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Abstract

We present the details and first results of a new strategy for the determination of αs(mZ) [1].
By simultaneously decoupling 3 fictitious heavy quarks we establish a relation between the Λ-
parameters of three-flavor QCD and pure gauge theory. Very precise recent results in the pure
gauge theory [2, 3] can thus be leveraged to obtain the three-flavour Λ-parameter in units of a
common decoupling scale. Connecting this scale to hadronic physics in 3-flavour QCD leads to
our result in physical units, Λ

(3)

MS
= 336(12) MeV, which translates to αs(mZ) = 0.11823(84).

This is compatible with both the FLAG average [4] and the previous ALPHA result [5], with a
comparable, yet still statistics dominated, error. This constitutes a highly non-trivial check, as the
decoupling strategy is conceptually very different from the 3-flavour QCD step-scaling method,
and so are their systematic errors. These include the uncertainties of the combined decoupling and
continuum limits, which we discuss in some detail. We also quantify the correlation between both
results, due to some common elements, such as the scale determination in physical units and the
definition of the energy scale where we apply decoupling.

Keywords: QCD, Perturbation Theory, Lattice QCD
PACS:, 12.38.Aw, 12.38.Bx, 12.38.Gc, 11.10.Hi, 11.10.Jj

ar
X

iv
:2

20
9.

14
20

4v
1 

 [
he

p-
la

t]
  2

8 
Se

p 
20

22

https://www-zeuthen.desy.de/alpha/


Contents

1 Introduction 4

2 The decoupling strategy 6
2.1 Renormalization group invariant parameters . . . . . . . . . . . . . . . . . . . . 6
2.2 Decoupling relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Master formula and strategy breakdown . . . . . . . . . . . . . . . . . . . . . . 8

3 The continuum and decoupling limits: a closer look 10
3.1 Symanzik’s effective theory for lattice QCD . . . . . . . . . . . . . . . . . . . . 10
3.2 The decoupling expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Corrections of O(1/m2) . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Corrections of O(a2m2) and O(a2) . . . . . . . . . . . . . . . . . . . . . 15

3.3 Boundary effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 3-flavour QCD: set-up, simulations and results 19
4.1 Line of constant physics at M = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Massive simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Choice of c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Continuum extrapolations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Large mass extrapolations and the determination of Λ

(3)

MS
. . . . . . . . . . . . . 24

4.5.1 Estimates of the three flavor Λ-parameter . . . . . . . . . . . . . . . . . 24
4.5.2 M →∞ extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Result for αs(mZ) 28

6 Conclusions and outlook 29

A Boundary O(1/m) contributions 31
A.1 Perturbative determination of ωb at leading order . . . . . . . . . . . . . . . . . 31
A.2 Estimates of the O(1/m) boundary effects . . . . . . . . . . . . . . . . . . . . . 33

A.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.2.3 O(1/M ) corrections: LO estimates . . . . . . . . . . . . . . . . . . . . . 36

B Summary of pure-gauge results 38
B.1 Matching GF and GFT schemes at the decoupling scale . . . . . . . . . . . . . . 38
B.2 High-energy running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

C Simulations 42
C.1 Nf = 3 renormalization runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C.2 Nf = 3 massive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

D Mistuning Corrections 46

E Mass renormalization 47

2



F Propagating the error of z 52

G Line of constant physics for L/a = 40, 48 54

References 55

3



1 Introduction

Experiments in high energy physics have established the Standard Model as a very good effective
theory for elementary particle physics up to the TeV scale. Consequently, the discovery of new
physics will require excellent quantitative control over Standard Model (SM) predictions includ-
ing QCD effects [6]. In particular, for the strong coupling, αs(mZ), as one of the fundamental
Standard Model parameters, a sub percent uncertainty will be required, which is significantly less
than the current error for the PDG (non-lattice) average αs(mZ) = 0.1176(11) [7].

At present, the most accurate results for αs are obtained from lattice QCD, as illustrated by
the FLAG 2019 average αs(mZ) = 0.1182(8) [8], which was recently updated to 0.1184(8) for
FLAG 2021 [4]. While lattice QCD does not require any model assumptions on hadronization,
the determination of αs(mZ) requires the solution of a multiscale or “window” problem (for an
introduction cf. [9,10]). Therefore, most lattice studies attempt to extract the coupling at relatively
low energy scales where perturbative truncation effects are hard to control. In particular, there
is now some evidence that error estimates obtained within perturbation theory can be rather mis-
leading unless large energy scales are reached non-perturbatively [11,12]. As a result many lattice
determinations of αs are now limited by systematic errors. cf. [4, 9].

A solution to this multiscale problem has been known for 30 years in the form of the recursive
step-scaling method [13]. The method has since been applied to the running of the coupling in
QCD withNf = 0 [2,3,14,15], Nf = 2 [16,17], Nf = 3 [5,18] andNf = 4 [19,20] quark flavours
(for a review cf. [21]), and in various candidate models of physics beyond the Standard Model (for
reviews, cf. [22, 23]). Its most recent application in 3-flavour QCD has allowed the ALPHA
collaboration to non-perturbatively trace the scale evolution of the coupling in 3-flavour QCD
between 0.2 and 128 GeV [5]. The corresponding result obtained for αs(mZ) = 0.11852(84)

in 5-flavour QCD defines a benchmark against which to measure progress. Knowing the scale
dependence of the coupling is a pre-requisite for the step-scaling solution of other renormalization
problems. This is illustrated by a recent step-scaling study of the running quark mass in 3-flavour
QCD [24, 25] which will provide essential input for this paper.

Current lattice QCD simulations include the light up, down and strange quarks (Nf = 2 + 1),
and sometimes also the much heavier charm quark as active degrees of freedom (Nf = 2 +

1 + 1). The Applequist-Carazzone decoupling theorem [26] ensures that the effects of heavy sea
quarks on low energy observables can be absorbed in parameter renormalizations up to effects
that are power suppressed in the heavy quark masses [27]. In ref. [28] the perturbative treatment
of decoupling, known to 4-loops in the MS scheme [29–34], was shown to provide an excellent
quantitative description of decoupling, even at scales as low as the charm quark mass. Hence,
perturbative matching of the Nf = 3 coupling across the charm and bottom quark thresholds
yields a reliable estimate of the Nf = 5 coupling αs(mZ) in terms of the 3-flavour Λ-parameter1 .
The corresponding error is small and will remain sub-dominant for the foreseeable future.

The high accuracy of perturbative decoupling means that the inclusion of the charm quark
is not required for a lattice determination of αs(mZ). There is much more to gain from focusing
on a reliable and precise determination of Λ

(3)

MS
. The currently best lattice result by the ALPHA

collaboration, 341(12) MeV, has an error of 3.5% [5]. For comparison, the recent high precision
study in the pure gauge theory [2] quotes Λ

(0)

MS

√
8t0 = 0.6227(98) i.e. an error of 1.6%. Given

1 One also needs to input values for the charm, bottom and Z-boson masses, taken e.g. from [7]; corresponding
uncertainties are negligible.
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that the error due the physical scale setting is subdominant, it is thus conceivable that a substantial
error reduction for Λ

(3)

MS
can still be achieved by pushing the 3-flavour step-scaling method to

higher precision. While such a project would be very interesting, we emphasize that it is just as
important to corroborate results with a different method.

The decoupling project, introduced in [1] and reviewed in [10], aims to deliver on both counts.
It uses decoupling as a tool to connect Nf = 3 QCD to Nf = 0 QCD, and thus leverage the higher
precision that can be achieved with step-scaling methods in the Nf = 0 theory [2, 3]. This con-
nection is achieved by varying the RGI mass M of a fictitious triplet of mass-degenerate quarks
compared to a hadronic scale µdec ≈ 800 MeV. We call this low energy scale the decoupling
scale. Reaching values for M of up to O(10) GeV and using perturbative 4-loop decoupling then
establishes a relation for Λ

(Nf)

MS
/µdec between both theories, with corrections that are either per-

turbative in the MS-coupling at the scale of the heavy quark mass, M , or power suppressed in
1/M . Obviously, the heavy quark mass defines another scale and thus creates a potentially diffi-
cult multi-scale problem. To alleviate this problem, the choice of µdec somewhat above ΛQCD is
convenient, since the matching to a hadronic scale can be safely performed in a separate computa-
tion. The use of a finite volume renormalization scheme for the coupling at scale µdec = 1/L then
reduces the decoupling project to a problem involving two physical scales, µdec and M , where
the challenge remains to reach large z = M/µdec � 1 while keeping the lattice spacing small
enough so that M � 1/a. In this paper we discuss the details of the decoupling strategy and the
numerical simulations we performed. When combined with earlier scale setting results [35] and
precision Nf = 0 studies [2, 3], the very accurate result, Λ

(3)

MS
= 336(12) MeV, is obtained with

uncertainties still dominated by statistical errors. Relying on the usual perturbative matching to
5-flavour QCD this translates to our result αs(mZ) = 0.11823(84).

The paper is organized as follows. In Section 2 we give a step by step overview of the de-
coupling strategy, in a language aimed also at non-lattice experts. Section 3 proposes a closer
look at the continuum and decoupling limits. In particular, the leading corrections are derived
in order to guide the analysis of the numerical data. Section 4 starts with the chosen set-up of
non-perturbatively O(a) improved lattice QCD with Wilson quarks, continues with a summary of
the simulations with massive quarks and then presents the continuum and heavy mass extrapola-
tions of the data which lead to the Λ-parameter. In Section 5 we obtain the corresponding result
for αs(mZ) and we conclude with an outlook (Section 6). A number of appendices have been
included. Appendix A explains how we estimated heavy mass effects of order 1/M originating
from the space-time boundaries. Appendix B summarizes the required Nf = 0 results, obtained
either by dedicated Nf = 0 simulations or taken from the literature. Appendix C contains details
about Nf = 3 simulations, both with massive and massless quarks. The latter are required to
ensure O(a) improvement of the renormalized quark masses. Appendix D discusses the derivation
and numerical implementation of formulas (4.2) and (4.6), which allow us to perform shifts to the
data and correct for small mistunings to the relevant lines of constant physics. The ingredients
for quark mass renormalization and O(a) improvement, as well as some consistency checks, are
then given in Appendix E. The impact of errors in the quark mass determination is discussed in
Appendix F. Finally, Appendix G explains how bare parameters were chosen on the larger lattices
to ensure constant physical conditions.
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2 The decoupling strategy

The decoupling strategy has been introduced and explained in ref. [1]. We assume the reader to
be familiar with this reference and try to keep the overlap minimal. Some aspects of the chosen
strategy may not seem obvious at first sight, as they are conditioned by previous projects of the
ALPHA collaboration [2, 3, 5, 24, 35, 36]. Besides the lattice action, this concerns the choice of
boundary conditions and renormalized couplings. Further technical issues arise from the necessity
of O(a) improvement and the need to control boundary effects both at O(a) and in the heavy mass
expansion. We will address these points in the following sections. Here we use a continuum
language to discuss how the decoupling strategy is set up in principle.

2.1 Renormalization group invariant parameters

To set the stage we consider continuum QCD with Nf mass-degenerate quarks. The theory only
has two bare parameters, the coupling and the quark mass. If these are renormalized in a mass-
independent scheme s, their scale dependence gives rise to the definition of the β-function

∂ḡs(µ)

∂ lnµ
= βs(ḡs)

ḡs→0∼ − ḡ3
s

∑
n≥0

bnḡ
2n
s (2.1)

and the quark mass anomalous dimension,

∂ ln m̄s(µ)

∂ lnµ
= τs(ḡs)

ḡs→0∼ − ḡ2
s

∑
n≥0

dnḡ
2n
s . (2.2)

The renormalization scheme dependence begins with b2 and d1, and the universal first coefficients
are, for 3 colours,

b0 =

(
11− 2

3
Nf

)
× (4π)−2, b1 =

(
102− 38

3
Nf

)
× (4π)−4, d0 = 8× (4π)−2 . (2.3)

Given a non-perturbative definition of the running parameters in a scheme s and thus non-perturbative
results for the RG functions βs and τs, one may define the renormalization group invariant (RGI)
parameters,

Λs = µϕs(ḡs(µ)) , (2.4)

ϕs(ḡs) = (b0ḡ
2
s)
−b1/(2b20)e−1/(2b0ḡ2

s) × exp

−
ḡs∫

0

dx

[
1

βs(x)
+

1

b0x3
− b1
b20x

] ,

M = ms(µ)
[
2b0ḡ

2
s(µ)

]− d0
2b0 exp

−
ḡs(µ)∫
0

[
τs(x)

βs(x)
− d0

b0x

]
dx

 , (2.5)

where the RGI quark mass M is scheme independent, while Λs depends on the renormalization
scheme s, the standard reference being the MS scheme of dimensional regularization2 . The run-
ning coupling, the quark mass, and the RGI parameters are defined for QCD with a fixed flavour

2 The scheme dependence is however exactly computable from the perturbative 1-loop relation between the respec-
tive couplings.
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number Nf . We occasionally indicate this dependence by a superscript; when omitted we refer to
QCD with non zero Nf implying Nf = 3 in our numerical work. Note that the ratio Λs/µ is, for
large enough µ, in one-to-one correspondence with the coupling ḡ2

s(µ) in scheme s. Hence, the
running parameters in scheme s at large µ can be traded for ΛMS/µ and the scheme independent
RGI quark mass M .

2.2 Decoupling relations

So far we have assumed that the coupling and quark mass are renormalized in a mass-independent
scheme. In practice, this is achieved by imposing the renormalization condition at vanishing quark
mass [37]. A renormalized coupling at finite quark mass defines a function ḡs(µ,M) such that,
for M � µ, it coincides with the coupling in a massless scheme, ḡs(µ, 0) = ḡs(µ), whereas, for
M � µ its scale dependence is well described by an effective theory with the Nf heavy quarks
removed. In the absence of other light quarks, this simply is the pure gauge theory or “quenched
(Nf = 0) QCD”. We can thus write

ḡs(µ,M) = ḡ(0)
s (µ) + O(µ2/M2) , (2.6)

where on the r.h.s. the scale µ in units of the pure gauge theory Λ-parameter has an implicit M -
dependence. The mass-dependent coupling is thus seen to interpolate the couplings in QCD with
Nf and zero flavours. This in turn implies a relation between the respective mass independent
couplings. In perturbation theory and in the MS scheme the ensuing relations have been computed
up to 4-loop order [29–34]:

[ḡ
(0)

MS
(µ)]2 = C(ḡ

MS
(m?))ḡ

2
MS

(m?) (2.7)

where the scale choice µ = m? = m
MS

(m?) eliminates the 1-loop coefficient in

C(x) = 1 + c2x
4 + c3x

6 + c4x
8 + . . . , (2.8)

and, for Nf = 3, one obtains [34]

c2 = 2.940776× 10−4, c3 = 4.435355× 10−5, c4 = 5.713208× 10−6 . (2.9)

Beyond perturbation theory, the limit of infinite M/µ requires the extrapolation of numerical data
and one would like to understand how it is approached. To this end, the language of effective
field theory is most helpful, cf. [28]. Assuming that the heavy quark limit is described by a local
effective theory, one obtains a systematic expansion in inverse powers of the quark mass M . In
particular, with all fermions decoupled simultaneously the effective theory takes the form of the
pure gauge theory where the inverse mass corrections are proportional to insertions of higher di-
mensional local gluonic operators. One naturally wonders whether all powers of 1/M may appear
in this expansion. In the absence of space-time boundaries, and for gluonic observables defining
the running couplings, the locality of the effective decoupling theory, Euclidean O(4) symmetry
and gauge invariance rule out any odd-dimensional terms so that the expansion is effectively in
1/M2.

The situation changes if space-time is a manifold with boundaries, as this allows for addi-
tional local boundary terms at order 1/M in the effective Lagrangian. This is relevant in our
case, where we use the standard Schrödinger functional set-up on a space-time hyper-cylinder
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of 4-volume L3 × T , with Dirichlet boundary conditions imposed on some of the fermionic and
gauge field components at Euclidean times x0 = 0 and x0 = T [38, 39]. In order to minimize the
impact of such boundary contributions, we chose a geometry such as to have large distances from
the boundary to the observable defining the coupling in the mass-dependent scheme. Using the
decoupling effective field theory, with a single local term at the boundaries x0 = 0 and x0 = T ,
we are able to compute the 1/M contributions to the coupling. They are given in terms of a 1-loop
matching coefficient (see section A.1) and a non-perturbative matrix element. The latter is evalu-
ated by simulations in the decoupled theory with Nf = 0 and extrapolated to the continuum (see
section A.2). We can thus confirm that the boundary effects are negligible for T = 2L.

2.3 Master formula and strategy breakdown

Following Ref. [1], the decoupling strategy can be cast in the form

ΛMS

µdec
=

Λ
(0)

MS

Λ
(0)
s

× lim
M/µdec→∞

ϕ(0)
s (ḡs(µdec,M))

P
(

M
µdec

/
ΛMS
µdec

)
 .

