (5.5). In the
presence of nonvanishing B−L asymmetries, the condition µ̄5 = 0 then implies nonvanishing
chemical potentials µ̄e and µ̄u−d in dependence of the three µ̄∆α , even after the completion
of the chiral plasma instability. This result deviates from the standard outcome of the chiral
plasma instability, which typically results in the erasure of all fermionic charge asymmetries.
Furthermore, the conservation law in eq. (2.21), which applies to the charges qe and qu−d
in temperature regime (iv), tells us that an incomplete erasure of µ̄e and µ̄u−d directly
translates to an incomplete erasure of the hypermagnetic helicity during the chiral plasma
instability. A fraction of the helicity stored in the hypermagnetic field thus survives down
to the electroweak phase transition and causes the generation of a second contribution
to the BAU, on top of the already-too-large contribution from wash-in leptogenesis, via
baryogenesis from helicity decay. In passing, we mention that similar arguments can be
used to derive new constraints on the size of primordial lepton flavor asymmetries in the
early Universe [80].

Next, we turn to our estimates of the magnetic Reynolds number based on eqs. (3.4)
and (3.5). In figure 3, we indicate the regions where these estimates return a magnetic
Reynolds number smaller than unity. If the initial conditions for the further evolution after
magnetogenesis fall into these regions, the hypermagnetic field is not strong enough to
develop a turbulent regime before the temperature reaches Tdiff in eq. (3.1). In this case,
magnetic diffusion will set in at T ∼ Tdiff and erase the helicity stored in the hypermagnetic
field as well as the fermionic charge asymmetries. If wash-in leptogenesis already occurs
at temperatures above this threshold, TB−L > Tdiff , the corresponding contribution to the
BAU will survive down to low temperatures, whereas there will be no contribution to the
final asymmetry from baryogenesis via helicity decay. Therefore, if magnetic diffusion occurs
and TB−L > Tdiff , the relevant χ values resulting in the correct BAU correspond to the
red vertical bars in figure 3 that are labeled “wash-in leptogenesis only”. Conversely, if
magnetic diffusion can be avoided thanks to turbulence, the relevant χ values resulting in
the correct BAU correspond to the green vertical bars in figure 3 that are labeled “wash-in
leptogenesis + baryogenesis via helicity decay”.

Whether or not wash-in leptogenesis takes place early enough, before the onset of
magnetic diffusion, depends on the RHN mass scale [see eq. (5.1)]. The requirement that
TB−L be larger than Tdiff in scenarios with small initial magnetic Reynolds number can
therefore be formulated as a lower bound on M1, if we assume that wash-in leptogenesis is
exclusively driven by N1 RHNs. This bound can be determined according to the following
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algorithm: (i) Choose an initial temperature Trh (or Tend) at the end of magnetogenesis.
(ii) Use the brown axis in figure 3 to read off the corresponding value of Tdiff . That is, focus
on the ticks on the left-hand side of this axis and find the location that corresponds to the
chosen value of Trh. Then, switch to the ticks on the opposite (right-hand) side of the axis
and read off the desired value of Tdiff . (iii) Identify this value of Tdiff as the corresponding
lower bound on M1 that follows from the requirement TB−L > Tdiff . The lower bound on
the N1 mass found in this way is well approximated by [see also eqs. (2.23) and (3.1)]

Mmin
1 ∼ Tdiff ∼ 108 GeV

(
Trh

1014 GeV

)2
. (5.49)

In figure 3, we explicitly indicate the lower bounds on M1 found in this way in the top
part of the plot, i.e., in the regions with small initial magnetic Reynolds number. In view
of these results, we conclude that scenarios with χ ∼ 10−(7···8) and Trh . 1012 GeV manage
to successfully generate the BAU without any disturbance from magnetic diffusion or the
chiral plasma instability. In temperature regimes (ii) to (v), it is therefore possible to obtain
the correct BAU from the combination of wash-in leptogenesis and baryogenesis via helicity
decay. For χ ∼ 10−(7···8) and larger values of Trh, the chiral plasma instability still plays
no role; but magnetic diffusion may become relevant. This is not the case as long as we
estimate the magnetic Reynolds number in terms of Reini,max

mag [see eq. (3.4)], but needs to
be taken into account when we estimate it instead in terms of Reini,visc

mag [see eq. (3.5)]. More
precisely, for Trh ' 1013 GeV, magnetic diffusion sets in around Tdiff ' 106 GeV, if we rely on
our estimate in eq. (3.5). Thus, there will be no contribution to the BAU from baryogenesis
via helicity decay; the N1 mass needs to be at least as large as Mmin

