
Superconductor Science and Technology

Supercond. Sci. Technol. 35 (2022) 105011 (14pp) https://doi.org/10.1088/1361-6668/ac8e39

Differential geometry method for
minimum hard-way bending 3D design
of coils with ReBCO tape conductor

T H Nes1,2,∗, G de Rijk3, A Kario2 and H H J ten Kate2

1 Technology Department, CERN, Meyrin, Switzerland
2 Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
3 Retired from Technology Department, CERN, Meyrin, Switzerland

E-mail: t.h.nes@utwente.nl

Received 17 May 2022, revised 19 August 2022
Accepted for publication 31 August 2022
Published 9 September 2022

Abstract
The use of tape conductor poses design challenges for superconducting magnets. Due to its very
high aspect ratio, it is hardly possible to bend the conductor over its thin edges (hard-way
bending) rather than over its wide side (easy-way bending). Overstraining the conductor
causes critical current degradation. In this paper, we propose a new design approach to
three-dimensional coil layouts and coil end geometries with tape conductor, which considers the
tape’s geometrical limitations. To geometrically describe the conductor surface, we use the thin
strip model, also referred to as constant perimeter geometry. To prevent conductor degradation,
new optimization criteria valid for three-dimensional geometries are presented, which are
prevention of conductor creasing, minimization of overall bending energy, and prevention of
over-straining the conductor. We will apply this to two 3D coil designs called helix and canted
cosine theta. For the design of the coil ends, we propose a new design method using Bézier
splines, which allows for much greater design flexibility than previous methods. Two examples
of coil end geometries generated with Bézier splines are presented: the so-called cloverleaf and
cosine-theta.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Tape superconductors, such as ReBCO, are increasingly being
used in superconducting coils [1–3]. Its very high critical
current density allows for the construction of magnets cap-
able of magnetic fields for over 20 T [4]. Generally, bend-
ing of the conductor is required in the construction of coils.
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In magnets with an aperture, the free bore cannot be obstruc-
ted by the coil end. In this case, one can use common coil
type of magnets, which are double racetracks covering the
two magnet apertures [5], or use 3D coil configurations to let
the conductor pass over the aperture, such as cloverleaf [6]
or saddle coils in a cosine-theta dipole [7] and the MQXF
quadrupole [8]. With tape conductors, a 3D configuration cre-
ates additional challenges, as thin tapes are very difficult to
bend over their thin edges, which is referred to as hard-way or
edge-wise bending [9]. This issue must be taken into account
when designing the coil geometry. In this paper, we present a
mathematical description of the geometry of coils made with
ReBCO tape conductor, by taking into account its geometric
constraints.
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For this purpose, we apply differential geometry in the coil
design. Previously, authors described the conductor geometry
of rectangular conductors, in this case, Rutherford cables,
using a mathematical model, referred to as the thin strip model
[10, 11]. The assumption made in this model is that the con-
ductor can be described as a thin strip surface with zero thick-
ness (infinitely thin) and that the conductor is not bent over its
thin edges. The model is also applicable to tape conductor, and
we will use it to describe the tape geometry.

For tape conductors, there are, however, additional require-
ments. In rectangular cables, some edge-wise bending is still
possible due to their finite thickness. Tape conductor is much
thinner than rectangular cable (around 0.1 mm for tape [12],
1.2–1.5 mm for common Nb3Sn Rutherford cable [13]), and
thus can tolerate much less hard-way bending. Therefore, a
different minimization of energy is needed to describe the nat-
ural shape of the tape. Another aspect is that overbending of
the tape can lead to critical current degradation. In ReBCO
tapes, critical current degradation occurs due to excessive
compressive or tensile strain [12]. The strain distribution in
ReBCO tapes has been determined byWang et al for the helical
and canted cosine theta (CCT) dipole and quadrupole config-
urations [14]. However, no general relation applicable to any
geometry has been investigated yet. Here, we show a general
approach, which is applicable to any configuration that can be
described by a parametrizable curve of which the curvature
and torsion can be determined.

To put the optimization criteria of the coil design into con-
text, we will use them in two geometries frequently used in
superconducting coil and cable design called helix and CCT.
Helical ReBCO windings are used to generate a solenoidal
magnetic field in layer-wound solenoids [15, 16], to gen-
erate an alternating magnetic field in helical undulators to
produce strong radiation in a narrow wavelength range [17],
and in superconducting cables such as conductor on round
wire (CORC) [18] or high temperature superconductor (HTS)
power cables [19]. CCT is a winding configuration that can
generate multipole magnetic fields for particle beam steer-
ing applications. It was originally proposed in 1969 [20] but
has recently become increasingly attractive for various mag-
net applications, such as dipole magnets for particle accel-
erators [21], magnets for MRI [22], as well as higher-order
magnets, such as quadrupole [23] and combined function
magnets [24].

An important issue in the geometric design of the coils is
the shape of the coil end. In an accelerator magnet, the coil end
goes over the particle beam pipe. Previous design methods of
the coil end used polynomial expressions in the description of
the shape [10]. However, the polynomial expression requires
additional twisting to match the straight section with the coil
end, which leads to hard-way bending. In section 5, it will
be shown that by using Bézier curves instead of polynomials,
this mismatch can be avoided. To demonstrate the versatility
of Bézier curves, we will show two examples of accelerator
magnet coil end geometries generated with Bézier splines: a
cloverleaf coil end and a cosine-theta coil end.

Figure 1. Demonstration of the three types of deformation of a
strip-like conductor. Top: easy-way or flat-wise bending, which has
the corresponding scalar κ. Bottom left: hard-way or edge-wise
bending (κg). Bottom right: twisting (τ ).

2. Differential geometry in coil design

The basis of modelling strips geometrically starts from a space
curve r(t), which will be referred to here as the base curve
of the tape (strip) surface. We refer to it this way, as it is
the building block on which the rest of the surface is based.
From the base curve, the Frenet–Serret and Darboux appar-
atus can be derived, which consists of three vectors, T, N and
B, describing the base curve and tape surface, and three scal-
ars for the normal curvature κ, geodesic curvature κg and tor-
sion τ . The Frenet–Serret and Darboux equations of differen-
tial geometry describe the relation between these scalars and
vectors [25, 26].