(2.10)

Note that the desired ratio ΛMS/µdec on the l.h.s. in Nf = 3 QCD also appears on the r.h.s. in the
argument of the function P , i.e the equation is implicit. In order to solve it one needs to be able
to both evaluate the pure gauge theory function ϕ(0)

s and the function P . The latter corresponds
to P0,Nf

in the notation of [28], where it was shown that non-perturbatively P has an ambiguity
of order (Λ/M)2, which arises once the reference to a specific matching condition is removed. A
major result of [28] is the observation that the perturbative evaluation of P using the MS-scheme
is numerically very accurate already for quark masses in the charm region. With the heavy quark
mass setting the scale for the MS-coupling, the accuracy further improves towards the decoupling
limit. In practice, Eq. (2.10) will be used for a range of finite but reasonably large values M/µdec.
When using a perturbative approximation for P in the MS scheme, deviations from the limit are
expected to be on one hand proportional to 1/M2 and on the other hand logarithmic corrections
of O(α4

MS
(M)). This assumes that linear terms in 1/M are either completely absent by symmetry

or that they can be controlled or subtracted explicitly.
While decoupling can be studied in the infinite volume regime [28], for a lattice QCD ap-

proach it is advantageous to separate the determination of the hadronic scales from the study of
decoupling, by using a finite volume renormalization scheme [1]. We use the GF scheme with SF
boundary conditions, first introduced in [40], with details given in [35]. In a continuum language
it is given by

ḡ2
GF(µ) = N−1

3∑
k,l=1

t2〈tr {Gkl(t, x)Gkl(t, x)} δQ,0〉
〈δQ,0〉

∣∣∣∣∣∣
x0=T/2, c=

√
8t/L

µ=1/L,T=L,M=0

(2.11)

where Gµν(t, x) denotes the field tensor for the gauge field at flow time t, and N is a known nor-
malization factor which ensures ḡ2

GF(µ) = g2
0 + O(g4

0), with g0 the bare coupling. The projection
onto the topological charge Q = 0 sector is part of the scheme definition and merely introduced
in order to avoid technical difficulties with the numerical simulation algorithms. The remaining
parameter c fixes the ratio between the scales set by the flow time and the finite volume.

We may now break down the decoupling strategy into several steps:

8



1. Decoupling scale µdec: Given the coupling in the massless fundamental theory, we fix µdec

by setting
ḡ2

GF(µdec) = 3.949 . (2.12)

From previous work [5, 35] one finds µdec = 789(15) MeV, which is a typical QCD scale.
Eq. (2.12) defines a so-called line of constant physics (LCP); following it towards the con-
tinuum, lattice spacing a→ 0, means that the limit is approached at fixed µdec/ΛMS. Eval-
uating the LCP for a given lattice size L/a = 1/(aµdec) defines a corresponding value for
the bare coupling, g2

0 ≡ 6/β, and vice versa. We have implicitly assumed here that M
vanishes. With Wilson fermions this requires a further tuning condition on the bare mass
parameter. Details are discussed in section 4.1.

2. Definition of z = M/µdec: A further set of constant physics conditions is obtained by fixing
the RGI quark mass in units of µdec. Choosing a set of values in the range ∈ [2, 12], one
needs to work out, for given lattice spacing (as obtained from Eq. (2.12)) the corresponding
bare mass parameters am0. The details of this procedure will be discussed in Section 4.2.

3. Determination of ḡ(0)
GFT(µdec): The value of a renormalized coupling in theNf = 0 theory, at

a known scale µdec is obtained by evaluating the same coupling in the fundamental theory
at a heavy mass M and assuming decoupling. The main problem with a mass dependent
GF-coupling are boundary 1/M terms, which render decoupling slower than necessary. In
order to minimize these effects we use a variant of the coupling with T = 2L,

ḡ2
GFT(µ,M) = ḡ2

GF(µ)
∣∣
T→2L,M→zµ . (2.13)

Compared to the GF coupling (2.11) this doubles the distance of the magnetic energy den-
sity to the boundaries, thereby reducing the coefficient of the 1/M boundary contribution
substantially. Calling this scheme GFT, the main computational effort was required for the
evaluation of ḡ2

GFT(µdec,M), at the lattice spacings and bare quark masses which follow
from the chosen lines of constant physics.

4. Determination of ḡ(0)
GF (µdec): Obtaining this input value for the precisely known ϕ(0)

s (with
the scheme s = GF) in Eq. (2.10) requires the establishment of a non-perturbative relation
between the GF and the GFT schemes in the Nf = 0 theory at scale µdec. This is achieved
by evaluating the GF coupling along a LCP defined by a fixed value of the GFT coupling,
and continuum extrapolating.

5. Determination of Λ
(0)

MS
/µdec: The recent step-scaling study of the GF coupling in [2] allows

us to evaluate ϕGF(ḡ
(0)
GF (µdec)) = Λ

(0)
GF/µdec which completes the numerator in the square

brackets of Eq. (2.10). The conversion to the MS Λ-parameter then simply requires the
one-loop matching between the GF and MS-couplings in the pure gauge theory [41].

6. The function P gives the ratios of Λ-parameters between the fundamental and effective
theories and can be reliably evaluated in massless continuum perturbation theory

P = ϕ
(0)

MS
(g?
√
C(g?))/ϕMS

(g?) , (2.14)

withC(g) known to 4-loop order, cf. Eq. (2.9) and the notation g? = ḡMS(m?). In particular,
the quark mass M only enters to set the scale. For given z = M/µdec, the l.h.s. and the
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function P in Eq. (2.10) only depend on ΛMS/µdec and with ϕGF known it remains to
numerically solve for ΛMS/µdec. This is to be repeated for all available z-values and the
result for ΛMS/µdec is then obtained by extrapolation to the decoupling limit.

Concluding this overview, we see that, besides the evaluation of the GFT coupling in a mass-
dependent scheme, the main ingredients are precision results in the pure gauge theory for the
running GF coupling and the matching between GF and GFT schemes. Together with available
5-loop perturbative results for the function P , this allows us to infer the Nf = 3 Λ-parameter in
units of µdec and thus in MeV, given the relation of µdec to a hadronic scale from [35].

3 The continuum and decoupling limits: a closer look

In this section we discuss the approach to the continuum and decoupling limits in some more
detail, in order to provide the theoretical underpinning for the analysis of the lattice data. While
the limits are conceptually independent, in practice they are best dealt with together, in terms of
effective continuum field theories. The methods of refs. [42–46] allow us in principle to go be-
yond power law behaviour and use renormalization group improved perturbation theory to obtain
the correct leading asymptotics. This holds true for both limits, with the small parameter being
either the lattice spacing or the inverse quark mass. While the information for the bulk effects is
still incomplete, the discussion serves to motivate the fit ansätze which will be used in the data
analysis, cf. Section 4. For the boundary 1/m effects we are able to estimate the full contribution
in Section 3.3 without a fit to the data. We will focus on the bulk effects first and address the
influence of the boundaries in the Euclidean time direction in the end.

3.1 Symanzik’s effective theory for lattice QCD

Following Symanzik [47–50], the approach of a connected lattice correlation function to the con-
tinuum limit can be described in terms of an effective continuum theory, with action

Seff = S0 + aS1 + a2S2 + . . . . (3.1)

Here, S0 is the continuum action and Sk are space-time integrals over linear combinations of local
composite fields of mass dimension 4 + k, k = 1, 2, . . ., which respect all the symmetries of the
lattice action. We will omit S1 in the following, assuming a non-perturbatively O(a) improved
lattice set-up. Residual effects due to S1 are dealt with separately (cf. Sect. 3.3 and Appendix E).

Local fields O defining the observables are represented by corresponding effective fields and
expanded similarly,

Oeff = O0 + aO1 + a2O2 + . . . . (3.2)

Gluonic gradient flow observables Ogf can be formulated in terms of a local 4+1 dimensional field
theory [51,52] with the flow time t as the extra coordinate. This allows us to work entirely in terms
of local observables O and improve them to O(a2), such that O1 and O2 vanish in the effective
field description. We also assume that the O(a2) effects originating from the 4+1 dimensional bulk
action are removed by an appropriate O(a2) modification of the flow equation [52]. The Symanzik
expansion for such observables then takes the form

〈Ogf〉lat = 〈Ogf〉cont − a2〈OgfS2〉cont + . . . , (3.3)
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in terms of connected correlation functions. Although S2 contains an integral over space-time, no
contact terms are generated for gradient flow observablesOgf, as they are separated from S2 by the
finite flow time t. For the lattice set-up with non-perturbatively O(a) improved, mass degenerate
Wilson quarks, S2 is given as a linear combination of 18 local dimension-6 operators,

S2 =

∫
d4x

18∑
i=1

ωiOi(x) , (3.4)

integrated over space-time. This constitutes an operator basis after the use of the equations of
motion, the elimination of total derivative terms and the use of relations among 4-quark operators
due to Fierz transformations. In the absence of gradient flow observables, the equations of motion
simplify and allow for the elimination of 2 operators [45].

Note that Eq. (3.3) makes the power dependence on the lattice spacing explicit. An ad-
ditional a-dependence arises through the coefficients ωi of the operators in S2, as these can be
understood as functions of a renormalized coupling at the cutoff scale, µ = 1/a. Close to the
continuum limit asymptotic freedom implies that their leading asymptotic behaviour is exactly
computable. This was first used by Balog, Niedermayer and Weisz [53,54] in their analysis of the
2-dimensional O(n) σ-model. The technique has recently been extended and applied to gauge the-
ories in various lattice regularisations, including lattice QCD with quarks of both the Wilson and
Ginsparg-Wilson type [42–46]. Technically, one needs to compute, to 1-loop order, the anomalous
dimension matrix for the set of mass dimension 6 operators entering S2. The operator basis mixes
under renormalization, OR,i =

∑18
j=1 ZijOj , and, following our conventions from Sect. 2, we

define the corresponding anomalous dimension matrix

γOij =
18∑
k=1

(
µ
d

dµ
Zik

)(
Z−1

)
kj

= −g2
[
(γO0 )ij + (γO1 )ijg

2 + O(g4)
]
. (3.5)

A change of basis, Bi =
∑

j VijOj , may then be performed in order to diagonalize the one-loop
anomalous dimension matrix, γO0 , and determine its eigenvectors and eigenvalues. Denoting the
transformed anomalous dimension matrix by

γB = V γOV −1 = −g2
(
γB0 + γB1 g

2 + . . .
)
,

(
γB0
)
ij

= δijγ
B
0,i , (3.6)

renormalization group invariant (RGI) operators can be defined through3

BRGI
i = lim

µ→∞

[
αMS(µ)

]−γ̂Bi Bi(µ) , γ̂Bi = γB0,i/(2b0) . (3.7)

At finite µ there are corrections of O(α) stemming from the two- and higher loop anomalous
dimensions. Note also the Nf -dependence of γ̂Bi , due to the normalization by 2b0.

In terms of the eigenbasis of operators, {Bi}, the cutoff effects take the form

〈Ogf〉lat = 〈Ogf〉cont − a2
∑
i

bi
(
αMS(1/a)

)
[αMS(1/a)]γ̂

B
i

∫
d4x〈OgfBRGI

i (x)〉+ . . . , (3.8)

3 The absolute normalization of the RGI operator conventionally includes a constant (but Nf -dependent) factor
[8πb0]−γ̂ which we omit for the sake of readability and because the normalization of BRGI will be irrelevant in the
following.
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where the coefficient functions

bi(α) =
18∑
j=1

ωj(α) (V −1)ji =
∑
n≥0

αnb
(n)
i , (3.9)

are given as a linear combination of the ωi, Eq. (3.4), and are thus perturbatively computable. For
tree-level O(a2) improved lattice actions, b(0)

i = 0, and the higher coefficients can be successively
eliminated by perturbative O(a2) improvement of the lattice action. For lattice QCD with O(a)
improved Wilson quarks, one then expects that the leading cutoff effects in the bulk are of the
form

〈Ogf〉lat = 〈Ogf〉cont − a2
18∑
i=1

Ai[αMS(1/a)]Γ̂i
{

1 + O(αMS(1/a))
}

+ O(a3) , (3.10)

Ai = b
(nI
i)

i

∫
d4x

〈
OgfBRGI

i (x)
〉

cont , (3.11)

where the neglected powers in α include both the expansion of bi(α) and terms containing the
(non-diagonal) higher order anomalous dimensions. The constants Ai contain the insertions of the
scale-independent RGI operators and Γ̂i = γ̂Bi + nI

i depends on the degree of perturbative O(a2)
improvement of the lattice action. For example, a tree-level (completely) improved action leads to
nI
i ≥ 1 and in general we have bi = b̂iα

nI
i(1 + O(α)).

For Nf = 3 lattice QCD, with O(a) improved Wilson quarks, Husung et al. [44–46] found
that the spectrum for the 1-loop anomalous dimensions is bounded from below by Γ̂i ≥ −1/9,
for the basis of 16 operators needed for observables not involving the gradient flow. There are
then 6 operators found with 1-loop anomalous dimensions −1/9 ≤ Γ̂i < 8/9. The remaining
operators describe cutoff effects accompanied by powers of α equal or higher than other neglected
terms and may therefore be discarded. Explicit expressions for the eigen-operators of the 1-loop
anomalous dimension matrix are, in general, rather complicated and will not be required here. For
the case of gradient flow observables this result is not complete, as there are two further dimension
6 operators which must be included to obtain the full matrices V and γO0 [45]. They have so far
only been computed in the pure gauge theory [45].

In view of the heavy mass expansion, there is a very interesting block structure in γO0 , for
the subset of operators in S2 which come with a positive power of the quark mass. For Nf = 3

with non-degenerate quarks there are eleven operators [44–46], which reduce to just three for
degenerate quarks, namely

Om,1 =
1

g2
0

∑
µ,ν

m2 tr (FµνFµν) , Om,2 = m3ψψ , Om,3 =
1

4

∑
µ,ν

mψ iσµνFµνψ .

(3.12)
Note that this subset will remain the same for gradient flow observables, as the additional operators
do not come with mass factors. Moreover, the tridiagonal block structure of γO0 means that their
anomalous dimensions will not be affected by enlarging the basis and their renormalization can be
consistently carried out ignoring the remainder of the basis [44–46]. This is fortunate, as it means
that the structure of the leading a2m2 lattice effects can be inferred with current knowledge. We
denote the corresponding basis of eigen-operators for the 1-loop anomalous dimension matrix by
{Bm,i}i=1,2,3, and their 1-loop anomalous dimensions are then given by [44–46],

γ̂Bm,1 = −1/9 , γ̂Bm,2 = 14/27 , γ̂Bm,3 = 8/9 . (3.13)
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Furthermore, from [44–46] one infers that, for our lattice action (cf. Appendix C), we have bm,i =

b̂m,i + O(α) so that Γ̂m,i = γ̂Bm,i for i = 1, 2, 3. We note that one only needs to retain the first two
operators as the difference γ̂Bm,3− γ̂Bm,1 = 1 translates to a relative factor of α, i.e. Bm,3 contributes
at the same order as other neglected contributions.

3.2 The decoupling expansion

The Symanzik expansion renders the a-dependence explicit, both for the powers of a and the
leading logarithmic terms given as fractional powers of αMS(1/a). The connected correlation
functions which appear in this expansion are thus defined in the continuum limit, with respect to
the continuum QCD action. In a second step, we now determine how the continuum correlation
functions, 〈Ogf〉cont, 〈OgfS2〉cont, behave as the quark mass m is taken large. The effective de-
coupling theory bears formal similarities with Symanzik’s effective theory, in particular it renders
both the powers in 1/m and the logarithmic corrections explicit. The effective decoupling action
can be expanded,

Sdec = S0,dec +
1

m
S1,dec +

1

m2
S2,dec + O(1/m3) , (3.14)

with

S0,dec = −1

2

∫
d4xD0(x) , D0 =

1

g2
0

tr(FµνFµν) , (3.15)

S2,dec =

∫
d4x

(
dS

1D1(x) + dS
2D2(x)

)
. (3.16)

Due to the simultaneous decoupling of all quarks the leading term, S0,dec, is given by the pure
gauge action. Sk,dec are given space-time integrals of gauge invariant local operators of mass
dimension 4 + k, polynomial in the gauge field and its derivatives. Gauge and O(4) symmetries
do not allow for odd values of k, so that the first order term must vanish. The dimension-6 pure
gauge operators in Eq. (3.16) take the form,

D1 =
1

g2
0

∑
µ,ν,ρ

tr (DµFµνDρFρν) , D2 =
1

g2
0

∑
µ,ν,ρ

tr (DµFρνDµFρν)− 23

7
D1 , (3.17)

where we have directly chosen the eigenbasis of the one-loop anomalous dimension matrix, with
eigenvalues γ̂D0,1,2 = −1, 0, 7/11, respectively. The coefficients dS

1,2 are matching coefficients
between QCD withNf = 3 heavy quarks and theNf = 0 effective theory and can be perturbatively
expanded in αMS, taken at the decoupling scale. In perturbation theory, this scale is most naturally
defined as the running quark mass m

MS
(µ) at its own scale,

m? = m
MS

(m?) , (3.18)

which also defines the (inverse) expansion parameter of the effective decoupling theory.
Besides the effective action, observables O have an effective large mass description, too. For

the case of linear combinations of the fields Bi, O =
∑

i ciBi, it starts with a term of O(m2). We
thus expect the form

[O]dec = m2
∑
k≥0

1

m2k
O2k,dec , (3.19)

where the fields O2k,dec are linear combinations of gauge invariant local composite fields, poly-
nomial in the gauge field and its derivatives, of mass dimension dO + 2(k − 1), where dO is the
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dimension of the observable. For gradient flow observables Ogf we will assume that the effective
observable description reduces to the term with k = 1.

