H(125) bosonic decays in the ATLAS experiment Higgs Hunting 2022

Ruggero Turra on behalf of the ATLAS Collaboration

INFN Milano

12 September, 2022

Higgs boson and its properties

Higgs properties

Excess compatible with Higgs boson firmly established by ATLAS+CMS in 2012.

Measurements

- $\sigma \times BR$: for each production-mode, STXS region (very optimized analyses, acceptance extrapolation, larger SM assumption)
- Inclusive and differential fiducial cross sections (minimal model dependence)
- Mass: m_H known at < 0.2% (single channel), see talk by Siyuan Yan in the afternoon

Interpretations

- Spin and parity: 0⁺, other models excluded in Run 1
- CP structure (see talk by José Gonçalo tomorrow)
- Signal strengths: $\mu_i = \sigma_i / \sigma_i^{SM}$, $\mu_f = BR_f / BR_f^{SM}$ (inclusive, per-production-mode, ...)
- Coupling modifiers to SM particles (kappa-framework)
- EFT interpretations (see talk by Alexander Held tomorrow)

Higgs properties

Excess compatible with Higgs boson firmly established by ATLAS+CMS in 2012.

Measurements

- $\sigma \times BR$: for each production-mode, STXS region (very optimized analyses, acceptance extrapolation, larger SM assumption)
- Inclusive and differential fiducial cross sections (minimal model dependence)
- Mass: m_H known at < 0.2% (single channel), see talk by Siyuan Yan in the afternoon

Interpretations

- Spin and parity: 0⁺, other models excluded in Run 1
- CP structure (see talk by José Gonçalo tomorrow)
- Signal strengths: $\mu_i = \sigma_i / \sigma_i^{SM}$, $\mu_f = BR_f / BR_f^{SM}$ (inclusive, per-production-mode, ...)
- Coupling modifiers to SM particles (kappa-framework)
- EFT interpretations (see talk by Alexander Held tomorrow)

$\gamma\gamma$, ZZ* ightarrow 4 ℓ , WW* ightarrow $e u\mu u$

- Split cross sections by production modes
- Split in exclusive regions of phase space, differently for each production modes

STXS maximize the sensitivity of the measurements while at the same time to minimize their theory dependence

Going to show latest results by ATLAS with full Run2 (139 fb⁻¹ at $\sqrt{s} = 13$ TeV)

- **1** Select events to increase S/B
- 2 Split events into categories using reconstructed quantities, separating the sub-processes you want to measure (e.g. ggF vs VBF, different Higgs p_T ranges, ...)
- 3 Define control regions to constrain the yield of background processes
- Quantify the efficiency and migrations for each sub-process and each category (e.g. P[ggF-category|true-VBF-process], ...) with MC
- **5** Define an observable to estimate background from data (e.g. $m_{\gamma\gamma}$) and model it
- Minimize a likelihood (matrix method unfolding) to simultaneously measure the cross-sections

- Using $m_{\gamma\gamma}$ as continuos observables
- Signal shape parametrized using a function fitted on simulations
- Background shape parametrized using a function fitted on data
 - The functional form is chosen with the spurious signal criteria: minimize the signal fitted on a background-only high-statistic simulation

- Measuring 28 STXS bins (45 considered in the design)
- Two steps:
 - A first multiclass BDT separating the signal sub-processes (the STXS bins)
 - Additional splitting to increase purity using a set of binary BDTs: 101 categories!
- Novel approach based on D-optimality: minimize the determinant of the expected covariance matrix of the measurement
 - Implemented tuning a set of weights applied to the outputs of the multiclass
 - Simultaneous optimization for all the STXS bins

$H \rightarrow \gamma \gamma$ STXS categorization

- Targeting 12 STXS 1.1 bins
- Main background from non-resonant ZZ, constrained from data sidebands
- Events split in 12 categories: first select *ttH*-like events, then split by jet multiplicity. Further splitting according to STXS.
- Fit to a new neural network discriminant. NN combine 2 RNN (for lepton and jet information) into a DNN.