The scalars κ, κg and τ correspond to three different types
of deformation of the conductor as shown in figure 1. In easy-
way bending, the conductor is bent over the wide side of the
conductor. In hard-way bending, the conductor is bent over
the thin side of the conductor. When no geodesic curvature
is present, a surface is said to be geodesic, and conversely,
if geodesic curvature is present the surface is non-geodesic.
Lastly, there is twisting, which is the rotation of the conductor
along its length.

To describe the tape surface, a ruler or generator traces
out the surface of the tape along the base curve. In figure 2,
the principle behind this is shown for a layer jump geometry,
which is used for some double coil geometries to connect the
top coil to the bottom coil [27]. The direction of the ruler is
determined by the rotation of the Frenet–Serret frame along
the base curve. The generators are not mere mathematical
objects, but can also be seen in real life. In figure 3, an example
of this is shown of a copper strip that is bent and twisted.

To describe the perimeter of a hard-way bend free strip, the
following equation can be used:

P(t) = r(t)± 1
2
g(t) D̂(t) , (1)

2
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Figure 2. Development of a strip surface from a base curve for a layer jump geometry. On the left, the base curve is plotted. In the middle,
the Darboux vectors are calculated from the base curve. On the right, the full strip surface is drawn by choosing the appropriate length of the
generators g(t).

Figure 3. Image of a copper strip, which is being bend and twisted.
In the reflection of the light and shadows on the copper strip, the
generators can be traced out.

where

g(t) = w
√
1+ η2, η = τ/κ, (2)

and with the Darboux vector given by:

D̂=
τT+κB√
κ2 + τ 2

. (3)

In the language of differential geometry, a surface described
by equation (1) is referred to as a developable surface or a
rectifying developable. In magnet design, it is also referred to
as a constant perimeter geometry [28], as the length of the
perimeter of the conductor is conserved under deformation.
In appendix A, an overview of the mathematics behind space
curves and the Frenet–Serret frame is presented, including a
derivation of equation (1).

The thin strip model assumes that the conductor is infin-
itely thin [10] and does not experience any hard-way bending.
In reality, this is of course not the case as tape conductor has
a finite thickness, in the case of ReBCO it is typically about
0.1 mm and thus hard-way bending is present. In fact, in any
twisted tape, with exception of the special case of the helix,
hard-way bending is present. The amount of hard way-bending
can be expressed as:

κg
∗ =

λ(λκ̇τ +(1−λκ) τ̇)

v((1−λκn)
2
+λ2τ 2)

3/2
, (4)

where λ is the offset from the base curve. As an example,
for a tape conductor, the amount of hard-way bending at the
face of the tape is found by using the half-width of the tape
for λ, or in the case of two stacked cables λ is the distance
between the two cables. A derivation of equation (4) can be
found in appendix B. For a thin tape, the hard-way bending

can be neglected, as the amount of hard-way bending is pro-
portional to the thickness of the conductor.

Equation (4) implies that for an arbitrary bend and twis-
ted conductor, some hard-way bending is present in the con-
ductor away from the neutral axis. Of interest are the geomet-
ries where no hard-way bending is present. In this case, κg

must be zero. This is true when the numerator in equation (4)
equals zero. Omitting the case where λ= 0, the following rela-
tion must hold:

λκ̇τ +(1−λκ) τ̇ = 0. (5)

The set of curves that satisfies this equation has common
principle normals and are called Bertrand curves. One solution
is a planar curve (τ = 0). Another solution is circular helices
with constant torsion and curvature (κ̇= τ̇ = 0). The last pos-
sible solution is a skew circle, which has a constant curvature
of κc = 1/λc and non-zero torsion. This solution is not relev-
ant for coil design, since it only holds for one particular λ.
For a conductor of finite thickness, equation (4) implies that
under twisting, some hard-way bending is present. The mag-
nitude of this hard-way bending depends on the magnitude of
the curvature and twist, the first derivatives, and the thickness
of the strip in a non-linear fashion. The thin strip approxima-
tion is thus only valid for thin strips, which are not subjected
to large changes in curvature and torsion.

Because of equation (4), the only hard-way free coil ends of
tape conductor or rectangular cable conductors by which the
wide sides do not have a gap between them (excluding geo-
metric defects), are made from planar curves. An example of
a planar coil end is a racetrack coil. This is, of course, a very
trivial result. More interesting is the fact that there exists no
twisted coil end that is hard-way bend free and where the wide
sides of the conductor are in full contact. When the second
layer is wound on top of the first one, it cannot follow the exact
shape unless hard-way bending is allowed.

3. Optimization criteria for tape conductor

3.1. Bending energy

The natural shape of a twisted and bent conductor is the
one where its bending energy is minimized. Therefore an

3
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expression of the bending energy is needed such that it can be
minimized. For the case of a non-geodesic strip, Wunderlich
[29] derived a mathematical expression stating that the total
bending energy U can be expressed as a function of normal
curvature and torsion:

U=
Dw
2

Lˆ

0

h(κ,η,η ′)ds (6)

with flexible rigidity:

D=
Yd3

12(1− ν2)
, (7)

where Y is the Young’s modulus, d the thickness of the strip,
ν the Poisson ratio, and:

h(κ,η,η ′) = κ2
(
1+ η2

)2 1
wη ′ ln

(
2+wη ′

2−wη ′

)
. (8)

Equation (7) states that the bending energy is proportional to
the thickness of the tape cubed. If we were to bend a ReBCO
tape of 12 mm wide and 0.1 mm thick over its wide side, it
would cost (12/0.1)3 = 1.7× 106 times more energy to bend
compared to bending over its thin side.