We will now look at the combined Symanzik and decoupling expansion in a and 1/m and dis-
cuss in turn the corrections terms of order O(1/m2), O(a2m2) and O(a2). We emphasize that the
decoupling expansion is applied to the Symanzik effective theory. Hence, the combined expansion
is valid for

q � m� 1/a , (3.20)

for all scales q present in the observable considered. In our application these are q ∈ {1/
√

8t,ΛQCD}.

3.2.1 Corrections of O(1/m2)

To order 1/m2 in the heavy mass expansion, we formally have,

〈Ogf〉cont = 〈Ogf〉dec −
1

m2
〈OgfS2,dec〉dec + . . . , (3.21)

which evaluates to

〈Ogf〉cont = 〈Ogf〉dec −
1

m2
?

2∑
i=1

dS
i [α

(0)

MS
(m?)]

γ̂Di

∫
d4x〈OgfDRGI

i (x)〉dec + . . . , (3.22)

where we have converted to the RGI operators in the Nf = 0 theory. Without performing an
explicit matching calculation, the leading order, lSi , in dS

i = d̂S
i α

lSi + O(αl
S
i +1), i = 1, 2, is not

known and we will have to use assumptions for lSi . Also converting to the RGI quark mass, M ,

m? = [8πb0αMS(m?)]
γ̂mM , γ̂m = 4/9 (Nf = 3) , (3.23)

then leads to the asymptotic large mass behaviour in the continuum limit of the form

〈Ogf〉cont = 〈Ogf〉dec −
1

M2

2∑
i=1

Di[αMS(m?)]
lSi−2γ̂m+γ̂Di + . . . , (3.24)

where we have used that the couplings of the Nf = 3 and 0 theory coincide at the decoupling
scale, i.e. αMS(m?) ≡ α

(3)

MS
(m?) = α

(0)

MS
(m?), up to terms of O(α2), which are neglected here.

The constants Di parametrize the matrix elements in the decoupled theory and the exponents of α
are further specified as

lSi − 2γ̂m + γ̂Di =

{
lS1 − 8/9 (i = 1) ,

lS2 − 25/99 (i = 2) .
(3.25)

Assuming, e.g. lS1 = lS2 = 1 (at least one fermion loop has to be present in QCD), then fixes a
possible ansatz for the heavy mass extrapolation of continuum extrapolated data for the gradient
flow observable, with leading correction terms∝ [αMS(m?)]

1/9/M2 and∝ [αMS(m?)]
74/99/M2,

for i = 1, 2, respectively.
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3.2.2 Corrections of O(a2m2) and O(a2)

We now turn to the large mass expansion of 〈OgfBRGI
i 〉cont which appears at O(a2) in the Symanzik

expansion. We first transform the RGI operators to the relevant scale µ = m?, by applying
Eq. (3.7)

BRGI
i =

[
αMS(m?)

]−γ̂Bi Bi(m?) [1 + O(α(m?))] , (3.26)

and inserting into the Symanzik expansion coefficient,

〈OgfS2〉cont =
18∑
i=1

bi
(
αMS(1/a)

)
R
γ̂Bi
α

∫
d4x 〈OgfBi(m?;x)〉cont , (3.27)

where we have neglected terms of relative O(α) and introduced the notation,

Rα =
α

(3)

MS
(1/a)

α
(3)

MS
(m?)

. (3.28)

In this approximation, we expect that less than half of the 18 operators contribute terms that are
parametrically leading in α. However, a precise statement can only be made once the full one-loop
anomalous dimension matrix and the coefficients bi are known.

With these preliminaries we use the effective decoupling description for the operators Bi,

[Bi]dec = m2dBi,0D0 + dBi,1D1 + dBi,2D2 + O(1/m2) (3.29)

with matching coefficients dBi,j . Inserting the expansion of both the decoupling action (3.14) and
these fields we obtain,

〈OgfBi(x)〉cont = m2dBi,0〈OgfD0(x)〉dec

−dBi,0
2∑
j=1

dS
j

∫
d4y〈OgfD0(x)Dj(y)〉dec

+

2∑
j=1

dBi,j〈OgfDj(x)〉dec , (3.30)

up to terms of order 1/m2. In the next step we pass back to RGI operators, now in the decoupled,
Nf = 0 theory. With the anomalous dimension ofD0 given by γ̂D0 = −1 [45], and after conversion
to the RGI quark mass with γ̂m = 4/9, we find

〈OgfBi(m?;x)〉cont = M2dBi,0[α
MS

(m?)]
−1+8/9〈OgfDRGI

0 (x)〉dec

− dBi,0
2∑
j=1

dS
j [α

MS
(m?)]

−1+γ̂Dj

∫
d4y 〈OgfDRGI

0 (x)DRGI
j (y)〉dec

+

2∑
j=1

dBi,j [αMS
(m?)]

γ̂Dj 〈OgfDRGI
j (x)〉dec + O(1/m2

?) , (3.31)

where we have used once again that the couplings coincide at the decoupling scale, i.e. αMS(m?) ≡
α

(3)

MS
(m?) = α

(0)

MS
(m?), up to terms of O(α2), which are negligible in this context. Inserting this
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expansion into Eq. (3.27) one notices that each term is weighted by bi × R
γ̂Bi
α . The matching

coefficients dBi,j for the observable and dS
j for the action have expansions in α, but their leading

orders are not known. However, as we are interested in the leading M2 behaviour, we focus on
the massive operators Bm,i, for i = 1, 2 (cf. Sect. 3.1). Both operators contain the gluonic com-
ponent Om,1, so that one expects the expansion of their matching coefficients to start at tree level,
i.e. dB(m,i),0 = d̂Bi,0 + O(α). Combining this with the Symanzik expansion we obtain the form of
the leading a2M2 lattice effects,

a2〈OgfS2〉cont = a2M2D0b̂m,1d̂
B
1,0[αMS(1/a)]−1/9

[
1 +

b̂m,2d̂
B
2,0

b̂m,1d̂B1,0
R17/27
α + O(α)

]
+ . . . (3.32)

where D0 denotes the matrix element of DRGI
0 . Note that αMS(m?) accidentally cancels out in the

leading term.
Proceeding to the subleading a2-effects, there are two types of contributions in Eq. (3.31).

The first arises from the cancellation of them2 leading term with the subleading 1/m2 contribution
from the effective decoupling action S2,dec, Eq. (3.16). Counting powers of α, we expect that only
the massive operators Bm,i have a tree level matching coefficient to D0, rendering all non-massive
operators negligible. For the matching coefficients in S2,dec we assume dS

1,2 = d̂S
1,2α, so that we

obtain the form of the first subleading a2-effect,

a2〈OgfS2〉cont = a2M2-terms

− a2b̂m,1d̂
B
1,0[αMS(1/a)]−1/9

[
1 +

b̂m,2d̂
B
2,0

b̂m,1d̂B1,0
R17/27
α

](
d̂S

1D01 + [αMS(m?)]
7/11d̂S

2D02

)
+ . . . .

(3.33)

Here, we have used γ̂D1,2 = 0, 7/11 andD0i denotes the matrix elements ofDRGI
0 DRGI

i , for i = 1, 2.
The leading term is proportional to a2 × αMS(1/a)−1/9 and αMS(m?) thus cancels yet again.

For the second subleading a2-term, the main question is which operators Bi match to D1,2

with a non-zero tree-level coefficient dBi,j = d̂Bi,j + O(α). This is certainly the case for those oper-
ators in S2 which contain the gluonic dimension-6 operators of the same form as D1,2. Including
only such operators Bi in S2 we then expect

a2〈OgfS2〉cont =a2M2-terms + (a2M2)/M2 terms

+ a2
∑
i

b̂iR
Γ̂i
α

(
d̂Bi,1D1 + αMS(m?)

7/11d̂Bi,2D2

)
+ . . . ,

(3.34)

where Di denotes the matrix element ofDRGI
i , i = 1, 2. The possible powers Γ̂i could be obtained

from a complete basis of operators for gradient flow observables. Until this becomes available we
assume that the a2-effects in Eq. (3.34) are subleading, i.e. Γ̂i > Γ̂1 = −1/9, with Γ̂1 correspond-
ing to the massive operator Bm,1.

3.3 Boundary effects

So far we have not considered the effect of boundaries, where chiral symmetry can be broken
by the boundary conditions. This is the case for standard SF [39], open [55], and open-SF [56]
boundary conditions. Locality means that these effects can be discussed separately. In particular,
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boundary O(ak) and O(1/mk) effects can be respectively described in the Symanzik and decou-
pling effective theory, in terms of local gauge-invariant fields of dimension 3 + k localized at the
boundaries [57]. In fact, the counterterm fields that appear at O(a) in the Symanzik expansion and
at O(1/m) in the large-mass expansion are the same. A complete set of fields can be found in
ref. [58], where a detailed discussion of the O(a) contributions to the Symanzik effective action
in the presence of SF boundary conditions is presented. Below we shall focus on the decoupling
expansion in the presence of SF boundary conditions. For a discussion on the boundary O(a)
effects affecting the observables of interest, instead, we refer the reader to refs. [2, 35]. In these
references, a detailed analysis for the case of the GF-couplings in the Nf = 0 and 3 theory is pre-
sented. Here we note that for the case of the GFT-couplings, due to the larger separation between
the flow energy density defining the couplings and the SF boundaries (cf. eq. (2.13)), these effects
are expected to be significantly smaller than the estimates obtained in refs. [2,35]. In practice, this
renders these effects irrelevant in the context of the analysis presented in Sect. 4.4 and we neglect
them.

As in the previous subsections, we are interested in the situation where the resulting effective
theory for large quark masses is the pure gauge theory, i.e. all quarks simultaneously decouple. In
this case, we have (cf. eq. (3.14)),

Sdec = S0,dec +
1

m
S1,dec +

1

m2
S2,dec + O(1/m3) , (3.35)

where

S1,dec =

2∑
i=1

∫
d3xωi,b

[
Oi,b(0,x) +Oi,b(T,x)

]
, (3.36)

with

O1,b = − 1

g2
0

3∑
k=1

tr(F0kF0k) , O2,b = − 1

2g2
0

3∑
k,l=1

tr(FklFkl) . (3.37)

The SF boundary conditions commonly considered in applications are defined in terms of spatially
constant Abelian fields [14,38]. These include in particular the case of vanishing boundary condi-
tions for the gauge field. For this class of fields, the only operator that contributes to the effective
action is O1,b, since Fkl(x) = 0 at x0 = 0, T .4 Thus, in this situation, we can take,

S1,dec =

∫
d3xωb

[
Ob(0,x) +Ob(T,x)

]
, (3.38)

where we simplified the notation by setting ωb ≡ ω1,b and Ob ≡ O1,b.
The knowledge of the matching coefficient ωb between QCD with Nf heavy quarks and the

pure gauge theory, would allow us to compute the O(1/m) corrections to any observable stemming
from the effective action. In the case of gradient flow quantities, Ogf, these are the only O(1/m)
effects. As a result, we have that,

〈Ogf〉cont = 〈Ogf〉dec −
1

m?
ωb

∫
d3x

〈
Ogf
[
Ob(0,x) +Ob(T,x)

]〉
dec

+ O(1/m2
?) . (3.39)

4 In the case of open boundary conditions F0k(x) = 0 at x0 = 0, T , and only the operator O2,b is relevant. For
open-SF boundary conditions, instead,O2,b contributes at x0 = 0, whileO1,b at x0 = T , if spatially constant Abelian
boundary fields are considered.
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Comparing eqs. (3.39) and (3.22), the attentive reader might have noticed the absence of a factor
[α

(0)

MS
(m?)]

γ̂b , with γ̂b the anomalous dimension of the relevant boundary field. This can be un-
derstood by noticing that for x0 = 0, T , Ob coincides with the Hamiltonian density operator of
the pure gauge theory,

H = − 1

g2
0

[ 3∑
k=1

tr(F0kF0k)−
1

2

3∑
k,l=1

tr(FklFkl)
]
. (3.40)

As is well-known, in continuum regularizations where the Euclidean space-time symmetries are
preserved, the latter is protected against renormalization and its insertion in correlation functions
is x0-independent. The result in eq. (3.39) is thus expected to be valid to all orders in the per-
turbative expansion. On the lattice, where the continuum space-time symmetries are reduced to
the symmetries of the hypercube, Ob still has vanishing anomalous dimension, but it requires a
scale-independent multiplicative renormalization [59].

Since the matching coefficient ωb is independent of the specific correlator considered, we
may impose the validity of eq. (3.39) for some convenient observable (neglecting O(1/m2) terms)
in order to determine ωb (up to O(1/m) ambiguities). It can then be used to compute the cor-
responding O(1/m) corrections to any other quantity of interest. While in principle eq. (3.39)
could be imposed non-perturbatively, in practice this is expected to be very challenging, since
the 1/m contributions have to be separated numerically from other powers. For large enough
masses m?, however, we may rely on a perturbative determination of ωb, since αMS(m?) is then
small. A convenient observable that can be used to determine ωb is the finite-volume SF coupling,
ḡ2

SF(µ) [14, 38, 60]. Although it is not a gradient flow quantity, it receives 1/m corrections only
from terms in the action. This is so because it is defined through the variation of the (logarithm of
the) partition function with respect to the boundary conditions for the gauge fields, and not by the
correlation function of some field. Thus, eq. (3.39) still holds in this form. Solving this equation
in perturbation theory, where on the l.h.s. the coupling is computed in Nf -flavour QCD with Nf

heavy quarks, while on the r.h.s. the correlators are computed in the pure gauge theory, we can
extract

ωb(α?) = ω
(1)
b α? + ω

(2)
b α2

? + . . . , α? ≡ αMS(m?) , (3.41)

by studying the limit m? → ∞. We refer the interested reader to Appendix A.1 for the details.
Here we simply quote the result,

ω
(1)
b = −0.0541(5)Nf . (3.42)

A couple of remarks are in order at this point. While the strategy based on eq. (3.39) is a general
way to compute (and therefore eliminate) the O(1/m) effects due to the SF boundary conditions,
other strategies are in principle possible. For an even number of flavoursNf , considering a twisted
mass µtw rather than a standard mass for the heavy quarks, would imply having leading O(1/µ2

tw)
corrections to observables [61]. Entirely equivalent in the continuum is the choice of having a
standard mass for the quarks, but with chirally rotated SF boundary conditions [62]. Regular peri-
odic boundary conditions are in principle possible for any value of Nf with leading corrections of
O(1/m2), however, perturbation theory becomes unduly complicated [63]. In QCD with Nf = 3

flavours 1/m effects could also be avoided by choosing twisted-periodic boundary conditions [64].
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4 3-flavour QCD: set-up, simulations and results

We simulate three flavors of non-perturbatively O(a)-improved Wilson fermions with the tree-
level Symanzik O(a2)-improved gauge action [65]. The same discretization was employed in
our previous work [35]. The parameter β = 6/g2

0 in the gauge action and a parameter κ =

1/(2am0 + 8) in the mass-degenerate fermion action need to be fixed for each lattice size, L/a =

1/(aµdec) and for each physical heavy quark mass M . Our line of constant physics (LCP) is
identified in terms of the value of the massless coupling ḡ2

GF(µdec) = 3.949 and the values of
z = ML. Our error analysis takes all (auto-) correlations into account using the publicly available
implementations of the Γ-method [66, 67] and a second independent analysis. A preliminary
analysis of our results was presented in [68].

4.1 Line of constant physics at M = 0

The first four columns of table 1 show results of simulations tuned such that the PCAC mass
vanishes and ḡ2

GF ≈ 3.949. In order to precisely tune to our LCP, we apply a small shift,

g2
0,LCP = g2

0,sim +
3.949− g2

GF

S
, S =

∂g2
GF

∂g̃2
0

∣∣∣∣
L/a

, (4.1)

where g2
0,sim are the simulated bare couplings (cf. second column of table 1) and the slope

S =
∂g2

GF

∂ log(a)

∣∣∣∣
L/a

d log(a)

dg2
0

=
∂g2

GF

∂ log(L)

∣∣∣∣
L/a

d log(a)

dg2
0

=
gGFβ

(3)
GF(gGF)

g0β
(3)
0 (g0)

. (4.2)

All quantities here are defined at vanishing quark mass, but we note that the shift in κ to maintain
the m = 0 condition at βLCP is negligible. We also convert the uncertainty in ḡ2

GF into an uncer-
tainty in the LCP β-value using the slope S. The last column of table 1 lists the resulting values
of βLCP = 6/g2

0,LCP. Note that the decoupling scale µdec is implicitly defined by our LCP, i.e.