- Targeting only ggF and VBF and 11 STXS 1.2 bins
- Only different flavour. Categorization: 0jet, 1jet, ≥ 2 jets
 - Background composition different depending on jet multiplicity
 - Additional splitting to target STXS
- Background $qq \rightarrow WW$, top, $Z/\gamma^* \rightarrow \tau \tau$ predictions normalized using several control regions
- Simultaneous fit of signal and control regions, using m_T or DNN (ggF vs VBF) as observable

- Targeting only ggF and VBF and 11 STXS 1.2 bins
- \blacksquare Only different flavour. Categorization: 0jet, 1jet, ≥ 2 jets
 - Background composition different depending on jet multiplicity
 - Additional splitting to target STXS
- Background $qq \rightarrow WW$, top, $Z/\gamma^* \rightarrow \tau\tau$ predictions normalized using several control regions
- Simultaneous fit of signal and control regions, using m_T or DNN (ggF vs VBF) as observable

Results: Production mode cross sections

- Good agreement with SM
- ggH \simeq 10%, VBF \simeq 20-30%
- WW limited by systematics
- Non-negligible correlation between ggF/VBF, WH/ZH, tH/ttH

Results: STXS

- Cross sections in fiducial space, defined by detector acceptance and trigger requirements
- Inclusive or (double) differential, also in smaller phase space to study non-ggF
- Unfolded with matrix method in the likelihood fit
- $\gamma\gamma/ZZ$ uses different phase space, so extrapolate to the full phase space in the combination (using SM assumptions)
 - p_T , |y|, p_T vs |y|, N_{jets} , $p_{T,j1}$
 - many more cross-sections by single channels

R.Turra (INFN Milano)

• $\gamma\gamma$: EFT constraints on Wilson coefficients

- ZZ: anomalous couplings to H and Z and contact interaction from left- and righthanded leptons to H using m_{12} and m_{34}
- Both: constraints on *c* and *b*-quark Yukawa coupling using shape-only (or with normalization)

- $\gamma\gamma$: EFT constraints on Wilson coefficients
- ZZ: anomalous couplings to H and Z and contact interaction from left- and righthanded leptons to H using m_{12} and m_{34}
- Both: constraints on *c* and *b*-quark Yukawa coupling using shape-only (or with normalization)

- $\gamma\gamma$: EFT constraints on Wilson coefficients
- ZZ: anomalous couplings to H and Z and contact interaction from left- and righthanded leptons to H using m_{12} and m_{34}
- Both: constraints on c- and b-quark Yukawa coupling using shape-only (or with normalization)

- Published Run2 results for STXS and fiducial cross sections are now available including combination. Everything compatible with SM.
- Several improvements on the analysis side: particle flow jets, improved categorizations, improved discriminants, improved control regions, more cross sections, more interpretations
- Uncertainty from single channel on inclusive fiducial cross section $\simeq 9\%$
- Uncertainty from single channel on ggF: 10% VBF: 20-30%, ttH(γγ): 35%
- Several STXS 1.2 bins for ggF and VBF at < 50% from single channel
- Several interpretations on top of the measurement: EFT interpretations based on STXS or differential cross sections
- $H \rightarrow Z\gamma$: 95% CL 3.5× SM. Significance 2.2 σ (expected 1.2 σ). Phys. Lett. B 809 (2020) 135754

Thanks for your attention

yy correlation

yy correlation

Table 1: Event generators and PDF sets used to model signal and background processes. The cross-sections of Higgs boson production processes are reported for a centre-of-mass energy of $\sqrt{s} = 13$ TeV and a Higgs boson mass of $m_H = 125.09$ GeV. The order of the calculated cross-section is reported in each case. The cross-sections for the background processes are omitted, since the background normalization is determined in fits to the data.