1 ' 106 ,GeV; and
wash-in leptogenesis can only be realized in temperature regimes (ii) to (iv). Similarly, for
Trh ' 1014 GeV and again estimating the magnetic Reynolds number in terms of eq. (3.5),
magnetic diffusion sets in around Tdiff ' 108 GeV. The only contribution to the final BAU
therefore then stems again from wash-in leptogenesis; the N1 mass needs to be at least as
large as Mmin

1 ' 108 GeV; and wash-in leptogenesis can only be realized in temperature
regimes (i) to (iv).

5.3 Estimates for axion inflation

In the previous section, we made the simplifying assumption that E2
end ∼ B2

end ∼ EendBend
at the end of hypermagnetogenesis [see eq. (5.47)]. Let us now focus on axion inflation, in
which case these relations can be made slightly more precise. For concreteness, we shall
consider two of the approaches that we discussed in section 5.3: (i) the equilibrium estimate
in the magnetic picture [see eq. (2.30)] and (ii) the GEF estimate in the electric picture with
the damping factor ∆ set to ∆ = 1 [see eq. (2.36)]. In both cases, our numerical results for
the electric and magnetic field strengths allow us to derive simple fit formulas that relate
the magnetic energy density ρB to the dimensionless helicity density χ and hence allow us
to evaluate eqs. (3.4) and (3.5),

ρB =
〈
B2〉
2a4 , log10

(〈
B2〉
a4H4

)
=F (x) , x= log10

∣∣∣∣〈E ·B〉a4H4

∣∣∣∣= log10

(
3π
αY

χ
T 3

H3

)
end

,

(5.50)
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Figure 4. Viable parameter space for successful baryogenesis after axion inflation. The four panels
differ from each other in terms of the estimate of the magnetic Reynolds number, Reini,max

mag (left
column) or Reini,visc

mag (right column), as well as in terms of the method to relate the magnetic energy
density to the dimensionless helicity density χ, GEF estimate with ∆ = 1 in the electric picture (top
row) or equilibrium estimate in the magnetic picture (bottom row) [see eqs. (5.50) and (5.51)]. The
red points and red solid lines indicate possible values of χ and Trh that can be achieved at the end
of axion inflation in dependence of the parameters ξ and Hrh (see figure 1). In contrast to figure 3,
we no longer show the brown axis that allows one to convert from Trh to Tdiff . Instead, we explicitly
mark the regions that are ruled out by magnetic diffusion if the initial magnetic Reynolds number
is expected to be smaller than unity. All other elements shown in the four plots in this figure are
equivalent to the corresponding elements in figure 3. See text for more details.
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where

F (x) '

−0.35 + 0.96x ; equilibrium estimate
0.30 + 0.68x+ 0.039x2 ; GEF estimate (∆ = 1)

. (5.51)

Both fit functions manage to reproduce our exact numerical results with excellent accuracy.
For more details on semianalytical fit functions describing the outcome of the GEF approach,
see the analysis in ref. [38].

In addition to our two different estimates of 〈E ·B〉, we will also work again with our
two estimates of the magnetic Reynolds number in eqs. (3.4) and (3.5). In total, this results
in four different combinations, for which we collectively analyze the viable parameter space
in figure 4. The four panels in figure 4 contain similar information as figure 3 for the most
part. However, on top, we also indicate typical initial conditions after axion inflation, in
terms of χ and Trh values that follow from typical values of the parameters ξ and Hrh in
figure 1. Based on this information, we are then able to draw the following conclusions.

If our optimistic estimate of the magnetic Reynolds number, Reini,max
mag , can be trusted,

baryogenesis after axion inflation can proceed without any interference from magnetic
diffusion or the chiral plasma instability. This means that both wash-in leptogenesis and
baryogenesis via helicity decay contribute to the final baryon asymmetry, and remarkably
enough, they manage to produce the observed BAU in exactly the strip of parameter space
that is left unaffected by these potentially dangerous phenomena. The GEF estimate of
the efficiency of hypermagnetogenesis then points to ξ ∼ 10 and Hrh ∼ 1010 GeV, whereas
the equilibrium estimate in the magnetic picture signals a preference for a slightly larger
Hubble rate, e.g., ξ ∼ 9 and Hrh ∼ 1011 GeV.