3.2. Conductor creasing

In terms of rulers, a local high density of generators means
a high bending energy density, and a low generator density a
corresponding low bending energy density. Therefore, when
two rulers are close to crossing, there is locally an area with a
high local bending energy [30]. This can lead to mechanically
weak spots in the ReBCO. Also, the generator lines should not
cross, as this would imply a locally infinite bending energy
density and a real physical object cannot be deformed in such
a way. With a real physical conductor, trying so would lead
instead to creases, damaging it in the process. Thus, when
designing a coil geometry, a condition must be made so that
in the model the generator lines do not cross. The case where
the generators cross is also referred to as edge of regression
[10, 11]. Therefore, there is a need of an expression stating
when the generators cross each other, presented next.

To find the conditions in which this occurs, the follow-
ing case can be considered (figure 4). Two generators at r(t)
and r(t+∆t), are separated by a distance∆s. From the point
r(t), the perpendicular distance to the perimeter is w/2, and
the length of the generator at r(t) to one edge of the strip is
1
2w

√
1+ η2 (see equation (1)). By Pythagoras, the projection

of the generators on the baseline is then wη/2. For the gener-
ators not to overlap, the following relation must hold:

∆s+
w
2
η (t)>

w
2
η (t+∆t) . (9)

As ∆s= v∆t, this can be rewritten as:

v>
w
2
η (t+∆t)− η (t)

∆t
. (10)

Figure 4. Two generators (black) drawn on the base curve r(t) (red)
at positions t and t +∆t, terminating at the edges of the strip (blue).

Writing this expression in differential notation yields the
required condition to prevent generator crossing:

w
2v

|η̇|< 1. (11)

The absolute value is taken here to take into considera-
tion the case that the derivative of η is negative, which is the
mirrored version of the presented case. We will refer to the
term w |η̇|/(2v) as the regression. From equation (11), it can
be seen that in the case of a very wide strip (w → ∞), that
η must go to zero to satisfy the relation. This means that it is
difficult to twist a strip with a large width without tearing it
apart.

If the baseline is chosen at the perimeter of the strip, the
condition changes to w |η̇|/v < 1, because now the full width
of the strip must be considered, not the half-width. This has
the consequence that the derivative of η can only be half as
big compared to a baseline chosen in the centre of the strip for
the generators not to cross. Therefore, it is best to choose the
baseline in the centre of the strip instead of the perimeter, as
this maximizes the allowable η̇.

3.3. Strain

Besides high local bending energy, ReBCO can also be
degraded by overstraining. For the two specific cases of the
helical and CCT dipole and quadrupole configurations, the
strain distribution in ReBCO tapes has been determined by
Wang et al [14]. Here, we will derive a general expression for
the strain in the ReBCO layer itself under arbitrary bending
and twisting.

The most common form of bending is planar bending,
i.e. bending along the width of the tape without any torsion
present. From figure 5, we can derive that the strain ε is a func-
tion of distance from the neutral axis and the local curvature
of the neutral axis [31]:

ε=
y
R
, (12)

where y is the distance from the neutral axis, andR is the radius
of curvature. When the ReBCO layer is not on the neutral axis,
the layer is subjected to strain, which can lead to microstruc-
tural damage and thus degradation of the critical current of the
tape.

4
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Figure 5. Schematic of the bending of a strip with thickness d. The
neutral axis is indicated with the dashed line in the middle of the
tape, and the distance from the neutral axis is indicated with y. The
bending of the tape can be thought of a local bending over a circle
with bending radius R.

For a tape that besides curvature also has torsion, one can
use the following reasoning to derive the strain. The gener-
ators can be interpreted as the folding lines around the strip,
locally each generator can be seen as if the strip is bent around
a cylinder. Using the angular velocity relation v⊥ = ω ·R, the
bending radius can be written as:

R=
v⊥
ω

=
vcosα

v
√
κ2 + τ 2

, (13)

where ω is the magnitude of the Darboux vector and
v⊥ the tangential velocity. Using cosα= κ/

√
κ2 + τ 2 (see

appendix A and figure A.3) yields the generalized bending
radius, which includes besides the curvature also the torsion:

R=
κ

κ2 + τ 2
. (14)

Note that for zero torsion the generalized bending radius
becomes R= 1/κ, the planar bending case. Filling this into
equation (12) yields the relation between strain, curvature and
torsion:

ε= y
κ2 + τ 2

κ
. (15)

Van der Laan [32] showed that for ReBCO tape, the strain
is anisotropic in the ab-plane. It is therefore of importance to
distinguish the strain along the length (tangential direction) of
the tape and the strain along the width (binormal direction) of
the tape. In terms of curvature and torsion, the strain along the
length of the conductor is:

εT = εcosα= y
√
κ2 + τ 2, (16)

and the strain along the width of the conductor is:

εB = εsinα= y
τ

κ

√
κ2 + τ 2. (17)

Comparison with measured data of the anisotropic strain
dependence of the ReBCO conductor in combination with
equations (16) and (17) can then be used to optimize the coil
design.

Figure 6. Three turns of a 12 mm wide strip wound in a helical
shape with a radius R = 10 mm and pitch p = 20 mm.

4. Applications to coil and cable design

4.1. Helix

In figure 6, a helical winding made with 12 mm wide strip is
shown. Such a helical curve can be parameterized as:

r(t) = Rcos tex+Rsin tey+
p
2π

tez, (18)

where R is the radius of the cylinder around which the tape is
wound and p is the pitch length. Setting q = p/2π, the Frenet–
Serret apparatus can then be found using equations (A.11)
and (A.12):

T=
−Rsin tex+Rcos tey+ qez√

q2 +R2
, (19)

B=
qsin tex− qcos tey+Rez√

q2 +R2
, (20)

N=−cos tex− sin tey, (21)

κ=
R√

q2 +R2
, (22)

τ =
q√

q2 +R2
. (23)

The Darboux vector can be found using equation (A.15):

D= ez. (24)

The generators of the helix are thus all pointing in the
z-direction, which is along the length of the surface of
the cylinder. In the case of the helical parametrization of
equation (18), the magnitude of the angular velocity vector is
unity.