Process	Generator	Showering	PDF set	$\sigma \text{ [pb]} \\ \sqrt{s} = 13 \text{ TeV}$	Order of σ calculation
ggF	NNLOPS	Рутніа 8.2	PDF4LHC15	48.5	N ³ LO(QCD)+NLO(EW)
VBF	POWHEG BOX	Рутніа 8.2	PDF4LHC15	3.78	approximate-NNLO(QCD)+NLO(EW)
WH	POWHEG BOX	Рутніа 8.2	PDF4LHC15	1.37	NNLO(QCD)+NLO(EW)
$qq/qg \rightarrow ZH$	POWHEG BOX	Рутніа 8.2	PDF4LHC15	0.76	NNLO(QCD)+NLO(EW)
$gg \rightarrow ZH$	POWHEG BOX	Рутніа 8.2	PDF4LHC15	0.12	NLO(QCD)
tīH	POWHEG BOX	Рутніа 8.2	PDF4LHC15	0.51	NLO(QCD)+NLO(EW)
$b\bar{b}H$	POWHEG BOX	Рутніа 8.2	PDF4LHC15	0.49	NNLO(QCD)
tHqb	MadGraph5_aMC@NLO	Рутніа 8.2	NNPDF3.0nnlo	0.074	NLO(QCD)
tHW	MadGraph5_aMC@NLO	Рутніа 8.2	NNPDF3.0nnlo	0.015	NLO(QCD)
γγ	Sherpa	Sherpa	NNPDF3.0nnlo		
Vγγ	Sherpa	Sherpa	NNPDF3.0nnlo		
tīγγ	MadGraph5_aMC@NLO	Pythia 8	NNPDF2.3L0		

yy multiclass inputs

 $\eta_{\gamma_1}, \eta_{\gamma_2}, p_{\mathrm{T}}^{\gamma\gamma}, y_{\gamma\gamma},$ $p_{\mathrm{T}\ i\,i}^{\dagger}, m_{jj}, \mathrm{and} \Delta y, \Delta \phi, \Delta \eta$ between j_1 and j_2 , $p_{\mathrm{T},\gamma\gamma i_{1}}, m_{\gamma\gamma i_{1}}, p_{\mathrm{T},\gamma\gamma i_{1}}^{\dagger}, m_{\gamma\gamma i_{1}}^{\dagger}$ $\Delta y, \Delta \phi$ between the $\gamma \gamma$ and *j j* systems, minimum ΔR between jets and photons, invariant mass of the system comprising all jets in the event, dilepton $p_{\rm T}$, di-e or di- μ invariant mass (leptons are required to be oppositely charged), $E_{\rm T}^{\rm miss}$, $p_{\rm T}$ and transverse mass of the lepton + $E_{\rm T}^{\rm miss}$ system, $p_{\rm T}, \eta, \phi$ of top-quark candidates, $m_{t_1 t_2}$ Number of jets[†], of central jets ($|\eta| < 2.5$)[†], of *b*-jets[†] and of leptons, $p_{\rm T}$ of the highest- $p_{\rm T}$ jet, scalar sum of the $p_{\rm T}$ of all jets, scalar sum of the transverse energies of all particles ($\sum E_T$), E_T^{miss} significance, $\left|E_{\rm T}^{\rm miss} - E_{\rm T}^{\rm miss}(\text{primary vertex with the highest } \sum p_{\rm T track}^2)\right| > 30 \,{\rm GeV}$ Top reconstruction BDT of the top-quark candidates, $\Delta R(W, b)$ of t_2 , $\eta_{i_F}, m_{\gamma\gamma i_F}$ Average number of interactions per bunch crossing.