On the other hand, if we trust our less optimistic estimate for the magnetic Reynolds
number, Reini,visc

mag , we arrive at the conclusion that the initial conditions after axion inflation
are not sufficient to avoid the onset of magnetic diffusion at later times. Baryogenesis via
helicity decay does not contribute to the final baryon asymmetry in this case, so that the
entire BAU solely originates from wash-in leptogenesis. Using the GEF estimate of 〈E ·B〉,
we observe that ξ ∼ 6 and Hrh ∼ 1011 GeV promises to result in favorable initial conditions
after axion inflation. Magnetic diffusion will then set in around Tdiff ∼ 109 GeV, which still
leaves enough room for successful wash-in leptogenesis in temperature regimes (i) to (iii).
Alternatively, one may go to slightly smaller values of the Hubble rate and larger ξ values,
e.g., ξ ∼ 13 and Hrh ∼ 1010 GeV, which lowers the diffusion temperature by an order of
magnitude and hence also allows for wash-in leptogenesis in temperature regime (iv). In
both cases, the mass of the RHN N1 needs to be large enough in order to trigger wash-in
leptogenesis before the onset of magnetic diffusion, which amounts to a lower bound of
Mmin

1 ∼ 108···9 GeV. Finally, for the equilibrium estimate of 〈E ·B〉 in the magnetic picture,
the situation becomes even more restricted. In this case, we have to work with ξ ∼ 11 and
Hrh ∼ 1011 GeV, which eliminates the possibility of wash-in leptogenesis in temperature
regime (iv) and raises the lower bound on the N1 mass to Mmin

1 ∼ 109 GeV.
Despite these bounds, figure 4 clearly illustrates that wash-in leptogenesis after axion

inflation is a viable option across large regions of parameter space, even if we estimate
the magnetic Reynolds number in a slightly less optimistic way. Wash-in leptogenesis
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can especially rescue the successful generation of the BAU in parameter regions where
baryogenesis via helicity decay is spoiled by magnetic diffusion. In this sense, wash-in
leptogenesis manages to restore parameter regions that were already deemed unviable in
earlier work that exclusively focused on baryogenesis via helicity decay and did not consider
the existence of RHNs [32].

6 Conclusions

The addition of RHNs to the SM particle content has nontrivial implications for the chemical
transport in the primordial plasma in the early Universe. Similar to weak sphaleron
processes, which can wash in a baryon asymmetry in the presence of a primordial lepton
asymmetry, RHN processes can wash in a B−L asymmetry in the presence of primordial
input charges. This observation is the basis for the mechanism of wash-in leptogenesis, which
we introduced in ref. [21] and which generalizes standard thermal leptogenesis to situations
featuring a nontrivial chemical background induced by new CP -violating dynamics at higher
temperatures. In scenarios of wash-in leptogenesis, the energy scales of CP and B−L
violation are hence separated from each other, which offers a wealth of opportunities for
model building. The RHN sector is no longer burdened with the requirement of sufficiently
large CP violation, and CP violation in general no longer has to be tied to the generation
of B−L. Instead, it suffices if a dynamical CP -violating process at high energies, which
may be referred to as chargegenesis, results in any of the conserved global charges that are
present in the SM thermal bath at high temperatures. In the extreme case of temperatures
in the range T ∼ 1013···15 GeV, this means that chargegenesis simply needs to produce a
subset of the in total 15 available conserved charges,

qe , q2B1−B2−B3 , qu−d , qd−s , qB1−B2 , qµ , qu−c , qτ , qd−b , qB , qu .

(6.1)
The RHN interactions at lower temperatures will then act upon the nontrivial chemical back-
ground induced by chargegenesis, which will lead to B−L violation and hence baryogenesis
via leptogenesis via chargegenesis.

One can imagine a variety of possible chargegenesis scenarios (see also ref. [21]).
Scenarios that predominantly result in the production of a charge asymmetry in right-
handed electrons or muons may, e.g., be referred to as electrogenesis and muogenesis,
and so on and so forth. Among these various possibilities, we focused on a particularly
attractive option in this paper: axion inflation coupled to the SM hypercharge gauge sector.
The nonperturbative dynamics of this model lead to the exponential amplification of the
hypercharge gauge field in one of its two helicity states, which in turn results in fermion
production from the strong gauge-field background. As a consequence, axion inflation
coupled to the hypercharge gauge sector leads to the dual production of maximally helical
hypermagnetic fields and a set of fermionic charge asymmetries,

qCS , qe , qu−d , qµ, qτ , qB , qu , (6.2)

where the CS density of the hypercharge gauge field qCS is a measure of the helicity stored
in it. As we were able to show, all of these primordial charges are controlled by a single
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effective and dimensionless parameter, χ, which quantifies the amount of CP violation
induced in the system at the end of inflation,