ḡ2
GF(µdec) = 3.949. Our estimates used for the three-flavor renormalized (β(3)

GF) and bare (β(3)
0 )

beta-functions are described in Appendix D.

4.2 Massive simulations

With the value of the massless coupling fixed by our LCP, we proceed to simulate massive quarks
with (again) homogeneous SF boundary conditions but with T = 2L and various z.

Namely, for a givenL/a, the massive simulations have to be performed at fixed lattice spacing
(defined in a massless scheme and with O(a) improvement [58]) and for a set of renormalized
quark masses, common to all L/a. Therefore, for each L/a we fix the simulation parameters β, κ
for a prescribed value of z = M/µdec = ML. This last quantity is given by

z =
L

a

M

m(µdec)
Zm(g̃2

0, aµdec) [1 + bm(g̃0)amq] amq , (4.3)

where the running factor M/m(µdec) = 1.474(11) (with m(µdec) defined in the SF scheme) can
be determined from results available in the literature [24] (see Appendix E). The renormalization
constant Zm(g̃2

0) and improvement coefficient bm(g̃0), instead, are determined in Appendix E.
Once z is fixed, eq. (4.3) is just a quadratic equation in amq. For our O(a)-improved Wilson
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L/a β κ ḡ2
GF βLCP

12 4.3030 0.1359947(18) 3.9461(41) 4.3019(16)
16 4.4662 0.1355985(9) 3.9475(61) 4.4656(23)
20 4.6017 0.1352848(2) 3.9493(63) 4.6018(24)
24 4.7165 0.1350181(20) 3.9492(64) 4.7166(25)
32 4.9000 0.1345991(8) 3.949(11) 4.9000(42)

40 – – – 5.0497(41)
48 – – – 5.1741(54)

Table 1: Massless line of constant physics. The simulations described in the first four columns
are taken from [36]. They are used to fix βLCP such that the renormalized massless coupling
ḡ2

GF(µ) = 3.949. The last row (L/a = 48) is obtained indirectly from our knowledge of the
non-perturbative running of the coupling, while the previous one (L/a = 40) is an interpolation
of the other data, see Appendix G for more details.

fermions fixed lattice spacing corresponds to fixed improved bare coupling g̃2
0 . The simulation

parameter β of the massive simulation is thus obtained from

β =
6(1 + bg amq)

g̃2
0

, (4.4)

where the values of g̃2
0 = 6/βLCP are taken from table 1, since at zero mass the improved and

unimproved couplings coincide. For bg as well as for all other improvement coefficients that are
known only perturbatively, we use 1-loop values and treat the difference between tree-level and
1-loop as uncertainties, see below and Appendix E. The largest effect arises from bg.

The other simulation parameter, κ, is obtained from the critical mass, amc(g
2
0). Since table 1

provides the values of κc = 1/(2amc(g̃
2
0) + 8) we perform a small shift

amc(g
2
0) = amc(g̃

2
0) +

(
g2

0 − g̃2
0

) ∂

∂g̃2
0

(amc) , (4.5)

where the needed derivative can be obtained either from the literature [35], or from the simulations
used to extractZm, bm (see Appendix E). Both determinations of the derivative agree at the percent
level. We thus obtain β, κ needed to simulate at fixed values of z. The uncertainty in z, propagated
from our determinations of Zm, bm, κ, are propagated into an error in the coupling according to
the discussion in Appendix F. The error in z contributes to a small part to the uncertainty of ḡ2

GFT.
Our simulations were performed when only an incomplete data-set for the determination of

the LCP was available. This can be observed by comparing our simulation parameters at z = 0 in
table 12 with the final values of the LCP available in table 1. We correct for this small mismatch
by a linear shift in g̃2

0 using

∂g2
GFT

∂g̃2
0

∣∣∣∣
z,L/a

=
∂g2

GFT

∂ log(a)

∣∣∣∣
z,L/a

d log(a)

dg̃2
0

=
∂g2

GFT

∂ log(L)

∣∣∣∣
z,L/a

d log(a)

dg̃2
0

=
gGFTβ

(0)
GFT(gGFT)(1− ηM(g∗))

g̃0β
(3)
0 (g̃0)

[1 +Rz +Ra] . (4.6)
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Here, the numerator uses decoupling and thus the pure gauge theory β-function of the GFT cou-
pling appears together with the factor (1− ηM(g∗)) ≈ b(3)

0 /b
(0)
0 = 9/11 [28]. The denominator is

the Nf = 3 bare β-function at z = 0. The terms Rz, Ra are corrections for O(1/z2) and O(a2)
terms, respectively. The derivation of this equation as well as its numerical approximation are ex-
plained in Appendix D. In all cases the resulting shifts in ḡ2

GFT are small. In general they are well
below our statistical uncertainties; only at L/a = 40 the shifts amount to more than one standard
deviation.

4.3 Choice of c

Within the same simulation, the massive coupling ḡ2
GFT(µdec,M) can be obtained at different

values of c = µdec

√
8t, which defines the given gradient flow scheme (cf. eqs. (2.11),(2.13)).

For better clarity, in the following discussion we shall thus employ the notation ḡ2
GFT,c(µdec,M).

Typically, in finite size scaling studies (in massless renormalization schemes), the choice of c
represents a compromise between scaling violations (larger at small values of c) and statistical un-
certainties (larger at large values of c), with c in the range 0.3−0.5 representing a good choice [40].
Here, however, we do not intend to use the massive coupling to compute a step-scaling function,
but rather as an observable to which decoupling can be applied. Its value is the same as in the pure
gauge theory up to power corrections in the inverse heavy-quark mass. In particular, the leading
corrections are expected to be of O(µ2

max/M
2), where µmax is the largest mass scale present. For

ḡ2
GFT,c we have: µmax = 1/

√
8t = µdec/c. This implies that at a fixed scale µdec, a scheme with

larger c is expected to have smaller corrections to the infinite mass limit. In addition, contrary
to standard finite-size scaling studies, in the present context we do not expect a larger value of
c to reduce the discretization errors in our data. Discretization errors are in fact dominated by
O((aM)2) terms.

We have performed the analysis for c =
√

8t/L = 0.30, 0.33, 0.36, 0.39, 0.42. In general,
we will focus the discussion on the cases c = 0.30 and c = 0.36, although the conclusions are
similar for other values (see table 2). The case c = 0.3 represents the most precise dataset. It is
therefore an ideal choice to explore different mass cuts and study the systematics involved in the
continuum extrapolations. On the other hand, c = 0.36 is an intermediate value from which we
will extract our central results.

4.4 Continuum extrapolations

We turn to the continuum extrapolations of the massive couplings ḡ2
GFT,c(µdec,M, aµdec) for dif-

ferent z = M/µdec and c. In Section 3 we gave a detailed description of the scaling violations
in the framework of the Symanzik effective theory. In particular, we explained the absence of
corrections ∼ a2Mµdec. Still, continuum extrapolations are difficult due to the complicated func-
tional form, eq. (3.34), of the O(a2) corrections. Even when the leading anomalous dimensions
are known (see Section 3.2.2) there are higher order corrections in a and in α(1/a). Hence, in
practice, the extrapolations have to be approached from an empirical point of view. The effect
of the different logarithmic corrections can be explored by varying the values of their exponents,
see below. Our values for aµdec are very small, but having large masses we expect to have sig-
nificant cutoff effects of O((aM)2). Different cuts in aM will thus be used to test the different
assumptions regarding logarithmic corrections and higher order terms.

Given these considerations, we opt for two approaches to obtain the continuum coupling
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ḡ
2 z

z =1.972
z =4.0
z =6.0
z =8.0
z =10.0
z =12.0

(d) (aM)2 < 0.16.

Figure 1: Global continuum fit of our data for c = 0.3 (ḡ2
z ≡ ḡ2

0.3(z) in the plots) and two values of
the mass cuts. Note that the assumed 100% uncertainty of bg is not included in the error bars of
the points. However, it is propagated into the uncertainties of the global fit shown by the shaded
areas.

ḡ2
c (zi, 0) ≡ ḡ2

GFT,c(µdec,M, 0) from the values ḡ2
c (zi, a) ≡ ḡ2

GFT,c(µdec,M, aµdec) at non-zero
lattice spacing.5

Extrapolations at fixed z: The measured values of ḡ2
c (zi, a) for each value of zi = Mi/µdec are

extrapolated with the ansatz

ḡ2
c (zi, a) = Ci(c) + pi(c) [αMS(a−1)]Γ̂(aµdec)

2 , (4.7)

where Ci(c), pi(c) are independent fit parameters for each value zi (with the continuum
limits being ḡ2

c (zi, 0) = Ci(c)), and we use Γ̂ ∈ [−1, 1].

Global extrapolations: The measurements of the coupling for all zi, aµdec at a fixed c are com-
bined in a single fit using the ansatz

ḡ2
c (zi, a) = Ci(c) + p1(c)[αMS(a−1)]Γ̂(aµdec)

2 + p2(c)[αMS(a−1)]Γ̂
′
(aMi)

2 . (4.8)

In this case the fit parameters are the continuum valuesCi and the two parameters p1,2, while
we consider Γ̂ ∈ [−1, 1], and Γ̂′ ∈ [−1/9, 1]. This simple form is the result of expanding

5 Note that in the following we shall often use the more compact notation ḡ2
c (z) for the massive coupling. Whether

we are referring to the coupling at finite a or in the continuum should be clear from the context.
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the a2-terms of the Symanzik effective theory in 1/M and dropping O(1/M2) corrections
(see Section 3.2.2). We therefore need to check which values of z are large enough to be
included in the global fit.

Due to the shifts to the proper LCP, the data are slightly correlated across different values of
z. We performed uncorrelated fits, but judged the quality of the fits from the value of χ2 computed
from the known covariance matrix [69], which however was in all cases very close to the naive
number of d.o.f. Using data with (aM)2 > 0.35 leads to biased results and fits with bad χ2.
Therefore we use only two mass cuts (aM)2 ≤ 0.25, 0.16 in the following analysis.

Figures 1, 2 show the different extrapolations for c = 0.30 and c = 0.36, respectively. We
make the following observations concerning the fits.

• Discretization effects proportional to (aµdec)
2 are very small. For the case c = 0.30 the fit

coefficient p1 in the global analysis is very small, well compatible with zero. For c 6= 0.3,
these scaling violations are slightly larger, but still all our lattices are large enough to be
included in the fit. This justifies that we will only discuss cuts in aM .

• The data at c = 0.3 shows a very different behavior in (aM)2 for our smallest value of
the mass z = 1.972 (see figure 1). This suggests that z > 2 is needed for the large mass
expansion to be reliable. For c = 0.36 (see figure 2) the behavior in (aM)2 even for
z = 1.972 looks well compatible with the behavior at z ≥ 4. Since the effective decoupling
scale is smaller in this case, the data at c = 0.36 is closer to the large mass limit. In any
case, to be on the safe side, we only include in the global analysis z ≥ 4 for all values of c,
while the data with z = 1.972 is always fitted with an independent slope.

The extrapolations at fixed values of z and the global analysis always lead to compatible
results. Also the uncertainties of the continuum limits are very similar except for the case z = 12,
where the error in the extrapolation at fixed z (that only uses two points) is twice as large as the
result from the global analysis. Given that our global formula is theoretically sound, particularly
so at large values of z, we have no reason to suspect that the results of the global analysis are not
accurate for z = 12. Figures 1, 2 shows the results of the global analysis with two cuts (aM)2 ≤
0.16, 0.25. Results are compatible, with the extrapolations using only data with (aM)2 ≤ 0.16

resulting in slightly larger uncertainties.
We shall now discuss the logarithmic corrections to scaling. We have tried several values of

Γ̂ ∈ [−1, 1], Γ̂′ ∈ [−1/9, 1] in the continuum extrapolations. We see deviations much smaller than
our uncertainties. Our analysis shows that the logarithmic corrections have little influence in our
case.6 This can be understood from the fact that in our finite volume setup we reach very small
lattice spacings, i.e. in the range a ∈ [0.006, 0.015] fm. At the high scales 1/a defined by these
lattice spacings, the coupling runs very slowly, rendering the effect of the logarithmic corrections
very small. This feature should be considered a virtue of our strategy.

These considerations lead us to quote as final values for the continuum extrapolation the
results of the global fit with aM ≤ 0.4 and Γ̂ = Γ̂′ = 0. This particular analysis has larger or
similar uncertainties than other choices, and provides an excellent description of our data for z ≥
4. Table 2 shows the data entering the analysis together with the final results of the extrapolations.
Thanks to the use of large lattices, the continuum extrapolations are under reasonable control.

6 The statement rests on the simplified model that we use for the fits. We have chosen a single term with exponent
Γ̂′ in eq. (3.32) and a single combined term with exponent Γ̂ in the combination of eqs. (3.33) and (3.34).
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Figure 2: Comparison of global and fixed-z extrapolations for c = 0.36. Details as in figure 1.

The deviation of our finest lattice spacing data from the continuum values is at most two standard
deviations. Obviously this “gap” grows with increasing z. Given the importance of large z for the
extrapolation of ΛMS to z → ∞, it would be worthwhile to close the gap further by simulating
even larger values of L/a when an improved overall precision is desired.

4.5 Large mass extrapolations and the determination of Λ
(3)

MS

4.5.1 Estimates of the three flavor Λ-parameter

Once the values of the massive coupling ḡ2
GFT,c(µdec,M) are known in the continuum, decoupling

tells us that the values of these couplings are the same as in the pure gauge theory, up to heavy mass
corrections. In order to make use of this together with the results of ref. [2], we first need to match
our coupling to the GF coupling definition of ref. [2]. The difference is our choice of T = 2L

as well as of c-values in the massive coupling ḡ2
GFT,c(µdec,M) (cf. Section 4.3), compared to the

choice T = L and c = 0.3 made in the pure gauge theory [2]. The two different schemes can be
matched non-perturbatively in the pure gauge theory. There, the couplings ḡ(0)

GF(µ) (with T = L

and c = 0.3) and ḡ(0)
GFT,c(µ) (with T = 2L and and arbitrary c) are related by

ḡ
(0)
GF(µ) = χc

(
ḡ

(0)
GFT,c(µ)

)
. (4.9)

The functions χc for the relevant values of c = 0.30, 0.33, 0.36, 0.39, 0.42, are precisely deter-
mined as described in Appendix B.1.
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25
ḡ2c (z)

z L/a β aM c = 0.3 c = 0.33 c = 0.36 c = 0.39 c = 0.42

1.97 12 4.3177 0.1643 4.331(16) 4.679(20) 5.112(26) 5.655(34) 6.337(44)
1.97 16 4.4770 0.1232 4.307(21) 4.666(26) 5.107(32) 5.656(40) 6.343(50)
1.97 20 4.6102 0.0986 4.275(23) 4.639(30) 5.087(39) 5.643(51) 6.337(67)
1.97 24 4.7235 0.0822 4.266(23) 4.631(30) 5.078(39) 5.634(51) 6.327(68)
1.97 32 4.9051 0.0616 4.278(34) 4.641(43) 5.084(53) 5.632(67) 6.314(87)
1.97 ∞ – 0.0 4.253(38) 4.624(46) 5.076(56) 5.634(69) 6.327(86)

4.00 12 4.3337 0.3333 4.479(12) 4.854(16) 5.316(20) 5.889(25) 6.602(33)
4.00 16 4.4886 0.2500 4.431(17) 4.811(22) 5.276(29) 5.849(36) 6.559(47)
4.00 20 4.6192 0.2000 4.447(19) 4.846(24) 5.333(31) 5.934(41) 6.681(54)
4.00 24 4.7308 0.1667 4.434(20) 4.834(25) 5.321(33) 5.921(43) 6.663(57)
4.00 32 4.9104 0.1250 4.414(29) 4.816(37) 5.304(47) 5.906(59) 6.651(76)
4.00 ∞ – 0.0 4.415(49) 4.822(59) 5.316(70) 5.923(85) 6.68(10)

bg uncertainty: (45) (53) (62) (74) (9)

6.00 12 4.3508 0.5000 4.636(14) 5.038(17) 5.529(23) 6.134(30) 6.881(39)
6.00 16 4.5008 0.3750 4.590(18) 5.001(23) 5.500(31) 6.113(40) 6.870(53)
6.00 20 4.6286 0.3000 4.546(18) 4.955(22) 5.451(29) 6.061(37) 6.814(48)
6.00 24 4.7383 0.2500 4.544(18) 4.961(23) 5.464(29) 6.081(37) 6.841(48)
6.00 32 4.9159 0.1875 4.517(23) 4.932(28) 5.433(36) 6.046(45) 6.803(62)
6.00 40 5.0624 0.1500 4.521(25) 4.948(33) 5.467(42) 6.104(55) 6.896(72)
6.00 ∞ – 0.0 4.490(50) 4.906(58) 5.408(69) 6.021(82) 6.779(100)

bg uncertainty: (44) (52) (60) (71) (85)