STXS classes	Variables
Individual STXS classes from $gg \rightarrow H$ $qq' \rightarrow Hqq'$ $qq \rightarrow H\ell v$ $pp \rightarrow H\ell \ell$ $pp \rightarrow H \nu \bar{\nu}$	All multiclass BDT variables, $\boldsymbol{p}_{\mathrm{T}}^{\gamma\gamma} \text{ projected to the thrust axis of the } \gamma\gamma \text{ system } (p_{\mathrm{Tt}}^{\gamma\gamma}),$ $\Delta\eta_{\gamma\gamma}, \eta^{\text{Zepp}} = \frac{\eta_{\gamma\gamma} - \eta_{jj}}{2},$ $\boldsymbol{\phi}_{\gamma\gamma}^* = \tan\left(\frac{\pi - \Delta\phi_{\gamma\gamma} }{2}\right) \sqrt{1 - \tanh^2\left(\frac{\Delta\eta_{\gamma\gamma}}{2}\right)},$ $\cos\theta_{\gamma\gamma}^* = \left \frac{(E^{\gamma_1} + p_{z}^{\gamma_1}) \cdot (E^{\gamma_2} - p_{z}^{\gamma_2}) - (E^{\gamma_1} - p_{z}^{\gamma_1}) \cdot (E^{\gamma_2} + p_{z}^{\gamma_2})}{m_{\gamma\gamma} + \sqrt{m_{\gamma\gamma}^2 + (p_{z}^{\gamma\gamma})^2}}\right $ Number of electrons and muons.
all <i>t</i> t <i>H</i> and <i>tHW</i> STXS classes combined	p_{T}, η, ϕ of γ_1 and γ_2 , p_T, η, ϕ and <i>b</i> -tagging scores of the six highest- p_T jets, E_T^{miss}, E_T^{miss} significance, E_T^{miss} azimuthal angle, Top reconstruction BDT scores of the top-quark candidates, p_T, η, ϕ of the two highest- p_T leptons.
tHqb	$\begin{split} p_T^{\gamma\gamma}/m_{\gamma\gamma}, \eta_{\gamma\gamma}, \\ p_T, \text{ invariant mass, BDT score and } \Delta R(W, b) \text{ of } t_1, \\ p_T, \eta \text{ of } t_2, \\ p_T, \eta \text{ of } f_2, \\ p_T, \eta \text{ of } j_F, \\ \text{Angular variables: } \Delta \eta_{\gamma\gamma t_1}, \Delta \theta_{\gamma t_2}, \Delta \theta_{t_1 j_F}, \Delta \theta_{\tau_2 j_F}, \Delta \theta_{\gamma \gamma j_F} \\ \text{ Invariant mass variables: } m_{\gamma\gamma f_F}, m_{t_1 j_F}, m_{t_2 j_F}, m_{\gamma\gamma t_1} \\ \text{Number of jets with } p_T > 25 \text{ GeV}, \text{ Number of } b\text{-jets with } p_T > 25 \text{ GeV}^*; \\ \text{ Number of leptons}^*, E_T^{\text{miss}} \text{ significance}^* \end{split}$

yy STXS

R.Turra (INFN Milano)

Correlation ZZ

	Trigger			
Combination of single-lepton, dilepton and trilepton triggers				
	LEPTONS AND JETS			
Electrons	$E_T > 7 \text{ GeV and } \eta < 2.47$			
Muons	$p_T > 5$ GeV and $ \eta < 2.7$, calorimeter-tagged: $p_T > 15$ GeV			
JETS	$p_T > 30 \text{ GeV}$ and $ \eta < 4.5$			
	QUADRUPLETS			
All combinations of	two same-flavour and opposite-charge lepton pairs			
- Leading lepton pai	r: lepton pair with invariant mass m12 closest to the Z boson mass m2			
- Subleading lepton	pair: lepton pair with invariant mass m34 second closest to the Z boson mass m2			
Classification accord	ling to the decay final state: 4µ, 2e2µ, 2µ2e, 4e			
	REQUIREMENTS ON EACH QUADRUPLET			
LEPTON	- Three highest-pT leptons must have pT greater than 20, 15 and 10 GeV			
RECONSTRUCTION	- At most one calorimeter-tagged or stand-alone muon			
LEPTON PAIRS	 Leading lepton pair: 50 < m₁₂ < 106 GeV 			
	 Subleading lepton pair: m_{min} < m₃₄ < 115 GeV 			
	- Alternative same-flavour opposite-charge lepton pair: $m_{\ell\ell} > 5 \text{ GeV}$			
	$-\Delta R(\ell, \ell') > 0.10$ for all lepton pairs			
LEPTON ISOLATION	- The amount of isolation E _T after summing the track-based and 40% of the			
	calorimeter-based contribution must be smaller than 16% of the lepton pT			
IMPACT PARAMETER	- Electrons: $ d_0 /\sigma(d_0) < 5$			
SIGNIFICANCE	- Muons: d ₀ /σ(d ₀) < 3			
COMMON VERTEX	- χ^2 -requirement on the fit of the four lepton tracks to their common vertex			
	SELECTION OF THE BEST QUADRUPLET			
- Select quadruplet v	with m12 closest to mZ from one decay final state			
in decreasing order of priority: 4µ, 2e2µ, 2µ2e and 4e				
- If at least one additional (fifth) lepton with p _T > 12 GeV meets the isolation, impact parameter				
and angular separation criteria, select the quadruplet with the highest matrix-element value				
	HIGGS BOSON MASS WINDOW			
- Correction of the f	our-lepton invariant mass due to the FSR photons in Z boson decays			
 Four-lepton invariant mass window in the signal region: 115 < m_{4l} < 130 GeV 				
- Four-lepton invaria	int mass window in the sideband region:			
105 < mu < 115 GeV or 130 < mu < 160 (350) GeV				