5
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To find the maximal strain in the ReBCO layer,
equation (15) can be used. This yields

ε= y
κ2 + τ 2

κ
=
y
R
. (25)

The maximum strain is thus the same as for a tape wound
around a cylinder with radius R (equation (12)). The tangen-
tial (axial) component of the strain experienced by the ReBCO
layer is then (equation (16)):

εT =
y√

q2 +R2
, (26)

and the binormal (along the width) component (equation (17)):

εB =
q
R

y√
q2 +R2

. (27)

This is equivalent to the transverse and axial strains found
by Wang [14], showing that the generalized expressions for
the strain (equations (16) and (17)) yield the same result. The
twitch pitch thus influences the relative amount of axial and
transverse strain experienced by the ReBCO layer. A larger
twist pitch yields a proportionally larger transverse strain com-
pared to axial strain. This is important due to the anisotropic
dependence of the critical current on the strain. The maximum
amount of strain remains proportional to the radius R of the
cylinder around it is wound.

4.2. CCT

The base curve of a CCT coil is given by [33]:

r(t) = Rcos tex+Rsin tey+
(
Rcotα
n

sinnt+ qt

)
ez, (28)

where R is the radius of the cylinder around the CCT is wound,
α the tilt angle, q the pitch, and n the order of the CCT (n= 1 is
a dipole, n= 2 is a quadrupole etc.). The pitch q can be written
as:

q=
d1 + d2
2π sinα

, (29)

where d1 is the width of the tape and d2 is the gap between the
two tapes in a CCT winding. The curvature and torsion of a
CCT winding can be found using equation (A.12), and are:

κ=
R
√
R2 +(q+Rcotαcosnt)2 + n2R2cot2αsin2nt(

R2 +(q+Rcotαcosnt)2
)3/2

, (30)

τ =
q+

(
1− n2

)
cotαRcosnt

R2 +(q+Rcotαcosnt)2 + n2R2cot2αsin2nt
, (31)

respectively. The strip surface can then be developed using
equation (1). In figure 7, the developed strip surface of five
turns of a CCT winding for the first four multi-poles is shown.

Figure 7. From left to right, five single tape turns of a CCT dipole,
quadrupole, sextupole and octupole are shown, with a radius
R = 200 mm, angle α = 70◦, strip width d1 = 12 mm and a gap
between the tapes d2 = 2 mm.

When designing a CCT configuration with tape conductor
like ReBCO, it is of importance that the edge of regression
condition is not violated, as the crossing of the generators
is unphysical and leads to local buckling of the tape, which
in the case of ReBCO damages the tape. Using that v(t) =√
R2 + (q + cot(α) cos(nt))2, we can verify with the edge

of regression condition d1|η̇|/(2v)<1 (equation (11)) whether
the designed configuration is possible. As an example, three
versions of a sextupole CCT winding using tape with a width
of 12mm are shown in figure 8. They have a radius of 100mm,
a gap between the tapes of 1 mm, and have angles α of 20◦,
40◦ and 60◦ respectively. In figure 11 left, it can be seen that
for the cases α= 20◦ and α= 40◦, some artefacts in the form
of spikes in the modelling occur. This is due to the generat-
ors overlapping each other at these points, which is unphys-
ical for a tape. From figure 8 right, it can be seen that for these
angles the regression exceeds 1 at these points. It is physic-
ally not possible to create a winding with these parameters.
If one desires to wind a sextupole with a 12 mm wide tape
and a 1 mm gap at these angles, one can increase the radius
R, which lowers the regression. For α = 60◦, the regression
remains below 1, and the generators do not overlap.

An expansion to the straight CCT is a curved version. To
model the shape with rectangular conductor, it is necessary to
know the exact base curve in order to use the thin strip model.
One can apply a rotation of the base curve of a straight CCT
with a radius r1 around the origin, which yields:

r(t) =

 (r1 +Rcos t)cosqt− 1
nRcotαsinntsinqt

Rsin t
(r1 +Rcos t)sinqt+ 1

nRcotαsinntcosqt

 ,

(32)

where r1 is the radius of curvature of the curved CCT. In
figure 9, three examples of curved CCT coils made with a
single geodesic tape are shown.

6
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Figure 8. On the left, from left to right three CCT sextupole turns with angles α of 20◦, 40◦ and 60◦ with radius R = 100 mm, width
d1 = 1 mm. For the 20◦ and 40◦ cases, there are artefacts in the form of spikes present due to the crossing of generators. On the right, the
regression is plotted against time. For the 20◦ and 40◦ cases, at certain points the regression is larger than 1, meaning that the generators
cross and the configuration is not possible to realize physically.

Figure 9. Top-view of a dipole, quadrupole and sextuple curved
CCT, made with 12 mm tape. For illustration purposes the distance
between each turn d2 is taken quite large, so that the individual turns
are clearly visible.

5. Coil end design using Bézier splines

So far, we have analysed geometries of which the base curve,
coil geometry, was already pre-determined. In the coil end of
a magnet, this is generally not the case due to the relatively
complex shape of the coil end. The geodesic strip description
has been used extensively to model magnet coil ends, where
the base curve was typically a polynomial expression [10, 11].
Here, we propose to use Bézier splines as a base function. An
important advantage of Bézier curves compared to previous

design methods relying on polynomials is that they are highly
flexible in the shapes that they can create, allowing for great
flexibility when creating coil end design. Another advantage is
that they allow for the coil end to match the straight section of
the magnet without resorting to the need for additional twist,
which was required in previous design methods. As additional
twist results in additional hard-way bending (equation (A.19)),
it must be avoided to minimize the bending energy.