χ ∼ − αY
3π
〈E ·B〉
a4HT 3

∣∣∣∣
end

. (6.3)

Baryogenesis after axion inflation requires a χ value of the order of χ ∼ 10−(7···8) (see
figure 4). The actual value of the BAU, ηobs

B ∼ 10−9, then follows from the product of
χ, a dilution factor related to the change in the number of relativistic degrees of freedom
in the early Universe, and a conversion factor cB = cwin

B + cdec
B ∼ 0.1, which accounts for

the contributions to the final baryon asymmetry from wash-in leptogenesis as well as from
baryogenesis via helicity decay around the time of the EWPT.

In this paper, we calculated the conversion factor cwin
B as a function of the leptogenesis

temperature TB−L, in five separate temperature regimes, and in dependence of the number
of active lepton flavors participating in the dynamics of wash-in leptogenesis (see table 2).
These results significantly extend our previous results in ref. [21] and provide a consistent
treatment of coherence / decoherence as well as heavy-neutrino flavor effects. Equipped
with the coefficients listed in table 2, we were then able to identify the viable regions in
the two-dimensional parameter space spanned by χ and the reheating temperature Trh (see
figure 4). A priori, one may worry that the global charges in eq. (6.2) could be erased by
magnetic diffusion or the chiral plasma instability soon after inflation. Based on rough
estimates of the diffusion temperature Tdiff [see eq. (3.1)], the magnetic Reynolds number
[see eqs. (3.4) and (3.5)], and the CPI temperature TCPI [see eq. (3.8)], we, however, argued
that baryogenesis after axion inflation typically takes place in parameter regions that are
spared from these two phenomena. Magnetic diffusion might become an issue, according to
our less optimistic estimate of the magnetic Reynolds number; but even in this case, a large
temperature window for successful wash-in leptogenesis remains (see the two plots in the
right column of figure 4). In the absence of heavy RHNs, one would have to conclude in this
case that baryogenesis after axion inflation does not succeed in explaining the observed BAU,
i.e., there is no contribution to the BAU from baryogenesis via helicity decay. However,
adding RHNs with masses above Mmin

1 ∼ 108···9 GeV to the SM particle content can rescue
these scenarios.

Baryogenesis after axion inflation is tightly related to the rich phenomenology of axion
inflation coupled to the hypercharge gauge sector, which in addition to the production of
primordial hypermagnetic fields also includes the generation of primordial perturbations.
Primordial scalar perturbations generated during axion inflation can, e.g., lead to the
production of primordial black holes, while primordial tensor perturbations generated
during axion inflation manifest themselves as a stochastic gravitational-wave background
in the present Universe. In the future, it will therefore be important to advance our
understanding of nonperturbative particle production during axion inflation (see section 2.4)
in order to arrive at a clear quantitative picture of the relation between baryogenesis after
axion inflation on the one hand and the phenomenological predictions for hypermagnetic
fields, primordial black holes, and gravitational waves on the other hand. Similarly, it
will be important to better understand the evolution of the hypermagnetic helicity and
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chiral charge asymmetries after inflation, which, if one wants to go beyond the simple
estimates used in the present paper, will require dedicated numerical MHD simulations.
Such simulations will then hopefully also shine more light on the validity of our estimates
in eqs. (3.1), (3.4), (3.5), and (3.8). Finally, the treatment of wash-in leptogenesis itself
needs to be refined, so as to obtain a formalism that would allow one to compute the final
BAU at any given value of TB−L, irrespective of the rough assumptions that went into
the definition of our five temperature regimes (i) to (v). The best approach in this regard
will likely be a full-fledged density matrix formalism that would be capable of treating the
transition regimes between our individual temperature regimes.

We leave these tasks for future work and conclude that wash-in leptogenesis after
axion inflation, in combination with baryogenesis via helicity decay, represents an exciting
early-Universe scenario — not only does it tackle the mystery of the BAU from a new angle,
it also acts as a well-motivated benchmark model for upcoming searches for relic magnetic
fields, black holes, and gravitational waves from the early Universe.
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