Category	Processes	MLP	Lepton RNN	Jet RNN	Discriminant
$0j-p_T^{4\ell}$ -Low $0j-p_T^{4\ell}$ -Med	ggF, ZZ*	$p_T^{4\ell}, D_{ZZ^*}, m_{12}, m_{34},$ $ \cos \theta^* , \cos \theta_1, \phi_{ZZ}$	$p_{\mathrm{T}}^{\ell}, \eta_{\ell}$	-	NNggF
$1j-p_T^{4\ell}$ -Low	ggF, VBF, ZZ*	$p_T^{4\ell}, p_T^j, \eta_j,$ $\Delta R_{4\ell j}, D_{ZZ^*}$	$p_{\mathrm{T}}^{\ell}, \eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j-p_T^{4\ell}$ -Med	ggF, VBF, ZZ*	$p_T^{4\ell}, p_T^j, \eta_j, E_T^{miss},$ $\Delta R_{4\ell j}, D_{ZZ^*}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell}, \eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j-p_T^{4\ell}$ -High	ggF, VBF	$p_T^{4\ell}, p_T^j, \eta_j,$ $E_T^{miss}, \Delta R_{4\ell j}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell}, \eta_{\ell}$	-	NN _{VBF}
2j	ggF, VBF, VH	$m_{jj}, p_{\mathrm{T}}^{4\ell j j}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{VBF} for $NN_{VH} < 0.2$ NN_{VH} for $NN_{VH} > 0.2$
2j-BSM-like	ggF, VBF	$\eta_{ZZ}^{\text{Zepp}}, p_{\text{T}}^{4\ell j j}$	p_T^{ℓ}, η_{ℓ}	p_T^j, η_j	NN _{VBF}
VH-Lep-enriched	VH, ttH	$N_{\text{jets}}, N_{b-\text{jets},70\%},$ $E_{\text{T}}^{\text{miss}}, H_{\text{T}}$	p_{T}^{ℓ}	-	NN _{ttH}
ttH-Had-enriched	ggF, ttH, tXX	$p_T^{4\ell}, m_{jj},$ $\Delta R_{4\ell j}, N_{b\text{-jets},70\%},$	$p_{\mathrm{T}}^{\ell}, \eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{ttH} for $NN_{tXX} < 0.4$ NN_{tXX} for $NN_{tXX} > 0.4$