A Bézier curve is a type of parametric curve, defined by a
set of control points P0 through Pn in R3, where n is called
its order or degree (n = 1 for linear, 2 for quadratic, etc.). The
Bézier curve is a function of t, defined on the interval I = [0,
1], and can be explicitly expressed as:

B(t) =
n∑

k=0

bn,k (t)Pk, (33)

where bn,k (t) are the so-called Bernstein polynomials, defined
by:

bn,k (t) =
n!

k! (n− k)!
(1− t)n−ktk. (34)

To demonstrate this, wewill make use of the property of Bézier
curves that the derivative order of the Bézier points at t= 0 are
proportional to the number of control points [34]. In table 1,
the dependence of the first five derivatives of the Bézier curve
on the control points at t= 0 is tabulated. The first derivative
depends on two control points P0 and P1. This means that we
are free to choose the location of the other control points P3

to Pn without changing the value of the first derivative. Con-
tinuing down the order, the second derivative depends on the
first three control points and the third derivative on the first
four control points, etc. Similarly, for t = 1, the first derivative
is proportional to the last two control points (Pn and Pn−1),

7
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Table 1. Derivatives of a Bézier curve r(t) at t = 0. For the
derivatives at t = 1, all control points Pi get substituted with Pn−i.

Derivative Value

r(0) P0
d
dt r(0) n(P1 −P0)
d2

dt2 r(0) n(n− 1)(P2 − 2P1 +P0)
d3

dt3 r(0) n(n− 1)(n− 2)(P3 − 3P2 + 3P1 −P0)
d4

dt5 r(0) n(n− 1)(n− 2)(n− 3)(P4 − 4P3 + 6P2 − 4P1 −P0)
d5

dt5 r(0) n(n− 1)(n− 2)(n− 3)(n− 4)(P5 − 5P4 + 10P3− 10
P2 +5P1 −P0)

the second derivative is proportional to the last three control
points etc.

In the straight section of the coil winding pack, the
curvature and torsion are zero. We start by considering the
point where the coil end starts, i.e. where t= 0. For a con-
tinuous transition between the straight section and coil end,
we require that the curvature and torsion are both zero at the
start of the coil end. We will first set the curvature to zero. For
this, it must hold that:

κ=

∣∣ .r(0)× ..
r (0)

∣∣∣∣ .r(0)∣∣3 = 0. (35)

This can be achieved if |ṙ(0)× r̈(0)|= 0. From table 1, we
can see that if we place the first three control points (P0, P1

and P2) on one line, the cross product will be zero, and hence
the curvature is zero as well. As the derivative at t= 0 does not
depend on the other control points (P3…Pn), we are still free
to move them around, and the curvature remains zero as long
as we keep the first three control points fixed on one line. If the
first four control points are placed on a line, the first derivative
of the curvature is zero.With each extra control point on a line,
a higher order of smoothness in curvature is achieved.

Having made the curvature zero at the start point, we will
now set the torsion to zero, i.e.:

τ =
(ṙ(0)× r̈(0))

...
r (0)

|ṙ(0)× r̈(0)|2
= 0. (36)

However, as |ṙ(0)× r̈(0)|= 0, which was required to get
the curvature to zero, the numerator and the denominator are
both zero, and we thus get an intermediate form. This can be
solved by taking the limit of t→ 0, and applying L’Hôpital’s
rule, which yields:

lim
t→0

τ (t) =
(ṙ(0)× ...

r (0)) · d
4

dt4 r(0)

2|ṙ(0)× ...
r (0)|2

= 0. (37)

The torsion is zero when the numerator is zero, which can
be achieved when the first five control points P0 to P4 are all
in the same plane.

When the curvature and torsion are both zero, the gener-
ator length gets ill-defined, as the generator length depends on
η = τ /κ (equation (2)). The most natural choice is that at the

beginning of the coil end, the generator length is equal to the
width of the tape, i.e. η(0) = 0. This requires:

η (0) =
|ṙ(0)|3

(
ṙ(0)×¨̇r(0)

)
· ...r (0)

|ṙ(0)× r̈(0)|
= 0. (38)

As |ṙ(0)× r̈(0)|= 0, we get again an intermediate form.
Taking again the limit of t→ 0 and applying L’Hôpital’s rule
yields:

lim
t→0

η (t)

= |ṙ(0)|3
(̈r(0)× ...

r (0)) · d4

dt4 r(0)+ 2(ṙ(0)× ...
r (0)) · d5

dt5 r(0)

6|ṙ(0)× ...
r (0)|3

.

(39)

The first part of the numerator is zero due to the require-
ments on the torsion, where the first five control points are
in-plane. The second part of the numerator can be made zero
by placing the first six control points in the same plane. For
the other side of the coil end (where t= 1), also six con-
trol points are needed to meet the end of the coil end with
a straight section, making for a minimum of twelve control
points required. Note that when it is chosen not to make the
curvatures match, the total amount of control points for a coil
end where torsion is required can be lowered to six. However,
a jump in curvature is not ideal from an energy minimizing
perspective [35]. An example of a coil end with discontinuous
curvature is a racetrack-coil end, where a circle is used to join
two straight sections, and the curvature is discontinuous on the
joint between the coil end and the straight section.

Using Bézier splines as the base curve for the thin strip
model, we can thus model the whole coil end hard-way bend
free, and no optimizations are required to minimize the hard-
way bending component. For finding the complete minimum
bending energy, optimization is still required, as the path the
Bézier curve takes must be optimized such that the bending
energy given by equation (6H) is minimized. The minimiza-
tion of the bending energy makes sure that the coil end fits
better on a winding mandrel or end spacer.

Bézier splines can be used to create awide variety of config-
urations. Here we will show the potential with two examples.
In figure 10, a cloverleaf ear made with Bézier splines is
shown. Without Bézier splines, it was not possible to create
this shape with matching curvature and torsion on the straight
section. This ear was used in the design of a cloverleaf type
dipole accelerator magnet, which is currently being developed
at CERN [6]. This cloverleaf ear has 16 control points in total,
which ensures that the transition between the straight section
and the ear is smooth in curvature up to the first order.

The development of Bézier splines was originally con-
ceived to make the cloverleaf shape, but can also be used to
create other geometries. As an example of this flexibility, in
figure 11, a cosine-theta coil end is shown made with Bézier
splines. In a cosine-theta coil end, the conductor sits on a cyl-
indrical mandrel and needs to be guided over the beam pipe. In
this case, we chose the base curve on the edge of the conductor.