8.00 12 4.3694 0.6667 4.781(12) 5.215(15) 5.743(19) 6.393(23) 7.197(29)
8.00 16 4.5139 0.5000 4.749(16) 5.197(22) 5.743(28) 6.414(37) 7.246(48)
8.00 20 4.6384 0.4000 4.708(19) 5.156(25) 5.699(33) 6.366(44) 7.191(59)
8.00 24 4.7462 0.3333 4.685(21) 5.128(28) 5.662(38) 6.315(59) 7.119(83)
8.00 32 4.9215 0.2500 4.620(22) 5.053(27) 5.574(33) 6.210(41) 6.992(53)
8.00 40 5.0669 0.2000 4.617(25) 5.055(31) 5.584(40) 6.227(52) 7.023(68)
8.00 48 5.1880 0.2000 4.582(31) 5.012(38) 5.528(48) 6.156(59) 6.926(74)
8.00 ∞ – 0.0 4.578(54) 5.011(64) 5.530(76) 6.161(90) 6.94(11)

bg uncertainty: (45) (53) (61) (73) (9)

10.00 24 4.7545 0.5000 4.827(19) 5.307(24) 5.887(32) 6.601(42) 7.480(55)
10.00 32 4.9274 0.3750 4.794(23) 5.273(30) 5.852(39) 6.564(52) 7.443(68)
10.00 40 5.0710 0.3000 4.755(27) 5.224(35) 5.789(46) 6.472(59) 7.312(79)
10.00 48 5.1916 0.3000 4.698(32) 5.157(40) 5.710(50) 6.389(63) 7.228(83)
10.00 ∞ – 0.0 4.696(63) 5.157(76) 5.713(90) 6.39(11) 7.23(14)

bg uncertainty: (52) (61) (72) (9) (10)

12.00 20 4.6596 0.6000 4.973(19) 5.475(25) 6.079(32) 6.823(42) 7.739(55)
12.00 24 4.7630 0.5000 4.932(18) 5.432(23) 6.036(30) 6.778(38) 7.694(49)
12.00 32 4.9335 0.3750 4.881(25) 5.372(32) 5.965(42) 6.690(55) 7.584(71)
12.00 40 5.0760 0.3000 4.825(26) 5.304(32) 5.880(41) 6.576(52) 7.437(66)
12.00 48 5.1953 0.3000 4.852(35) 5.355(45) 5.963(59) 6.711(76) 7.64(10)
12.00 ∞ – 0.0 4.762(70) 5.235(84) 5.80(10) 6.50(12) 7.35(15)

bg uncertainty: (54) (64) (74) (9) (11)

Table 2: Values of the massive coupling ḡ2
c (z) and its continuum extrapolated values. The results

quoted for the continuum extrapolations correspond to a global fit of the data with z ≥ 4 and
(aM)2 ≤ 0.16 and fixing Γ̂ = Γ̂′ = 0. At finite lattice spacings, the uncertainty in bg is omitted,
but the continuum values include it. We also given just the bg-uncertainty with 100% correlation
across all data.



c = 0.3 c = 0.36

z ḡ2
c (z) [ḡ

(0)
GF (µdec)]2 ρ Λ

(3)

MS,eff
ḡ2

c (z) [ḡ
(0)
GF (µdec)]2 ρ Λ

(3)

MS,eff

1.972 4.253(38) 3.962(33) 0.547(14) 432(14) 5.076(56) 3.935(36) 0.540(14) 426(14)
4 4.415(49) 4.101(42) 0.496(13) 391(13) 5.316(70) 4.084(44) 0.492(14) 388(13)
6 4.490(50) 4.165(43) 0.465(12) 367(12) 5.408(69) 4.140(42) 0.460(12) 363(12)
8 4.578(54) 4.241(46) 0.450(12) 355(12) 5.530(76) 4.215(46) 0.445(12) 351(12)
10 4.696(63) 4.341(54) 0.446(13) 352(12) 5.713(90) 4.325(54) 0.443(13) 349(12)
12 4.762(70) 4.397(59) 0.438(13) 345(12) 5.80(10) 4.379(60) 0.434(13) 343(12)

Table 3: The massive couplings, ḡ2
c (z), together with the associated pure gauge coupling,

[ḡ
(0)
GF (µdec)]

2, after a non-perturbative matching to the scheme with T = L, c = 0.3. The cou-
pling [ḡ

(0)
GF (µdec)]

2 is used to obtain ρ = Λ
(3)

MS,eff
/µdec and Λ

(3)

MS,eff
, which is Λ

(3)

MS
up to power

corrections in 1/M . We show results for two representative values of c = 0.3, 0.36.

We define ḡ(0)
GF (µdec) as the values of the pure gauge coupling (T = L, c = 0.3) that corre-

spond to the values of the massive coupling extrapolated to the continuum, i.e. (cf. table 2)

ḡ
(0)
GF (µdec) = χc

(
ḡ

(3)
GFT,c(µdec,M)

)
. (4.10)

Pure gauge theory results for the function ϕ(0)
GF (see Appendix B.2) then yield values for

Λ
(0)

MS

µdec
=

Λ
(0)

MS

Λ
(0)
GF

ϕ
(0)
GF(ḡ

(0)
GF (µdec)) . (4.11)

Since z = M/µdec is a known input, the non-linear equation (cf. eq. (2.10))

ρP (z/ρ) =
Λ

(0)

MS

µdec
(4.12)

allows us to determine ρ = Λ
(3)

MS,eff
/µdec = Λ

(3)

MS
/µdec + O(1/z), see table 3. With µdec =

789(15) MeV obtained in Nf = 3 QCD [35], we convert these ratios to the effective three flavor
Λ-parameter, again equal to Λ

(3)

MS
up to O(1/M) corrections. Results are also listed in table 3.

4.5.2 M →∞ extrapolation

According to the discussion in Section 3 we expect the estimates of Λ
(3)

MS,eff
of table 3 to approach

Λ
(3)

MS
with power corrections of the form z−k, accompanied by logarithmic corrections. The func-

tion P is approximated by high order perturbation theory. Since the used masses m? are large,
the associated O(α4

MS
(m?)) uncertainties can be neglected. Linear terms of O(z−1) are a conse-

quence of our boundary conditions. The choice T = 2L suppresses their effects to a level below
our statistical precision, as we were able to show by an explicit computation (cf. Appendix A.2).
We therefore assume leading 1/z2 corrections, with logarithmic corrections as discussed in Sec-
tion 3.2.1. In practice we fit the parameters A, B in

Λ
(3)

MS,eff
= A+

B

z2
[α(m?)]

Γ̂m , (4.13)
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z ≥ 4 z ≥ 6 z ≥ 8

c Λ
(3)

MS
Q [%] c Λ

(3)

MS
Q [%] c Λ

(3)

MS
Q [%]

0.30 349(11) 2 0.30 340(12) 11 0.30 338(13) 4
0.33 345(11) 8 0.33 338(12) 13 0.33 338(13) 4
0.36 342(11) 16 0.36 336(12) 16 0.36 338(13) 6
0.39 339(11) 21 0.39 335(12) 16 0.39 338(13) 7
0.42 336(11) 23 0.42 333(12) 15 0.42 337(13) 7

Table 4: Estimates of Λ
(3)

MS,eff
(see table 3) are extrapolated toM →∞ according to eq. (4.13) with

Γ̂m = 0.

to the data, in order to obtain Λ
(3)

MS
= A. Since the leading exponent Γ̂m is presently not known,

we vary it in a reasonable range Γ̂m ∈ [0, 1] (cf. Section 3.2.1).
The first issue that we have to deal with is what values of z are included in this extrapolation.

Part of the difficulty here is that the estimates of Λ
(3)

MS
coming from different values of c, z are

very correlated. Correlations are due to many sources: bg, the running in the pure gauge theory,
the scale µdec, all enter in the same way for all c, z. There are also less obvious correlations. E.g.
the global fit performed to obtain the continuum limit has common parameters p1, p2 describing
the cutoff effects. All of these correlations are precisely known – they do not involve difficult-to-
estimate correlation matrices from Monte Carlo chains.

We therefore performed correlated fits to eq. (4.13). Visually they all look very good; an
example is displayed in figure 3. The χ2-values are found above the numbers of d.o.f., but the
quality of fit, Q, reported in table 4, is generally good enough. Only fits including z = 4 and the
smallest values of c are statistically discouraged. As a precaution against higher order corrections
(i.e. O(z−3), etc.) we exclude the z = 4 data also for the larger values of c and use c = 0.36, z ≥ 6

as our central result. Note that the Q-value is relatively small for the z ≥ 8 fits since they only
contain one degree of freedom. The fact that Q becomes better including more data is supporting
our choice of the z ≥ 6 fits.

As a check of this analysis we also performed uncorrelated fits, computed their Q-value from
the known covariance matrix [69] and found entirely consistent results.

We now proceed to investigate the effect of the logarithmic corrections. Fits with Γ̂m = 1

yield only about 3 MeV higher values for Λ when the z = 4 data is excluded. Further excluding
also z = 6 reduces these shifts to only 1-2 MeV. We take the result with z ≥ 6 and c = 0.36

as our final result, and add 3 MeV as our estimate of the systematic effect due to the logarithmic
corrections or higher orders in 1/M in the M →∞ extrapolation, see figure 3.

Taking all these points into account, we quote as our final result

Λ
(3)

MS
= 336(10)(6)bg(3)Γm MeV = 336(12) MeV . (4.14)

Here the first error is statistical, the second is due to bg and the third results from the estimated
uncertainty in the z-extrapolation. The combined error covers all central results that we obtained
by varying the cuts in z, (aM)2, and the different Γ̂m except for two cases. These extreme cases
have small c ≤ 0.33 and include z = 4 data, where corrections to decoupling are expected to be
the largest. They yield Q-values below 2%.
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Figure 3: Values for Λ
(3)

MS,eff
from table 3 (c = 0.36) and their extrapolation M → ∞ us-

ing eq. (4.13) with Γ̂m = 0.

We further note that there is a significant correlation of the above statistical error with the one
of the previous work [5],

Λ
(3)

MS
= 341(12) MeV , (4.15)

using step scaling in the three-flavor theory up to high energy. The common piece is exactly
the scale µdec = 789(15) MeV. The off-diagonal element of the covariance matrix of the two
determinations is

Cov((4.14), (4.15)) = 41 MeV2 , (4.16)

compared to the diagonal ones of 144 MeV2, which at present happen to be about the same for each
of the individual determinations. As a quantitative measurement of the compatibility of the two
different determinations we note that their difference is not significant at all: Λ(4.15)−Λ(4.14) =

5(14) MeV.

5 Result for αs(mZ)

Our result for Λ
(3)

MS
(eq. (4.14)) can be translated, after running across the charm and bottom quark

thresholds, into a value of the four and five flavor Λ-parameter. Using the FLAG values [4] (based
on [70–73]) mc,? = 1275(5) MeV, mb,? = 4171(20) MeV for the charm and bottom quark mass
thresholds7 , we obtain the following values for the four and five flavor Λ-parameters

Λ
(4)

MS
= 294(10)(6)bg(3)Γm(0.7)3→4,PT(1)3→4,NP MeV = 294(12) MeV , (5.1)

Λ
(5)

MS
= 211.3(8.1)(5.0)bg(2.4)Γm(0.7)3→5,PT(0.8)3→5,NP MeV = 211.3(9.8) MeV .(5.2)

7 The uncertainties in the quark and Z-boson masses are negligible in all quoted results.
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Figure 4: Our result compared with other lattice computations [5, 18, 70, 74–77] that enter in the
FLAG average [4] (acronyms taken from the FLAG report [4]).

where the first error is statistical, and the second represents the uncertainty associated with the
logarithmic corrections in the limit M → ∞ (see Section 4.5). The last two errors come instead
from crossing the charm and bottom thresholds: first a perturbative error (determined by taking
the difference in the decoupling relations and RG functions between the last two known orders),
and second an estimate of 0.3% in Λ

(3)

MS
for the non-perturbative corrections in the decoupling of

the charm [28].
Using the experimental value mZ = 91187.6(2.1) MeV for the Z boson pole mass [7] we

get
αs(mZ) = 0.11823(69)(42)bg(20)Γm(6)3→5,PT(7)3→5,NP = 0.11823(84) . (5.3)

Figure 4 shows a comparison of our results with other lattice computations [5, 18, 70, 74–78]
that enter the FLAG average [4]. Our result shows a good agreement with the FLAG average,
our previous determination of the strong coupling [5], and the other lattice works that enter in the
FLAG average. It is important to point out that the result of this work is largely independent from
our previous determination [5]. Only the value of µdec = 789(15) MeV is shared between both
determinations of the strong coupling (see Section 4.5.2). This amounts to 28% of the squared
error.

6 Conclusions and outlook

The determination of the strong coupling on the lattice faces particular challenges compared with
low energy hadronic quantities. One has to connect a low energy scale with the perturbative high
energy regime of QCD. Due to the slow running of the coupling, perturbative scales are very
large and these two regimes cannot be comfortably simulated on a single lattice. This “window
problem” which is due to the fact that only a limited range of scales can be simulated on a single
lattice is the reason why most lattice determinations of the strong coupling have uncertainties
dominated by the truncation errors of the perturbative series: they apply perturbation theory at
in-between energy scales (see [9] for a review). One exception is the step scaling method [13],
which was designed to cover a large scale difference non-perturbatively. In practice, however, the
method is quite demanding, and a reduction of the current uncertainty in the strong coupling using
this technique is possible but requires large computational resources.
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An alternative strategy based on the decoupling of heavy quarks built on [28,79] was formu-
lated in ref. [1]. In short, one connects the theory with physical quark masses to the one where
up, down and strange quark have masses far above the low energy QCD scales. Decoupling of
the heavy quarks relates the theory to the pure gauge theory and we can use the knowledge of a
pure gauge intermediate energy scale, µdec ≈ 800 MeV, in units of the Λ

(0)

MS
parameter. Thus

the non-perturbative running between µdec and perturbative scales is taken from the pure gauge
theory where it is much more tractable from the numerical point of view. The connection of
µdec ≈ 800 MeV to the physical scales fπ, fK requires only one or two step-scaling steps with
light quarks; we could here take it from previous work [5].

In this paper we have worked out practical and theoretical aspects in detail and in particular
demonstrated how systematic effects of various kinds can be controlled by numerical extrapola-
tions and/or explicit computations. This is far from trivial, since a very good precision is required
in all steps to reach the desired accuracy of the strong coupling. For practical reasons intermediate
scales of the theory are always defined by values of associated renormalized couplings and those
are defined in the Schrödinger functional. We then need to control corrections to the continuum
limit and the decoupling limit of order a and 1/M besides the ones of order a2 and 1/M2 present
also when space-time has no boundaries. We showed how the decoupling effective theory can be
used to remove the 1/M corrections, again by non-perturbative information in the pure gauge the-
ory, and how Symanzik and decoupling effective theories, applied in that order, restrict the form of
a combined continuum and 1/M2 extrapolation of the couplings in the massive theory. Together
with the high accuracy [28] of perturbation theory [34, 80–84] in the relation P = Λ

(Nf)

MS
/Λ

(Nl)

MS
,

which we use for Nf = 3, Nl = 0, this is a key to the precision reached in the result.
Building on these important theoretical steps, we have shown that precise results can be ob-

tained using the decoupling strategy: our result, αs(MZ) = 0.11823(84), is among the most
precise determinations existing so far. The error is still statistically dominated, with negligible
perturbative uncertainties. This also opens the way to further reduce the current uncertainty in
the strong coupling with moderate additional effort. The main sources of uncertainty are first the
single step-scaling step in QCD, second the missing knowledge of the improvement parameter
bg, a parameter that affects the continuum extrapolations of our massive couplings, and third the
pure gauge theory non-perturbative running at high energies. The first and third source of uncer-
tainty are statistical in nature and can be substantially improved at a modest cost with existing
techniques. Lastly, a non-perturbative determination of bg would completely eliminate the second
largest source of uncertainty on our result.

Finally it is worth mentioning that the good agreement between the result of this work, and
the previous determination by the ALPHA collaboration [5] (using the step-scaling method in
three flavor QCD), represents a highly non-trivial cross-check of the methods.

We expect that the use of heavy quarks as a tool for non-perturbative renormalization will
have more applications in the future. For example, the determination of the strong coupling di-
rectly in large volume is possible, in principle [1]. The idea can straightforwardly be applied to
the determination of quark masses. Other renormalization problems, such as the determination
of RGI 4-fermion operators may be tractable, but there remains work to be done in continuum
perturbation theory: the high accuracy available for the perturbative decoupling of the QCD pa-
rameters [34, 80–84] needs to be extended also to such operators.
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A Boundary O(1/m) contributions

A.1 Perturbative determination of ωb at leading order

In Sect. 3.3, we anticipated how relations analogous to eq. (3.39) may be used as matching con-
ditions to determine the coefficient ωb appearing in the effective action, eq. (3.35). As also men-
tioned there, a convenient quantity to consider for this application is the Schrödinger functional
coupling, ḡ2

SF(µ) [14, 38, 60]. We refer the reader to these references for a detailed definition of
this coupling. For the present discussion, we recall that ḡ2

SF(µ) is related, up to a normalization
constant k, to the expectation value of the η-derivative of the action, where the parameter η en-
ters the definition of the spatially constant Abelian boundary fields defining the SF. In formulas
(cf. ref. [60]),

k

ḡ2
SF(µ, z̄)

= 〈S′〉 , S′ =
dS

dη
, z̄ = m(µ)/µ , µ = L−1 , (A.1)

where L is the spatial extent of the finite volume, and 〈·〉 indicates the expectation value in QCD
with Nf flavours of quarks with (renormalized) mass m(µ) and given SF boundary conditions. A
specific choice of scheme for the quark masses is not necessary for the following discussion.