WW purity

Expected Composition

WW generators

Process	Matrix element	PDF set	UEPS model	Prediction order
	(alternative)		(alternative model)	for total cross section
ggF H	Powheg Box v2 NNLOPS	PDF4LHC15nnlo	Рутніа 8	N ³ LO QCD + NLO EW
	(MG5_AMC@NLO)		(Herwig 7)	
VBF H	Powheg Box v2	PDF4LHC15nlo	Pythia 8	NNLO QCD + NLO EW
	(MG5_AMC@NLO)		(Herwig 7)	
VH excl. $gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Pythia 8	NNLO QCD + NLO EW
tĪH	POWHEG BOX V2	NNPDF3.0nlo	Рутніа 8	NLO
$gg \rightarrow ZH$	Powheg Box v2	PDF4LHC15nlo	Pythia 8	NNLO QCD + NLO EW
$qq \rightarrow WW$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
	$(Q_{\rm cut})$		(Sherpa 2.2.2; μ_q)	
$qq \rightarrow WWqq$	MG5_AMC@NLO	NNPDF3.0nlo	Pythia 8	LO
			(Herwig 7)	
$gg \rightarrow WW/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
$WZ/V\gamma^*/ZZ$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
$V\gamma$	Sherpa 2.2.8	NNPDF3.0nnlo	Sherpa 2.2.8	NLO
VVV	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	NLO
tī	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NNLO+NNLL
	(MG5_AMC@NLO)		(Herwig 7)	
Wt	Powheg Box v2	NNPDF3.0nlo	Pythia 8	NNLO
	(MG5_AMC@NLO)		(Herwig 7)	
Z/γ^*	Sherpa 2.2.1 (MG5_AMC@NLO)	NNPDF3.0nnlo	Sherpa 2.2.1	NNLO

WW systematics

Source	$\frac{\Delta\sigma_{\rm ggF+VBF}\cdot\mathcal{B}_{H\to WW^*}}{\sigma_{\rm ggF+VBF}\cdot\mathcal{B}_{H\to WW^*}} \ \left[\%\right]$	$\frac{\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}}{\sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}} \ \left[\%\right]$	$\frac{\Delta\sigma_{\mathrm{VBF}}\cdot\mathcal{B}_{H\to WW^*}}{\sigma_{\mathrm{VBF}}\cdot\mathcal{B}_{H\to WW^*}} \ \big[\%\big]$
Data statistical uncertainties	4.6	5.1	15
Total systematic uncertainties	9.5	11	18
MC statistical uncertainties	3.0	3.8	4.9
Experimental uncertainties	5.2	6.3	6.7
Flavor tagging	2.3	2.7	1.0
Jet energy scale	0.9	1.1	3.7
Jet energy resolution	2.0	2.4	2.1
E_{T}^{miss}	0.7	2.2	4.9
Muons	1.8	2.1	0.8
Electrons	1.3	1.6	0.4
Fake factors	2.1	2.4	0.8
Pileup	2.4	2.5	1.3
Luminosity	2.1	2.0	2.2
Theoretical uncertainties	6.8	7.8	16
ggF	3.8	4.3	4.6
VBF	3.2	0.7	12
WW	3.5	4.2	5.5
Тор	2.9	3.8	6.4
Ζττ	1.8	2.3	1.0
Other VV	2.3	2.9	1.5
Other Higgs	0.9	0.4	0.4
Background normalizations	3.6	4.5	4.9
WW	2.2	2.8	0.6
Тор	1.9	2.3	3.4
Ζττ	2.7	3.1	3.4
Total	10	12	23
rra (INFN Milano)	Higgs to bosons (AT	LAS)	12 September.

2022 32 / 42

WW signal regions selection

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$		
	Two isolated, different-flavor leptons ($\ell = e, \mu$) with opposite charge					
Preselection	$p_{\rm T}^{\rm lead} > 22 {\rm GeV}$, $p_{\rm T}^{\rm sublead} > 15 {\rm GeV}$					
reselection	$m_{\ell\ell} > 10 \text{ GeV}$					
		Nb-jet, (pT	$>_{20 \text{ GeV}} = 0$			
Background rejection	$\Delta \phi_{\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}} > \pi/2$	$m_{\tau\tau} < m_Z - 25 \text{ GeV}$				
	$p_{\mathrm{T}}^{\ell\ell} > 30 \; \mathrm{GeV}$	$\max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \; \mathrm{GeV}$				
		$m_{\ell\ell} < 55 \; {\rm GeV}$				
		$\Delta\phi_{\ell\ell} < 1.8$				
$H{\rightarrow}WW^*{\rightarrow}e\nu\mu\nu$			fail central jet veto			
topology			or	central jet veto		
			fail outside lepton veto	outside lepton veto		
			$ m_{jj}-85 >15~{\rm GeV}$	$m_{jj} > 120 \text{ GeV}$		
			or			
			$\Delta y_{jj} > 1.2$			
Discriminating fit variable	m _T DNN			DNN		