8



Supercond. Sci. Technol. 35 (2022) 105011 T H Nes et al

Figure 10. In the left picture, a turn of a cloverleaf ear is shown, made with a Bézier spline with 16 control points. In the right picture, the
magnitude of the curvature (solid blue) and torsion (dashed blue) are plotted on the left y-axis, and the magnitude of η (dash dotted red) is
plotted on the right y-axis.

Figure 11. Overview of a cosine-theta coil end designed using Bézier splines. On the left, a plot of the cosine-theta winding is shown. The
winding is wound over a cylindrical mandrel. On the right, a plot of the lift-off of the mandrel, i.e. the gap between the tape and the
cylindrical mandrel for the created cosine-theta configuration is shown.

The base curve lies not exactly on the cylindrical mandrel but
has a small lift off of about 100 µm from the mandrel.

6. Conclusion

In this paper, we have shown how to create coil geometries
for tape conductors, such as ReBCO coated conductor. This
is achieved by the thin strip model, which assumes that the
strip is infinitely thin and creates the strip conductor surface
by tracing out generators along a base curve. This minim-
izes the hard-way bending in the strip. The thin strip model
is only valid for thin conductors. We have shown mathematic-
ally that in stacked cables, hard-way bending is induced when
the cables are stacked without a gap in between the turns.

Minimization of the hard-way bending is only one aspect
that must be taken into account in the design of coils with
ReBCO tape conductor. We have shown that for the most
mathematically optimal shape, not only the hard-way bending

component must be minimized with the thin strip model, but
the overall bending energy due to the curvature and torsion has
to be minimized as well. This creates geometries with a more
natural shape, which is relevant in the design of the coil end.
We have derived a mathematical expression for the edge of
regression requirement, which states that a coil design is lim-
ited by thewidth of the tape and the ratio of change in curvature
and torsion along the conductor length. We have determ-
ined expressions for the strain along the length and width
of the conductor for generally bent and twisted conductor
geometries.

Two examples of applications, the geometry of helical and
CCT windings made from tape conductor have been presen-
ted. We have derived general expressions for the curvature and
strain in a CCT, which can be used to give an estimation of
the strain in the CCT turn. Combined with the critical strain
of the used ReBCO tape in the windings, the coil design can
be optimized. Edge of regression violation must be taken into
account when designing a CCT. Not all CCT configurations

9
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are possible to create with tape conductor as it is impossible
to bend the conductor in such a way that it follows the CCT
base curve. Possible ways to alleviate this are using tape with
a smaller width or larger tilt angles.

A method to develop coil ends using Bézier splines has
been outlined. It can be used to create many diverse coil end
geometries that are fully hard-way bend free, and adhere to
the boundary conditions imposed by the endpoints. By stra-
tegic placement of the control points, the straight section of the
magnet can bemet without the requirement of additional twist,
and edge of regression violations can be prevented. The cor-
rect placement of these control points, as well as the minimum
number of control points necessary, have been mathematically
determined.

The method of Bézier splines in combination with the thin
stripmodel is an improvement to previousmethods using poly-
nomials, which are less flexible in their geometric design and
cannot meet the straight section without inducing extra hard-
way bending.

To demonstrate the usability of Bézier splines, two acceler-
ator dipole coil end configurations made with Bézier splines
were presented, the cloverleaf and the cosine-theta. Bézier
splines in combination with the thin strip model are thus a
powerful tool in the design of coil end geometries with min-
imized the hard-way bending of ReBCO tape conductors.
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Appendix A. Thin strip model

A.1. Space curves

A space curve is a curve that ‘lives’ in a three-dimensional
Euclidian space R3, as opposed to a plane curve, which lives
in R2. It is a very general form of a curve. To model strip sur-
faces, only real, differentiable curves are of interest. For a rig-
orous mathematical description of space curves, the reader is
referred to elementary works on differential geometry [25, 26].
The trace of a space curve can be given by the locus of the
position vector r(t), which is a smooth, parametrizable func-
tion of the real parameter t with a parameter space interval
I= [a,b]⊂ R, where a and b are the start and endpoints of the
interval respectively. Introducing a Cartesian coordinate sys-
tem, r(t) can be written as:

r(t) = x(t)ex+ y(t)ey+ z(t)ez. (A.1)

Figure A1. Image of a space curve sitting in the xy-plane, with the
Frenet–Serret frame consisting of the vectors T, N, and B. The
vector T lies tangential to the curve, the vector N normal to the
curve and the vector B is orthogonal to both.

If t changes in the interval I, the tangent of the space curve
is the derivative dr/dt at r(t). If the parameter t is inter-
preted as the time, then the tangent vector can be seen as the
velocity ṙ(t) = v(t), where the dot refers to the t-derivative.
The tangent vector T(t) is the unit vector that is tangent to a
curve (or surface) at any given point. It is defined as the unit
vector in the direction of v(t):

T(t) =
v(t)
v(t)

, (A.2)

with v(t) = |v(t)|.
The arc length of a space curve traced out by r(t) from the

point t0 ∈ I, is by definition:

s(t) =

tˆ

t0

∣∣ .r(t)∣∣dt. (A.3)

Since differentiable curves are assumed (v(t) ̸= 0), the arc
length s is a differentiable function of t and ds/dt= v(t). One
can switch between parametrization with parameter t and arc-
length parameter s using d/ds= 1/v • d/dt. If the curve is of
unit velocity, the curve is said to be arc-length parameterized
with respect to parameter t, since ds= dt. Using unit-speed
curveswould seemmore natural in our case, as we are not deal-
ing with a kinematic object, but a geometric object in which
terms such as velocity and time are not relevant. In principle, it
is always possible to generate a unit-speed curve from a non-
unit speed curve with the same trace by normalizing the velo-
city in equation (A.3) and integrate it. However, it is often hard
or impossible to find the anti-derivative, which makes the pro-
cedure of producing a unit-speed parametrization of a curve
rather difficult in general. Therefore, for practical reasons, we
will use the general case of a non-unit speed curve, unless it is
part of a definition.