Given these definitions, in the large quark mass limit, an analogous relation to eq. (3.39)
holds for S′, as there are no O(1/m) corrections besides those coming from the effective action.
More precisely,

〈S′〉 = 〈S′〉dec −
1

m?L
ωb(α?)L〈S′S1,dec〉dec + O((m?L)−2) , (A.2)

where we indicated with 〈·〉dec the (connected) SF correlation functions in the effective, pure
Yang-Mills theory. In order to determine the lowest order coefficient in the expansion

ωb(α?) = ω
(1)
b α? + ω

(2)
b α2

? + O(α3
?) , α? ≡ g2

?/(4π) = α
(Nf)

MS
(m?) , (A.3)

31



we first need the lowest order perturbative results

〈S′〉dec =
k

[ḡ
(0)

MS
(µ)]2

[
1 + y1 [ḡ

(0)

MS
(µ)]2 + O([ḡ

(0)

MS
]4)

]
, (A.4)

−L〈S′S1,dec〉dec =
2k

[ḡ
(0)

MS
(µ)]2

[
1 + c1[ḡ

(0)

MS
(µ)]2 + O([ḡ

(0)

MS
]4)

]
, (A.5)

where ḡ(0)

MS
(µ = 1/L) is the coupling of the pure gauge theory in the MS-scheme. These results

can be easily inferred from the pure Yang-Mills computations of refs. [85, 86].8 The constants
y1 and c1 are determined through a next-to-leading order calculation, but their actual value is not
relevant at the order we are interested in. Secondly, we need the expansion

〈S′〉 =
k

[ḡ
(Nf)

MS
(µ)]2

[
1 + f1(z̄)[ḡ

(Nf)

MS
(µ)]2 + O([ḡ

(Nf)

MS
]4)

]
, (A.6)

in QCD with Nf quark flavours. In particular, we are interested in the limit of large quark masses,
z̄ →∞, for which (cf. ref. [60]),

f1(z̄) = y1 −
1

12π2
Nf log(z̄) + f11

1

z̄
+ O(z̄−2) , (A.7)

where y1 is the pure Yang-Mills result introduced earlier. As we shall see shortly, the matching
coefficient ω(1)

b only depends on f11, while the first two terms in the above equation are reabsorbed
into the relation between the MS-couplings of the fundamental and effective theory. The two
couplings need in fact to be matched. At the order in the perturbative expansion we are interested
in, we may consider the relation (see e.g. ref. [33]),

1

[ḡ
(0)

MS
(µ)]2

=
1

[ḡ
(Nf)

MS
(µ)]2

[
1 + h1(z̄)[ḡ

(Nf)

MS
(µ)]2 + O([ḡ

(Nf)

MS
]4)

]
, h1(z̄) = − 1

12π2
Nf log(z̄) .

(A.8)
We can now combine the results of eqs. (A.2)-(A.8). Noticing that: [ḡ

(0)

MS
(µ))]2 = [ḡ

(Nf)

MS
(µ)]2 +

O([ḡ
(Nf)

MS
]4) = g2

? + O(g4
?) and m(µ) = m?(1 + O(g2

?)), neglecting higher-order terms in 1/z̄ and
g2
? , we arrive at the sought after relation

ω
(1)
b = 2πf11 . (A.9)

The value of f11 can be inferred from the 1-loop calculation of the massive SF coupling of ref. [60].
More precisely, eqs. (3.17)-(3.18) of this reference give f11 = q1/(4π). For definiteness, we take
the result q1 = −0.10822, obtained for θ = π/5, as this coupling definition shows significantly
smaller O(1/z̄2) corrections than the definition with θ = 0. We can in fact use the difference
between the results for θ = 0, π/5 as an estimate of the systematic uncertainties involved in the
extraction of q1. In conclusion, we find:

ω
(1)
b = −0.0541(5)Nf . (A.10)

8 In fact, the result in eq. (A.4) is trivial, while that of eq. (A.5) can be deduced from, e.g. eq. (6.23) of ref. [42].
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A.2 Estimates of the O(1/m) boundary effects

A.2.1 Definitions

Given ωb at leading order in perturbation theory, we can now employ eq. (3.39) to get an estimate
of the O(1/M ) corrections to the massive GFT-coupling ḡ(3)

GFT,c(µdec,M), defined in the SF with
temporal extent T = 2L, and evaluated at the renormalization scale µdec = 1/Ldec. (As usual, M
is the RGI mass of the degenerate heavy quarks in the Nf = 3 theory and c =

√
8t/L, with t the

flow time at which the coupling is measured.) To this end, we define,

∆c(z) ≡ [ḡ
(3)
GFT,c(µdec,M)]2 − [ḡ

(0)
GFT,c(µdec)]

2 , z = M/µdec , (A.11)

where we implicitly assume that the Λ-parameters in the two theories have been properly matched.
Applying eq. (3.39) to the case at hand we have,

∆c(z)
z→∞≈ −ωb(α?)

z

(
M

m?

)
lim
a→0

LdecN−1
〈t2Emag(t, T/2)δ̂(Q)SR1,dec〉dec

〈δ̂(Q)〉dec

+ O
(
z−2
)
,

(A.12)
where, we recall, α? ≡ g2

?/(4π) with g? ≡ ḡMS(m?) and m? = mMS(m?), and we take the
connected part of the (ratio of) correlation functions. In the above equation we use the short hand
notation (cf. eq. (2.13))

[ḡ
(0)
GFT,c(µ)]2 = N−1 〈t2Emag(t, T/2)δ̂(Q)〉dec

〈δ̂(Q)〉dec

, µ = 1/L , T = 2L , c =
√

8t/L ,

(A.13)
for the definition of the GFT-coupling in the pure-gauge theory. The field Emag(t, x0) represents
our chosen discretization for the magnetic component of the energy density at positive flow time.
For the latter, we consider the Zeuthen flow for the discretization of the flow equations [52], while
for the observable we take the specific combination of plaquette and clover discretizations of the
flow energy density proposed in ref. [52], which is O(a2)-improved. The quantity δ̂(Q) is instead
a discretization of the continuum δ-function that projects to the topologicalQ = 0 sector. It is zero
whenever |Q| > 0.5 and one otherwise, with Q the topological charge computed with the clover
discretization of the field strength tensor built from gauge fields flowed at time

√
8t = cL using

the Zeuthen flow (cf. e.g. ref. [35]). In order to evaluate the correlation function in eq. (A.12) on
the lattice, we also need a viable discretization for S1,dec. We choose,

SR1,dec = a3
∑
x

[
ORb (0,x) +ORb (T − a,x)

]
, ORb (x0,x) = Zb(g0)Ob(x0,x) , (A.14)

where

a4Ob(x0,x) =
2

g2
0

3∑
k=1

Re tr
[
1− U0k(x0,x)

]
, x0 = 0, T − a , (A.15)

with Uµν(x) being the plaquette at x in the µ, ν-direction. As discussed in Sect. 3.3, on the lattice,
the boundary field Ob requires a finite renormalization. In the following, we consider the 1-loop
approximation [87]

Zb(g0) = 1− 0.13194 g2
0 + O(g4

0) , (A.16)

which can be readily inferred from the renormalization of the energy density in the pure-gauge
theory obtained in this reference.
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In practice, we can evaluate the correlator in eq. (A.12) by exploiting the identity (note the
appearance of the bare boundary action)

− LN−1 〈t2Emag(t, T/2)δ̂(Q)S1,dec〉dec

〈δ̂(Q)〉dec

=
L

a

d[ḡ
(0)
GFT,c(µ)]2

dct
. (A.17)

Thus, the connected correlator of interest can be computed by varying the boundary O(a) improve-
ment coefficient ct in simulations (cf. Appendix C). Given the result in eq. (A.12), and defining

pc(ḡ) ≡
[

lim
a→0

Zb(g0)
L

a

d[ḡ
(0)
GFT,c(µ)]2

dct

]∣∣∣∣
ḡ

, (A.18)

we have that the leading-order (LO) estimate for the relative O(1/M ) corrections to the GFT-
coupling can be written as,

∆c(z)

ḡ2
c (z)

∣∣∣∣∣
LO

=
1

(4π)

ω
(1)
b

z

(
M

m?

)(
g2
?

ḡ2
c (z)

)
pc(ḡ

2
c (z)) + O

(
g2
?,

1

z2

)
, (A.19)

where we introduced the shorthand notation: ḡc(z) ≡ ḡ(3)
GFT,c(µdec,M).

A.2.2 Simulation results

In order to estimate the relevant ct-derivatives in eq. (A.17), we simulated lattices with L/a =

10, 12, 16 using the Wilson-plaquette gauge action, and varied ct around its two-loop value c?t [86],
i.e. c±t = c?t ± ∆ct. For L/a = 10, 12, we considered variations ∆ct = {0.075, 0.1, 0.15, 0.2},
while for L/a = 16 we took ∆ct = {0.1, 0.15, 0.2, 0.3}. For L/a = 10, 12 and L/a = 16

we simulated 3 and 4 values of β, respectively, in order to cover the relevant range of values for
[ḡ

(0)
GFT,c]

2; this for two schemes c = 0.3, 0.42. In Table 5 we collect the results for

L

a

d[ḡ
(0)
GFT,c(µ)]2

dct
= lim

∆ct→0

L

a

∆[ḡ
(0)
GFT,c]

2

2∆ct
, ∆[ḡ

(0)
GFT,c]

2 ≡ [ḡ
(0)
GFT,c(µ)]2|c+t − [ḡ

(0)
GFT,c(µ)]2|c−t ,

(A.20)
obtained as linear extrapolations in (∆ct)

2 using all available ∆ct. The sum, χ2
tot, of the χ2’s

of all fits is good, i.e. χ2
tot/d.o.f.tot ≈ 1, with d.o.f.tot the total number of degrees of freedom

considering all fits. At the level of individual fits, these have a χ2 up to ≈ 7 for two degrees of
freedom.

In Table 7 we report the results for the ct-derivatives of the Nf = 0 coupling interpolated at
the values of the coupling of interest. The latter are specified by the results in the Nf = 3-theory
(cf. Table 2):

ḡ2
0.30(z = 6) = 4.490(50) , ḡ2

0.42(z = 4) = 6.68(10) . (A.21)

For the interpolations we considered the following functional form,

L

a

d[ḡ
(0)
GFT,c]

2

dct
=

3∑
k=1

ck [ḡ
(0)
GFT,c]

2k , (A.22)

where the value of c1 is fixed to its tree-level result (cf. Table 6).
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35

c L/a β [ḡ
(0)
GFT,c]

2 L
a

d[ḡ
(0)
GFT,c]2

dct

0.3

10 6.2556 4.8513(22) −0.46(14)

10 6.3400 4.4462(19) −0.45(12)

10 6.4200 4.1359(17) −0.43(11)

0.3

12 6.4200 4.6805(20) −0.45(15)

12 6.4630 4.4895(19) −0.54(15)

12 6.5619 4.1094(17) −0.28(13)

0.3

16 6.6669 4.7627(14) −0.42(09)

16 6.6920 4.6515(19) −0.55(12)

16 6.7140 4.5641(19) −0.52(12)

16 6.7859 4.2942(12) −0.25(08)

0.42

10 6.2556 7.5116(61) −2.91(38)

10 6.3400 6.6790(52) −2.35(32)

10 6.4200 6.0807(44) −1.98(28)

0.42

12 6.4200 7.1857(57) −2.36(43)

12 6.4630 6.7975(52) −2.42(40)

12 6.5619 6.0584(44) −1.68(34)

0.42

16 6.6669 7.1159(39) −2.21(25)

16 6.6920 6.8934(51) −2.29(33)

16 6.7140 6.7275(50) −2.19(32)

16 6.7859 6.2173(32) −1.52(21)

Table 5: Results for the ∆ct → 0 extrapolations, eq. (A.20), for different values of L/a, c, and
couplings [ḡ

(0)
GFT,c]

2. The results refer to the magnetic coupling discretized using the Zeuthen flow
and O(a2)-improved plaquette + clover definition of the flow energy density [52]. We considered
linear extrapolations in (∆ct)

2 using all available ∆ct values.

c L/a 1
g2
0

L
a

d[ḡ
(0)
GFT,c]2

dct
× 104

0.3

10 −2.6042383805

12 −2.4106092056

16 −2.2186159754

0.42

10 −12.918755710

12 −12.000133367

16 −11.123348145

Table 6: Results for the ct-derivative of the GFT-coupling at tree-level in lattice perturbation theory.
The results refer to the magnetic coupling discretized using the Zeuthen flow and O(a2)-improved
plaquette + clover definition of the flow energy density [52].



Once the results for the different L/a were interpolated to a fixed value of the coupling and
properly renormalized with the 1-loop value of Zb, eq. (A.16), we performed an extrapolation to
a/L → 0, assuming leading O(a) effects. The results are reported in Table 8, while Figure 5
illustrates the corresponding extrapolations. The results for pc(ḡ) for c = 0.42 tend to be larger
(in module) than those for c = 0.30. This is expected, as the footprint of the flow energy density
defining the GFT-coupling extends closer to the SF boundaries for c = 0.42, therefore increasing
the sensitivity to the O(1/M) counterterms.

c L/a β [ḡ
(0)
GFT,c]

2 L
a

d[ḡ
(0)
GFT,c]2

dct

0.3

10 6.3299(4) 4.490 −0.45(7)

12 6.4629(5) 4.490 −0.44(9)

16 6.7324(4) 4.490 −0.37(5)

0.42

10 6.3399(6) 6.68 −2.35(19)

12 6.4771(7) 6.68 −2.14(23)

16 6.7196(6) 6.68 −1.94(13)

Table 7: Results of the interpolations eq. (A.22) using the values in Table 5 and the target couplings,
eq. (A.21). (Note that we did not propagate the error on [ḡ

(0)
GFT,c]

2 to the ct-derivatives.) All fits
have good or acceptable χ2. The values of β have been obtained by a quadratic interpolation of
the results for [ḡ

(0)
GFT,c]

−2 from Table 5 as a function of g−2
0 .

c [ḡ
(0)
GFT,c]

2 L/a pc

0.3 4.490

10 −0.39(6)

12 −0.39(8)

16 −0.33(4)

∞ −0.21(16)

0.42 6.68

10 −2.06(17)

12 −1.88(20)

16 −1.71(11)

∞ −1.14(41)

Table 8: Results for pc at finite lattice spacing (cf. eq. (A.18)) obtained using the values for the
ct-derivatives of the GFT-coupling in Table 7 and the 1-loop approximation for Zb, eq. (A.16).
The results of a L/a→∞ extrapolation linear in a/L are also given.