WW control regions selection

CR	$N_{\text{jet},(p_T>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ ggF}$	$N_{\rm jet,(\it p_T>30~GeV)} \ge 2~{ m VBF}$
	$N_{b-jet,(p_T>20 \text{ GeV})} = 0$			
	$\Delta \phi_{\ell \ell, E_{\tau}^{miss}} > \pi/2$	$m_{\ell\ell} >$	1	
	$p_{\mathrm{T}}^{\ell\ell} > 30 \text{ GeV}$	$ m_{\tau\tau}-m_Z >25~{\rm GeV}$	$m_{\tau\tau} < m_Z - 25 \; {\rm GeV}$	
$aa \rightarrow WW$	$55 < m_{\ell\ell} < 110 \text{ GeV}$	$\max(m_T^\ell) > 50 \text{ GeV}$	$m_{\mathrm{T2}} > 165~\mathrm{GeV}$	
99	$\Delta \phi_{\ell\ell} < 2.6$		fail central jet veto	
			or fail outside lepton veto	
			$ m_{jj} - 85 > 15 \text{ GeV}$	
			or $\Delta y_{jj} > 1.2$	
	Numerous > 0	$N_{b\text{-jet},(p_T>30 \text{ GeV})} = 1$	N_{1} , N_{2} , N_{2} , N_{3} , N_{3	Nutrice and m = 1
	1vp-jet, (20 <p_t<50 gev)=""> 0</p_t<50>	$N_{b \cdot {\rm jet},(20 < p_{\rm T} < 30 {\rm ~GeV})} = 0$	$P_{D-jet}(p_T > 20 \text{ GeV}) = 0$	1vp-jet, (p _T >20 GeV) = 1
	$\Delta \phi_{\ell \ell, E_T^{miss}} > \pi/2$			
	$p_T^{\ell\ell} > 30 \text{ GeV}$	$\max(m_T^\ell) > 50 \text{ GeV}$	$m_{\ell\ell} > 80 \text{ GeV}$	
tī/Wt	$\Delta \phi_{\ell \ell} < 2.8$		$\Delta \phi_{\ell \ell} < 1.8$	
			$m_{\rm T2} < 165~{ m GeV}$	
			fail central jet veto	central jet veto
			or fail outside lepton veto	outside lepton veto
			$ m_{jj} - 85 > 15 \text{ GeV}$	
			or $\Delta y_{jj} > 1.2$	
		$p_T > 20 \text{ GeV}) = 0$		
	$m_{\ell\ell} < 80 \text{ GeV}$		$m_{\ell\ell} < 55 \text{ GeV}$	$m_{\ell\ell} < 70 \text{ GeV}$
	no p _T ^{miss} re	no p _T ^{miss} requirement		
Z/γ^*	$\Delta \phi_{\ell\ell} > 2.8$	$m_{\tau \tau} > m_{z}$	z – 25 GeV	$ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$
		$\max(m_T^\ell) > 50 \text{ GeV}$	fail central jet veto	central jet veto
			or fail outside lepton veto	outside lepton veto
			$ m_{jj} - 85 > 15 \text{ GeV}$	
			or $\Delta y_{jj} > 1.2$	

Higgs to bosons (ATLAS)

xsec yy purity

xsec yy migrations

xsec yy migrations

 $N_{\rm jets}$ (reco)

xsec yy quark couplings with shape

Source	Uncertainty [%]
Statistical uncertainty	7.5
Systematic uncertainties	6.4
Background modelling (spurious signal)	3.8
Photon energy scale & resolution	3.6
Photon selection efficiency	2.6
Luminosity	1.8
Pile-up modelling	1.4
Trigger efficiency	1.0
Theoretical modelling	0.4
Total	9.8

Higgs boson and LHC productions