A.2. The Frenet–Serret frame

A space curve only describes a line on the surface of the strip
following the tangential direction. The conductor also has a
width and a normal perpendicular to the tape surface. Here,
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we will assign a frame to the space curve, which consists of
the tangential vector T, normal vector N and binormal vector
B. Wewill use these vectors to assign a normal direction point-
ing perpendicular to the tape surface and a binormal direction
pointing in the direction of the tape width.

We will consider a regular arc-length parameterized curve.
Since the tangent vector is a unit vector, it is normal to its
s-derivative. This can be seen by considering the relation
T(s) •T(s) = 1, and differentiating this relation which gives
2T(s) •T ′ (s) = 0. The prime refers to taking the s-derivative.
By normalizing this vector, we define the unit principle normal
vector N(s) as:

N(s) =
T ′ (s)∣∣T ′ (s)

∣∣ . (A.4)

The absolute value of the vector T′(s) and its inverse:

κ(s) =
∣∣T ′ (s)

∣∣ , ρ(s) = 1/κ(s) , (A.5)

are called the curvature of the curve and radius of curvature
respectively.We can interpret the curvature as the failure of the
curve being a straight line. The vector:

B(s) = T(s)×N(s) , (A.6)

is called the unit binormal vector. Taking the s-derivative gives:

B ′ (s) = (T(s)×N(s)) ′ = T ′ (s)×N(s)+T(s)×N ′ (s)

= κN(s)×N(s)+T(s)×N ′ (s) = T(s)×N ′ (s) .
(A.7)

As B(s) is a unit vector, it is again normal to its s-derivative,
and since it is also orthogonal to T(s) (equation (A.6)), a sim-
ilar relation to equation (A.4) holds:

N(s) =
B ′ (s)∣∣B ′ (s)

∣∣ . (A.8)

The absolute value of the vector B′(s) and its inverse:

τ (s) =−
∣∣B ′ (s)

∣∣ , σ (s) = 1/τ (s) , (A.9)

are called the torsion of the curve and the radius of torsion
respectively. We can interpret the torsion as a measurement
of the failure of the curve to remain in-plane. The minus sign
is there so that a positive torsion corresponds to an upward
motion with respect to the plane.

The vectors T, N and B, collectively called the Frenet–
Serret frame, form an orthonormal basis spanning R3. The
relations between the Frenet–Serret frame at s and s + ds are
given by the Frenet–Serret equations:

dT(s)
ds

= κ(s)N(s) ,
dN(s)
ds

= τ (s)B(s)−κ(s)T(s)

dB(s)
ds

=−τ (s)N(s) . (A.10)

The collection of T,N, B,κ and τ is called the Frenet–Serret
apparatus. In terms of a space curve with parameter t, it can be
shown that the Frenet–Serret frame is given by:

T=
ṙ(t)
|ṙ(t)|

, N= B×T, B=
ṙ(t)× r̈(t)
|ṙ(t)× r̈(t)|

, (A.11)

and the curvature and torsion are given by:

κ=
|ṙ(t)× r̈(t)|

|ṙ(t)|3
, τ =

(ṙ(t)× r̈(t)) · ...r (t)
|ṙ(t)× r̈(t)|2

. (A.12)

In figure (A1), a space curve with its Frenet-Serret frame is
shown. The Frenet–Serret equations in terms of a parameter t
are in matrix form: Ṫ

Ṅ
Ḃ

= v

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 . (A.13)

Since the matrix in equation (A.13) is a skew-symmetric
matrix, the Frenet–Serret equations can be written as a cross-
product:  Ṫ

Ṅ
Ḃ

=

 vτT
0
vκB

×

 T
N
B

 . (A.14)

The vector in front of the cross product is the angular velo-
city vector of the Frenet–Serret frame. Its direction determines
the moving frame’s momentary axis of motion (its centrode)
and its magnitude the angular speed. It can thus be written as:

D= v(τT+κB) . (A.15)

The angular velocity vector is also known as the Darboux
vector. We can find the direction of the Darboux vector by nor-
malization:

D̂=
τT+κB√
κ2 + τ 2

. (A.16)

Aswith space curves, strips also have an orthonormal frame
associated with them. The tangent vector of the strip t points in
the direction of the base curve, and the normal vector n is dir-
ected normal to the surface. The binormal vector b is orthonor-
mal to both these vectors. The set t, n, b forms the frame
for strips (see figure (A2)). This frame is called the Darboux
frame. To find the Darboux frame, the Frenet–Serret frame can
be rotated with an angle φ around the tangent vector, such that
the normal vector N aligns with the normal vector n of the
space curve: t

n
b

=

 1 0 0
0 cos φ sin φ
0 −sin φ cos φ

 T
N
B

 . (A.17)

Taking the derivative of the previous equation, and using its
inverse and the Frenet–Serret equations, yields: .

t
.
n
.

b

= v

 0 κn −κg

−κn 0 τr
κg −τr 0

 t
n
b

 , (A.18)
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Figure A2. Image of a non-geodesic strip sitting in the xy-plane,
with the Darboux frame consisting of the vectors t, n, and b. The
vector t lies tangential to the strip, the vector n normal to the strip
surface and the vector b lies along the width of the strip surface.

where τr is the geodesic torsion, κg the geodesic curvature,
and κn the normal curvature, which are expressed in terms of
curvature and torsion:

τr = τ +φ ′, κg = κsinφ, κn = κcosφ. (A.19)

For our conductor, we assume that no hard-way bending is
present, which means that there is no geodesic curvature
(κg = 0). In this case, the Darboux apparatus is equal to the
Frenet–Serret apparatus.