A.2.3 O(1/M ) corrections: LO estimates

We first estimate ∆c(z) corresponding to the coupling at z = 6 and c = 0.3 (cf. eq. (A.21)). In
this case we have,

ḡ2
0.3(z = 6) = 4.490(50) , g2

? ≈ 3 , M/m? ≈ 1.5 , (A.23)

36



−2.5

−2

−1.5

−1

−0.5

0

0 0.02 0.04 0.06 0.08 0.1

p
c

a/L

c = 0.30

c = 0.42

Figure 5: Illustrative continuum limit extrapolations for the pc results of Table 8.

where to compute g? we used
M

Λ
(Nf=3)

MS

= z × µdec

Λ
(Nf=3)

MS

, (A.24)

with µdec = 789 MeV and Λ
(Nf=3)

MS
= 341 MeV. For the O(1/M) counterterm pc we take the

result (cf. Table 8),
p0.30(ḡ2

0.30(z = 6)) = −0.21 . (A.25)

Putting the numbers together we obtain for the LO estimate, eq. (A.19),

∆0.3(z = 6)

ḡ2
0.30(z = 6)

∣∣∣∣∣
LO

≈ 5× 10−4 . (A.26)

This is about a factor 20 smaller than the statistical error on the coupling.
As a second case, we estimate ∆c(z) for z = 4 and c = 0.42. In this case we have,

ḡ2
0.42(z = 4) = 6.68(10) , g2

? ≈ 3.5 , M/m? ≈ 1.4 . (A.27)

For the O(1/M ) counterterm pc we take the result (cf. Table 8)

p0.42(ḡ2
0.42(z = 4)) = −1.14 . (A.28)

Putting the numbers together we obtain for the LO estimate, eq. (A.19),

∆0.42(z = 4)

ḡ2
0.42(z = 4)

∣∣∣∣∣
LO

≈ 3× 10−3 , (A.29)

which is about a factor 5-6 smaller than the statistical error on the coupling. A slightly more
conservative estimate may be obtained in this case by taking p0.42 = −1.71, which corresponds to
the result at the smallest lattice spacing we simulated, i.e. L/a = 16. In this case, the systematic
O(1/M ) effects are about 3-4 times smaller than the statistical error on the coupling. The smallest
value of z entering the analysis of Sect. 4.5.2 is z = 6. Considering that these effects decrease
linearly with increasing z and that the results for c = 0.42 offer an upper-bound for values of
c < 0.42, it appears to be safe to assume that O(1/M) effects can be neglected altogether.
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B Summary of pure-gauge results

B.1 Matching GF and GFT schemes at the decoupling scale

As explained in Sect. 2.1, we need the continuum relation

ḡ
(0)
GF(µ) = χc

(
ḡ

(0)
GFT,c(µ)

)
(B.1)

for µ around µdec, i.e. ḡ
(0)
GFT,c = ḡ

(3)
GFT,c(µdec,M) is in the range of Tables 2 and 3. On a

finite lattice, eq. (B.1) is obtained by computing both couplings at the same L/a = 1/(µa) and
β and the relation contains discretization errors of order (a/L)2. Results of our simulations for
L/a = 12, . . . , 48 and β ∈ [6.2, 7.6] are reported in Table 9. We parameterize the data by

1

[ḡ
(0)
GFT,c]

2
− 1

[ḡ
(0)
GF ]2

= P c
np([ḡ

(0)
GF ]2) +

( a
L

)2
Qc
nq([ḡ

(0)
GF ]2) , (B.2)

where P c
np(g

2), Qcnq(g
2) are polynomials of degree np and nq, respectively. The sought-after

continuum relation (B.1) is then implicitly given in terms of

P c
np(g

2) =

np∑
k=0

pc
k g

2k , (B.3)

through,

[χ−1
c (g)]2 =

g2

1 + g2P c
np(g

2)
, (B.4)

where χ−1
c is the inverse of the function χc. For all values of c = 0.3− 0.42, taking np = nq = 2

already yields good fits. As an illustrative example, we give here the results for P c
2 for the case

c = 0.3, where we find (pk ≡ p0.3
k )

p0 = −1.6168053320710727× 10−2 , (B.5)

p1 = −1.6086523109487365× 10−4 , (B.6)

p2 = −3.0358986840266259× 10−5 , (B.7)

with covariance

cov(pi, pj) =

 2.92499121× 10−4 −1.29098204× 10−4 1.41308163× 10−5

−1.29098204× 10−4 5.73202489× 10−5 −6.27896098× 10−6

1.41308163× 10−5 −6.27896098× 10−6 6.91910100× 10−7

 .

(B.8)
Figure 6 demonstrates that the discretization errors are small and our largest lattice results are in
agreement with the continuum band. Note that, the error of P c

2 , computable in terms of (B.8) for
the case of c = 0.3, is negligible in the final Λ

(3)

MS
/µdec determination for all values of c considered.

B.2 High-energy running

In this appendix we collect the main ingredients for the determination of

Λ
(0)

MS

µdec
=

Λ
(0)

MS

Λ
(0)
GF

ϕ
(0)
GF(ḡ

(0)
GF (µdec)) , (B.9)
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39

L/a β [ḡ
(0)
GF ]2 [ḡ

(0)
GFT,0.30]2 [ḡ

(0)
GFT,0.33]2 [ḡ

(0)
GFT,0.36]2 [ḡ

(0)
GFT,0.39]2 [ḡ

(0)
GFT,0.42]2

12 6.2556 5.1104(49) 5.6616(89) 6.329(12) 7.141(16) 8.144(22) 9.393(30)
12 6.2643 5.0690(50) 5.5995(84) 6.251(11) 7.042(15) 8.018(20) 9.232(27)
12 6.2654 5.0489(49) 5.5876(90) 6.232(12) 7.013(16) 7.977(21) 9.175(29)
12 6.3451 4.6316(71) 5.0759(72) 5.6147(94) 6.264(12) 7.060(16) 8.043(21)
12 6.3509 4.6164(43) 5.0329(72) 5.5618(93) 6.199(12) 6.980(16) 7.942(20)
12 6.3560 4.5905(68) 5.0078(69) 5.5318(90) 6.163(12) 6.936(16) 7.889(21)
12 6.3642 4.5554(44) 4.9594(69) 5.4718(88) 6.088(11) 6.842(15) 7.771(20)
12 6.3894 4.4339(44) 4.8288(65) 5.3162(86) 5.901(11) 6.613(15) 7.490(20)
12 6.4133 4.3543(40) 4.7133(63) 5.1798(82) 5.739(10) 6.421(13) 7.258(17)
12 6.4200 4.3136(40) 4.6821(68) 5.1419(87) 5.694(11) 6.366(14) 7.192(18)
12 6.4630 4.1590(38) 4.4928(63) 4.9196(78) 5.4311(99) 6.053(13) 6.816(16)
12 6.5619 3.8287(34) 4.1143(55) 4.4749(69) 4.9051(88) 5.426(11) 6.063(14)
16 6.4200 5.3833(70) 6.0206(99) 6.781(13) 7.710(19) 8.864(26) 10.313(35)
16 6.4740 5.0535(67) 5.5929(85) 6.247(11) 7.040(15) 8.018(20) 9.233(27)
16 6.4741 5.0594(49) 5.5766(89) 6.230(12) 7.023(16) 7.999(21) 9.214(28)
16 6.5619 4.6165(56) 5.0554(71) 5.5943(94) 6.242(12) 7.034(16) 8.009(21)
16 6.6669 4.2007(56) 4.5412(61) 4.9771(78) 5.498(10) 6.131(13) 6.908(17)
16 6.7859 3.8249(45) 4.0969(56) 4.4595(76) 4.8915(97) 5.415(12) 6.054(16)
16 6.8000 3.7825(44) 4.0449(56) 4.3998(70) 4.8238(88) 5.338(11) 5.968(14)
20 6.6669 4.9431(61) 5.4190(86) 6.037(11) 6.785(15) 7.705(19) 8.846(26)
20 6.7859 4.4082(54) 4.7887(68) 5.2779(89) 5.865(11) 6.581(15) 7.462(19)
20 6.8000 4.3553(53) 4.7153(64) 5.1890(83) 5.757(11) 6.449(14) 7.299(18)
20 6.8637 4.1219(48) 4.4531(60) 4.8781(77) 5.3855(99) 6.001(13) 6.756(16)
20 6.9595 3.8245(44) 4.0977(54) 4.4637(69) 4.9001(87) 5.429(11) 6.076(14)
24 6.7859 5.0578(61) 5.5530(79) 6.206(10) 6.999(14) 7.978(19) 9.196(25)
24 6.8637 4.6776(56) 5.1006(66) 5.6520(86) 6.316(11) 7.130(15) 8.135(19)
24 6.9595 4.2884(52) 4.6378(61) 5.0988(79) 5.651(10) 6.324(13) 7.150(17)
24 7.1146 3.7942(53) 4.0599(50) 4.4194(63) 4.8479(80) 5.367(10) 6.002(13)
32 6.9595 5.345(14) 5.926(11) 6.666(14) 7.570(19) 8.694(26) 10.103(35)
32 7.1146 4.5866(93) 4.9887(70) 5.5195(91) 6.158(12) 6.937(16) 7.898(20)
32 7.2000 4.2584(90) 4.5933(63) 5.0480(82) 5.592(10) 6.255(13) 7.069(17)
48 7.6000 4.0120(74) 4.3161(61) 4.7213(79) 5.205(10) 5.792(13) 6.512(17)

Table 9: Data used for the matching of the T = L and T = 2L schemes.
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Figure 6: Fit to match the schemes ḡ(0)
GF and ḡ(0)

GFT,c for c = 0.3.

where we recall that it will be used with ḡ(0)
GF (µdec) = χc(ḡ

(3)
GFT,c(µdec,M)), cf. Table 2. Following

[2, 3], we rewrite eq. (B.9) as

Λ
(0)

MS

µdec
=

Λ
(0)

MS

µswi
× µswi

µdec
where [ḡ

(0)
GF(µswi)]

2 =
4π

5
, (B.10)

and insert [2]9

Λ
(0)

MS

µswi
= 0.2658(36) . (B.11)

With given ḡ(0)
GF(µdec), the ratio of scales µswi/µdec can be obtained through the relation

ln

(
µswi

µdec

)
=

∫ ḡ
(0)
GF(µswi)

ḡ
(0)
GF(µdec)

dg

β
(0)
GF(g)

, (B.12)

where β(0)
GF is the non-perturbative β-function for ḡ(0)

GF(µ). In the region of couplings, ḡ(0)
GF ∈

[2, 11], a convenient parametrization for the needed β-function is given by

β
(0)
GF(ḡ) = − ḡ3∑3

k=0 pkḡ
2k
, (B.13)

with coefficients

p0 = 14.93613381 , p1 = −1.03947429 , p2 = 0.18007512 , p3 = −0.01437036 ,

(B.14)

9 When comparing with the results of ref. [2] note that µswi = 0.3µref , of that reference. The difference comes
from the different relation between µ and L used in ref. [2], where µ = 1/

√
8t = 1/(0.3L) as opposed to µ = 1/L

adopted in the current paper.
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Λ
(0)

MS
/µdec

z c = 0.30 c = 0.33 c = 0.36 c = 0.39 c = 0.42

1.972 0.685(13) 0.681(13) 0.678(14) 0.677(14) 0.678(14)
4 0.723(15) 0.720(15) 0.719(16) 0.718(16) 0.719(16)
6 0.740(16) 0.736(16) 0.734(16) 0.732(16) 0.731(16)
8 0.760(18) 0.756(18) 0.753(17) 0.750(17) 0.748(17)

10 0.787(20) 0.785(20) 0.783(19) 0.781(19) 0.780(19)
12 0.802(21) 0.799(21) 0.797(21) 0.794(21) 0.793(21)

Table 10: Results for Λ
(0)

MS
/µdec corresponding to different values of ḡ(3)

GFT,c(µdec,M) of Table 2.

and covariance

cov(pi, pj) =
5.24669327× 10-1 −3.26120586× 10-1 6.03484522× 10-2 −3.33454413× 10-3

−3.26120586× 10-1 2.07627940× 10-1 −3.91082685× 10-2 2.19046893× 10-3

6.03484522× 10-2 −3.91082685× 10-2 7.47684098× 10-3 −4.23948184× 10-4

−3.33454413× 10-3 2.19046893× 10-3 −4.23948184× 10-4 2.42972883× 10-5

 .

(B.15)

In ref. [2] a similar representation of a pure gauge theory β-function is given which applies to
the coupling defined by the electric components of the flow energy density instead of our choice
eq. (2.11). For completeness, we collect in Table 10 the values for Λ

(0)

MS
/µdec obtained by com-

bining the results for the massive couplings in Table 2, the matching relation, eq. (B.2), and the
high-energy running, eqs. (B.11)-(B.12).
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C Simulations

We use a variant of the open-source (GPL v2) package openQCD version 1.6 [88, 89] in plain C
with MPI parallelization. This software has been successfully used in various large-scale projects.
The simulations are performed on lattices of size T

a ×
(
L
a

)3
. We impose Schrödinger Functional

(SF) boundary conditions on the gauge and fermion fields [38, 39], i.e., Dirichlet boundary con-
ditions in Euclidean time at x0 = 0, T , and periodic (up to a phase eiθ for fermionic fields, with
θ = 0.5) boundary conditions with period L in the three spatial directions. We use one-loop
boundary improvement coefficients ct and c̃t [35, 90]. Our lattice setup uses non-perturbatively
O(a)-improved Wilson fermions and the tree-level Symanzik O(a2)-improved gauge action [65];
we refer the reader to ref. [35] for more details. The bare (linearly divergent) quark mass is denoted
by m0 and the pure gauge action has a prefactor β = 6/g2

0 . The ensemble generation proceeds
according to a variant of the Hybrid Monte-Carlo (HMC) algorithm [91]. The classical equations
of motion are solved numerically for trajectories of length τ = 2 in all simulations, leading to
Metropolis proposals. In order to reduce the computational cost and obtain a high acceptance rate,
we split the action and corresponding forces as follows. For the u/d quark doublet we use an even–
odd preconditioned [92] Dirac operator and Hasenbusch’s mass factorization [93] with twisted
masses [94] of increasing values µ0 < µ1 . . . roughly set at equal distances on a logarithmic scale
as suggested in Ref. [95]. The strange quark is simulated with the rational hybrid Monte-Carlo
(RHMC) algorithm [96,97], decomposing the fermion determinant into a reweighting factor and a
Zolotarev optimal rational approximation of (D̂†D̂)−1/2 [98] in the spectral range [ra, rb] of D̂†D̂
with a number of poles Np. The algorithmic simulation parameters are summarized in table 11.
The measurements (gradient flow observables, correlation functions and reweighting factors) are
done during ensemble generation.

C.1 Nf = 3 renormalization runs

For the determination of massive simulation parameters detailed in section E we perform massless
renormalization runs along the line of constant physics defined in eq. (2.12), i.e., g2

GF(Ldec) =

3.949 and m = 0, corresponding to a scale µdec = 789(15) MeV or fixed physical volume with
Ldec = 0.250(5) fm [5, 35]. We generate a large set of new ensembles around LmPCAC = 0

for L/a = 12, 16, 20, 24, 32, 40 and 48, where we measure reweighting factors and the following
observables, as well as the covariance between them:

• the gradient flow coupling g2
GF defined in eq. (2.11), using the magnetic components of the

energy density

g2
GF(L) = N−1t2

〈δ̂(Q)Emag(t, T/2)〉
〈δ̂(Q)〉

∣∣∣∣∣√
8t=cL

. (C.1)

The quantity δ̂(Q) is zero whenever |Q| > 0.5 and one otherwise, and Q is the topological
charge computed with the clover discretization of the field strength tensor built from gauge
fields at flow time

√
8t = cL. At L = Ldec, the volume is small enough for non-zero

topological sectors to be highly suppressed. In practice, we do not see any configuration
with Q different from zero and the projection onto the Q = 0 sector has no effect in our
simulations.

• the current quark massmPCAC, defined through the partially conserved axial current (PCAC)

42



ensemble massless massive

Force 0, level gauge, 0 gauge, 0
Force 1, level TM1-EO-SDET, 1 TM1-EO-SDET, 1
Force 2, level TM2-EO, 1 TM2-EO, 1
Force 3, level TM2-EO, 1 TM2-EO, 2
Force 4, level RAT-SDET, 1 TM2-EO, 1
Force 5, level - RAT, 2

Level 0, nstep OMF4, 1 OMF4, 1
Level 1, nstep OMF4, 8-10 OMF4, 1
Level 2, nstep - OMF2, 6

Solver 0, res CGNE 10−12 CGNE 10−11

Solver 1, res DFL_SAP_GCR 10−12 DFL_SAP_GCR 10−11

Solver 2, res MSCG 10−12 MSCG 10−11

Solver 3, res - CGNE 10−10

Solver 4, res - DFL_SAP_GCR 10−10

Solver 5, res - MSCG 10−10

aµ0 0.0 0.0
aµ1 0.1 0.1
aµ2 1.5 1.0
Np, [ra, rb] 10-12, [0.01-0.1,7.0] 8-9, [0.1,6.0]

Table 11: Parameters of the algorithm: We give the forces with their integration levels, the integra-
tors for the different levels and number of steps (nstep) per trajectory resp. outer level, the solvers
for the various levels and their residue, the twisted-mass parameters aµi, the number of poles Np

and the ranges [ra, rb] used in the RHMC. For the force and solver name abbreviations we refer
the interested reader to the openQCD documentation [88].

relation [99], in its O(a)-improved definition

mPCAC(g2
0,m0) =

1
2(∂∗0 + ∂0)fA(x0) + cAa∂

∗
0∂0fP(x0)

2fP(x0)

∣∣∣∣∣
x0=T/2

, (C.2)

with an axial current improvement coefficient cA from [100] and SF correlation functions
fA and fP that are given by the correlation between a pseudo-scalar boundary operator and
a local iso-vector axial current or pseudoscalar density, projected to zero spatial momentum
at time x0 and Q = 0 (see above).

• the pseudoscalar renormalisation constant ZP in the SF-scheme [101], defined through the
renormalization condition

ZP(µ = 1/L)
fP(L/2)√

3f1
=
fP(L/2)√

3f1

∣∣∣∣
tree-level

, (C.3)

where f1 is the “boundary-to-boundary” correlator, again projected to Q = 0.
A precise definition of all SF correlation functions can be found for instance in [101].
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The renormalization runs are summarized in Table 12 together with all measured observables and
their integrated autocorrelation times τint in units of measurements (every five trajectories, i.e., 10
MDUs).