Analogous to equation (A.14), we can write equation
(A.18) as a cross product: .

t
.
n
.

b

=

 vτrt
vκgn
vκnb

×

 t
n
b

 , (A.20)

and we can define an angular velocity vector:

ω = v(τrT+κgN+κnB) . (A.21)

We can link this to the three deformation modes of a tape con-
ductor (figure 1). The term vτr is the rotation around the tan-
gent vector (twisting), vκg the rotation around the normal vec-
tor (hard-way bending) and vκn the rotation around the binor-
mal vector (easy-way bending).

A.3. Modelling the strip surface

By moving a line g(t) (called a generator) along a curve r(t),
one can trace out the surface S of a strip. A surface like this is
called a ruled surface. It can be written down parametrically
as:

S(t) = r(t)+ g(t) , (A.22)

where r(t) is the base curve (also called directrix) of the rep-
resentation, and g(t) the generator, with g(t) the length of the
generator and ĝ(t) the direction of the generator.

A developable surface is a special kind of ruled surface. It
is a surface which can be created by transforming a plane, for

instance by folding and bending, but not by stretching or com-
pression. Conversely, a developable surface can be flattened
on a plane without stretching or compressing it. Such a sur-
face is comparable to bending a thin paper strip, without tear-
ing or creasing it. These properties are also the same for the
conductor we want to model: we can bend it, but we cannot
crease or tear it. Hence we will use a developable surface to
model the conductor.

One can show that for a ruled surface to be a developable
surface, the following relation must hold [25]:

det(ṙ,g, ġ) = 0. (A.23)

Since for a geodesic strip the Frenet–Serret frame is equal
to the Darboux frame, the generator lies in the plane spanned
by T and B, i.e. a linear combination of T and B:

g= ζT+ ξB. (A.24)

Differentiating yields:

ġ= ζ̇T+ v(ζκ− ξτ)N+ ξ̇B. (A.25)

From equation (A.23), the surface is developable when the
following determinant is zero:

det

 1 ζ ζ̇
0 0 v(ζκ− ξτ)

0 ξ ξ̇

=−ξv(ζκ− ξτ) = 0. (A.26)

This determinant is zero when ζ = cτ and ξ = cκ, where c
is a function depending on t. The generator is then:

g(t) = c(τT+κB) . (A.27)

The part between brackets is equal to the Darboux vector
(barring a factor v). The direction of the generator is thus given
by the (normalized) Darboux vector (ĝ(t) = D̂(t)), and we can
write equation (A.27) as:

g(t) = g(t) D̂(t) , (A.28)

where g(t) = c(t)
√
κ2 + τ 2. The generator length must have a

specific length such that the width of the tape remains the same
everywhere along the curve. The magnitude of the generator
length can be determined by comparing the two triangles in
figure (A3). As the Darboux vector points in the direction of
the generator, and the binormal vector in the direction perpen-
dicular to the edges of the strip, the triangles are congruent:
the angle α is the same in both triangles:

tanα=
τ

κ
, cosα=

w
g
. (A.29)

Rearranging these two expressions yields the expression for
g(t):

g(t) = w
√
1+ η2, (A.30)

where η = τ/κ.
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Figure A3. Determination of the generator length. On the left is the
triangle formed by the Darboux vector and its Frenet–Serret
components, on the right is drawn the tape surface with tape width
w and generator length g(t).

To make a drawing of the surface, we need to know the
location of the perimeters of the tape. This can be done by
drawing the generators on the base curve and connecting the
top and the bottom of successive generators, which will form
the perimeter P(t) of the tape:

P(t) = r(t)± 1
2
g(t) D̂(t) . (A.31)

Appendix B. Extension to conductor with a finite
thickness

The thin strip model assumes that the conductor is infinitely
thin. However, a real conductor has a finite thickness. Also in
the coil end, the conductors are generally stacked on top of
each other. To look at the effect of the finite thickness, we will
look at a surface, which is offset from the thin strip surface in
the normal direction (figure A4).

The parallel curve can be parameterized as:

r∗ (t) = r(t)+λN(t) . (B.1)

Differentiating with respect to t yields:

dr∗ (t)
dt

=
dr(t)
dt

+λ
dN(t)
dt

, (B.2)

which is in turns of velocity:

v∗ (t) = v((1−λκ)T+λτB) . (B.3)

The magnitude of the velocity of the parallel curve is then:

v∗ = v
√
(1−λκ)

2
+λ2τ 2. (B.4)

The unit tangent vector of the parallel frame is then:

t∗ (t) =
v∗

v
=

(1−λκn)T+λτB√
(1−λκn)

2
+λ2τ 2

. (B.5)

The normal vector of the parallel strip must be equal to the
normal vector of the base curve:

n∗ (t) = N(t) . (B.6)

The unit binormal vector is then:

b∗ (t) =
(1−λκn)B−λτT√
(1−λκn)

2
+λ2τ 2

. (B.7)

Figure A4. Drawing of a parallel curve r
∗
(t) by offsetting the curve

r in the normal direction N with a distance λ.

The set {t
∗
, n

∗
, b

∗
} forms the Darboux frame of the parallel

curve. In matrix form it is written as:

 t*

n*

b*

=



1−λκn√
(1−λκn)

2 +λ2τ 2
0

λτ√
(1−λκn)

2 +λ2τ 2

0 1 0

−
λτ√

(1−λκn)
2 +λ2τ 2

0
1−λκn√

(1−λκn)
2 +λ2τ 2



×

 T

N

B

 . (B.8)

Taking the derivative with respect to t yields:
.
t
∗

.
n
∗

.

b
∗

= v∗

 0 κn
∗ −κg

∗

−κn
∗ 0 τr

∗

κg
∗ −τr

∗ 0

 t∗

n∗

b∗

 , (B.9)

where the parallel relative torsion, geodesic curvature and nor-
mal curvature are:

τr
∗ =

τ

(1−λκn)
2
+λ2τ 2

, (B.10)

κg
∗ =

λ(λκ̇τ +(1−λκ) τ̇)

v((1−λκn)
2
+λ2τ 2)

3/2
, (B.11)

κn
∗ =

κ+λ
(
κ2 + τ 2

)
(1−λκn)

2
+λ2τ 2

, (B.12)

respectively.
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