C.2 Nf = 3 massive

We simulate massive quarks with M ≈ 1.6, 3.2, 4.7, 6.3, 7.9, 9.5 GeV, corresponding to z =

LM = 1.972, 4, 6, 8, 10, 12 on T × L3 and lattices with L/a = 12, 16, 20, 24, 32, 40, 48 and
T = 2L. The determination of simulation parameters for a given z value is discussed in the next
section. The results for the GFT couplings using the Zeuthen flow were given in table 2. When
approaching small lattice spacings, the HMC algorithm is known to suffer from critical slowing
down. Since we have chosen the trajectory length constant in all our runs, our flow measurements
exhibit the expected Langevin scaling τint ∝ a−2, which however is still manageable on our
finest lattice. The lattice size Ldec is small enough for non-zero topological sectors to be highly
suppressed. For our error analysis we use the Γ-method [66].
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Figure 7: Integrated autocorrelation times τint(g
2
GFT) of the gradient flow coupling in units of

measurements (every five trajectories, i.e., 10 MDUs) scaled with a2/L2 vs. the dimensionless
quantity z = LM of our massive simulations. The points are slightly shifted from actual z values
for better visibility.
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L/a β κ Nrep Nms LmPCAC τint g2
GF τint ZP τint

12 4.3020 0.1324810 3 5400 1.3164(9) 0.89 4.167(8) 1.1 0.6400(8 1.6
0.13364602 3 3014 0.8825(10) 0.84 4.080(11) 1.3 0.6190(9) 1.5
0.13481160 3 3000 0.4486(11) 0.87 4.031(11) 1.4 0.5990(10) 1.6
0.13540205 5 3748 0.2260(8) 0.64 3.982(9) 1.3 0.5890(10) 1.5
0.13575881 5 4159 0.0890(8) 0.66 3.970(8) 1.1 0.5816(10) 1.6
0.1359977 6 2637 -0.0016(11) 0.65 3.950(14) 1.4 0.5770(16) 1.8

0.13623743 5 2215 -0.0915(11) 0.50 3.919(11) 1.0 0.5724(21) 2.7
0.13659861 5 1865 -0.2289(15) 0.71 3.911(13) 1.3 0.5645(21) 2.1
0.13720485 5 1613 -0.4710(16) 0.67 3.878(15) 1.0 0.5504(30) 2.0

16 4.4662 0.13222210 6 2176 1.6815(9) 0.74 4.179(17) 2.3 0.6231(15) 3.4
0.13333741 6 6235 1.1316(6) 0.79 4.082(9) 1.8 0.6055(8) 2.5
0.13445845 6 5401 0.5768(6) 0.67 4.017(10) 2.1 0.5887(9) 2.8
0.13503421 9 5006 0.2898(6) 0.68 3.981(10) 2.0 0.5784(11) 2.8
0.13536894 6 5115 0.1213(6) 0.73 3.933(10) 2.3 0.5734(11) 2.6
0.13582883 6 4871 -0.1115(7) 0.79 3.936(10) 2.0 0.5622(13) 2.9
0.13617580 6 4752 -0.2898(7) 0.72 3.908(9) 1.6 0.5545(13) 2.2

20 4.5997 0.13309781 12 1715 1.3609(9) 0.75 4.142(27) 5 0.5947(20) 5
0.13418441 12 1296 0.6924(11) 0.88 4.035(33) 4 0.5821(20) 3
0.13473439 12 1798 0.3483(9) 0.68 3.976(29) 6 0.5731(25) 6
0.13506654 10 1385 0.1422(9) 0.60 3.983(30) 5 0.5646(46) 11
0.13506654 10 1370 0.1402(10) 0.69 3.958(21) 3 0.5680(21) 3
0.13551198 10 1193 -0.1387(12) 0.88 3.963(29) 4 0.5542(34) 4
0.13551198 10 1271 -0.1375(12) 0.84 3.969(23) 3 0.5597(29) 3
0.13584798 10 1004 -0.3545(14) 0.96 3.918(21) 2.4 0.5499(31) 3

24 4.7141 0.13289106 11 2662 1.5854(6) 0.66 4.174(25) 5 0.5863(13) 4
0.13394806 11 2805 0.8048(6) 0.75 4.058(21) 5 0.5755(17) 7
0.13448288 11 2907 0.4066(6) 0.64 3.989(22) 5 0.5638(23) 8
0.13480584 10 2564 0.1642(8) 0.90 4.007(23) 4 0.5619(25) 8
0.13523886 10 1996 -0.1628(8) 0.75 3.959(29) 6 0.5507(27) 5
0.13556545 10 1906 -0.4101(10) 0.96 3.998(28) 6 0.5455(42) 9

32 4.9000 0.13256312 20 2709 2.0170(5) 0.69 4.150(24) 6 0.5714(20) 9
0.13357336 10 2045 1.0261(6) 0.70 4.075(44) 11 0.5663(28) 12
0.13357336 10 660 1.0261(11) 0.82 4.128(69) 10 0.5687(40) 8
0.13408427 10 2084 0.5197(6) 0.77 3.970(39) 10 0.5604(25) 11
0.13408427 10 603 0.5208(26) 0.51 4.063(80) 12 0.5665(29) 5
0.13439270 16 2666 0.2120(5) 0.66 3.948(29) 10 0.5685(27) 12
0.13439270 10 909 0.2141(10) 0.87 3.930(31) 4 0.5517(28) 6
0.13480615 16 1044 -0.2016(8) 0.70 3.920(42) 9 0.5382(57) 9
0.13511791 10 610 -0.5188(12) 0.76 3.917(64) 10 0.5337(88) 10

40 5.0671 0.132280 4 1255 2.4246(6) 0.65 4.134(42) 11 0.5600(59) 33
0.133250 4 860 1.2345(7) 0.68 4.069(62) 16 0.5585(28) 7
0.133740 4 746 0.6297(7) 0.53 3.938(60) 11 0.5664(57) 20
0.134036 4 800 0.2618(8) 0.67 3.955(44) 6 0.5511(37) 7
0.134234 4 845 0.0146(9) 0.81 3.852(87) 23 0.5544(80) 15
0.134433 4 738 -0.2360(9) 0.78 3.979(43) 6 0.5330(10) 17
0.134732 4 981 -0.6150(9) 0.91 3.899(42) 8 0.5449(97) 19
0.135233 4 564 -1.2538(12) 0.60 3.804(47) 6 0.5423(169) 12

48 5.1739 0.13211537 3 569 2.8273(10) 0.65 4.221(60) 8 0.5525(64) 16
0.13306215 3 562 1.4350(11) 0.65 4.066(61) 6 0.5472(61) 14
0.13354065 3 596 0.7253(12) 0.82 3.983(70) 11 0.5274(62) 15
0.13382941 3 610 0.2946(12) 0.82 4.391(136) 17 0.5365(10) 16
0.13402261 3 616 0.0017(11) 0.74 4.147(140) 16 0.5543(71) 13
0.13421637 3 575 -0.2863(10) 0.43 3.819(74) 7 0.5320(13) 15
0.13450805 3 579 -0.7291(18) 1.07 3.965(63) 6 0.5564(95) 7
0.13499703 2 200 -1.4751(25) 1.43 3.911(65) 6 0.5830(272) 8

Table 12: Results for LmPCAC, g2
GF and ZP from massless renormalization runs and their inte-

grated autocorrelation times τint in units of measurements (every five trajectories, i.e., 10 MDUs).



D Mistuning Corrections

To correct the mistuning of the LCP, the slope

S =
∂g2

GF

∂g̃2
0

∣∣∣∣
L/a

=
gGFβ

(3)
GF(gGF)

g0β
(3)
0 (g0)

+ O(a2) , (D.1)

is required. To compute it, the non-perturbative βGF-function of the gradient flow coupling at
g2

GF = 3.949 and the non-perturbative bare β0-function at the bare couplings of our LCP are
needed. The first has been determined to high precision in [35] and is given by

β
(3)
GF(
√

3.949) = −0.471± 0.004 . (D.2)

The bare β0-function can be estimated by parameterizing the L/a ≥ 20 data in the first two
columns of table 1 according to

ln

(
L

a

)
≈ const.+

1

2k3g2
0

, (D.3)

the β0 function in this short range of couplings is then given by

β
(3)
0 ≈ −k3g

3
0, with k3 = 0.054 . (D.4)

With this slope the βLCP values in the last column of table 1 are determined. From these then the
desired simulation parameters for the massive runs follow, as described in section 4.2.

In practice, the massive runs were performed at slightly different parameters, and need to be
corrected as well. The relevant slope here is given by the dependence of the massive coupling on
the bare one

∂g2
GFT

∂g̃2
0

∣∣∣∣
z,L/a

=
∂g2

GFT

∂ ln(L)

∣∣∣∣
z,L/a

(
dg̃2

0

d ln(a)

)−1

. (D.5)

The last factor is again related to the bare β0-function, and the same parameterization as above
can be used. The first factor, however, has never been determined but can be approximated based
on decoupling. Matching of the three-flavor and the pure gauge theories means, that Λ(0)(M) =

Λ(3) P (M/Λ(3)). For physical couplings in the continuum limit we then have

[g
(3)
GFT(L, z)]2 = [g

(0)
GFT(L)]2 + O(z−2). (D.6)

The Nf = 0 coupling and Λ(0) are related

[g
(0)
GFT(L)]2 = F (LΛ(0)) (D.7)

= F
(
LΛ(3)P

( z

LΛ(3)

))
(D.8)

= [g
(3)
GFT(L, z)]2 + O(z−2) . (D.9)

The exact form of the function F will not be needed, but it is essentially the inverted relation
eq. (2.4) together with a scheme change of the Λ parameter. Taking the L-derivative of the second
line and then using decoupling to express everything in terms of Nf = 0 quantities results in

L
∂[g

(3)
GFT]2

∂L
= −2g

(0)
GFTβ

(0)
GFT(g

(0)
GFT)

(
1− ηM

)
+ O(z−2) , (D.10)

46



with ηM = M
P

∂P
∂M

∣∣
Λ(3) = 2/11+O(α(m?)), where the O(α(m?)) corrections are very small [28]

and can safely be dropped.
The shifts are applied to couplings at finite z and finite a. The leading corrections to the

z → ∞, a → 0 limit are built into the extrapolation formulae eq. (4.8) and eq. (4.13), which is
why p1, p2 and B are known in

[g
(3)
GFT]2 = F

(
LΛ

(3)
eff P

(
z

LΛ
(3)
eff

))
+ (p1 + p2z

2)
a2

L2
, (D.11)

Λ
(3)
eff = Λ(3) +

B

z2
. (D.12)

The L-derivative of the coupling at finite z and a has then corrections Ra and Rz of the form

L
∂[g

(3)
GFT]2

∂L
= −2g

(0)
GFTβ

(0)
GFT(g

(0)
GFT)

(
1− ηM

)
[1 +Rz +Ra] , (D.13)

which to leading order are given by

Rz ≈
B/Λ

z2
4[g

(0)
GFT]2 k0 , (D.14)

Ra ≈ −2(p1 + p2z
2) a

2

L2

−2g
(0)
GFTβ

(0)
GFT(g

(0)
GFT (1− ηM )

. (D.15)

Finally, k0 parameterizes the β(0)
GFT-function in the relevant range of couplings

β
(0)
GFT(gGFT) ≈ −k0 g

3
GFT . (D.16)

Its value is 0.079 and 0.076 for c = 0.3 and c = 0.36, respectively.

E Mass renormalization

To compute the strong coupling from decoupling relations, simulations at constant renormalized
mass are necessary. This appendix describes, how a given value of the RGI quark mass in GeV
translates into a hopping parameter at a given β value.

In a first step the RGI mass M is translated into a renormalized mass m(µdec) in the SF
scheme

m(µdec) = M × m(µ0/2)

M
× m(µdec)

m(µ0/2)
. (E.1)

HereM/m(µ0/2) = 1.7505(89) has been determined in [24] for a scale µ0 defined by g2
SF(µ0) =

2.0120, which corresponds to g2
GF(µ0/2) = 2.6723(64). For the (short) running of the mass

m(µdec)

m(µ0/2)
= exp

−
g(µ0/2)∫
g(µdec)

τ(x)

β(x)
dx

 , (E.2)

a parametrization of non-perturbatively determined [24] τ/β data is used

τ(gGF)

β(gGF)
=

1

gGF

(
f0 + f1g

2
GF + f2g

4
GF + f3g

6
GF

)
, (E.3)
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with f0 = 1.28493, f1 = −0.292465, f2 = 0.0606401, f3 = −0.00291921. The parameters are
correlated, namely

cov(fi, fj) =

 2.33798× 10−2 −1.47011× 10−2 2.81966× 10−3 −1.66404× 10−4

−1.47011× 10−2 9.54563× 10−3 −1.87752× 10−3 1.12962× 10−4

2.81966× 10−3 −1.87752× 10−3 3.78680× 10−4 −2.32927× 10−5

−1.66404× 10−4 1.12962× 10−4 −2.32927× 10−5 1.46553× 10−6

 .

(E.4)

This allows to obtain
M

m(µdec)
= 1.474(11). (E.5)

This renormalized mass can then be related to either the bare subtracted quark massmq(g2
0,m0) =

m0 −mcrit(g
2
0) or to the bare PCAC mass mPCAC(g2

0,m0).

m(µdec) = mPCAC(g2
0,m0)

ZA(g̃2
0)

ZP(g̃2
0, aµdec)

[
1 + (bA(g2

0)− bP(g2
0))amq(g2

0,m0)
]

(E.6)

= mq(g2
0,m0)Zm(g̃2

0, aµdec)
[
1 + bm(g2

0)amq(g2
0,m0)

]
, (E.7)

valid only up to cutoff effects of O(a2) with the improved bare coupling [58]

g̃2
0 = g2

0

(
1 + bg(g2

0)amq

)
. (E.8)

The second relation is more useful, since it connects m directly to the simulation parameter κ:
amq = am0 − amcrit(g

2
0) = 1

2κ − 1
2κc

. On the other hand, the renormalization factors in the first
relation are easier to compute, or already known. The missing piece is then the relation between
mPCAC and mq,

mPCAC(g2
0,m0) = (E.9)

ZP(g̃2
0, aµdec)Zm(g̃2

0, aµdec)

ZA(g̃2
0)︸ ︷︷ ︸

≡Ẑ(g̃2
0)

mq(g2
0,m0)

1 + [bm(g2
0) + bP(g2

0)− bA(g2
0)]︸ ︷︷ ︸

≡b̂(g2
0)

amq(g2
0,m0)

 ,

with renormalization factor Ẑ(g̃2
0) and improvement coefficient b̂(g2

0), which can both be obtained
non-perturbatively from our close-to-massless simulations. More precisely, since these runs vary
m0 around mcrit while keeping g0 constant (instead of g̃0), what we have access to are Ẑ and b̂eff

in

mPCAC(g2
0,m0) = Ẑ(g2

0)mq(g2
0,m0)

1 +

(
b̂(g2

0) + g2
0bg(g2

0)
Ẑ ′(g2

0)

Ẑ(g2
0)

)
︸ ︷︷ ︸

≡b̂eff(g2
0)

amq(g2
0,m0)

 .
(E.10)

First, we perform a simultaneous linear fit to the data in table 12 at fixed L/a

LmPCAC = c0 + c1Lm0 + c2(Lm0)2 (E.11)

ZP = c3 + c4Lm0 + c5(Lm0)2 (E.12)

g2
GF = c6 + c7Lm0 + c8(Lm0)2 . (E.13)
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L/a β amcrit Ẑ b̂eff ZP ZA

12 4.3020 -0.323417(38) 1.1707(31) -0.408(26) 0.57708(82) 0.8322(26)
16 4.4662 -0.312928(23) 1.1613(22) -0.486(29) 0.56759(82) 0.8432(34)
20 4.5997 -0.304289(24) 1.1492(28) -0.461(39) 0.5628(15) 0.8515(41)
24 4.7141 -0.296941(14) 1.1455(12) -0.497(18) 0.5554(17) 0.8582(47)
32 4.9000 -0.285427(12) 1.1374(13) -0.608(45) 0.5446(35) 0.8681(55)
40 5.0671 -0.275473(11) 1.1259(12) -0.490(19) 0.5459(42) 0.8762(62)
48 5.1739 -0.2693605(82) 1.1233(10) -0.517(17) 0.5427(49) 0.8810(66)

Table 13: Results for amcrit, Ẑ, b̂eff and ZP from fits and extrapolations of ZA.
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Figure 8: Critical mass and Ẑ as a function of g2
0 .

Then amcrit, Ẑ, b̂eff , ZP, g2
GF and d g2

GF/d am0 at zero quark mass, as well as their covariances
are obtained from the fit parameters ci. The results of these fits can be found in Table 13.

To read off Ẑ ′/Ẑ to compute b̂ from b̂eff , and to obtain the value amcrit(g
2
0) from data at

slightly shifted g̃2
0 , we carry out another linear fit of the results in table 13

amcrit = d0 + d1g
2
0 + d2g

4
0 + d3g

6
0 (E.14)

Ẑ = d4 + d5g
2
0 + d6g

4
0 . (E.15)

The result is shown in Fig. 8, asymptotic PT behavior is not built into these fits.
The axial current renormalization ZA was computed very precisely based on universal rela-

tions between correlators in a chirally rotated Schrödinger Functional [102]. The calculation was
carried out at the β values at which also the large volume CLS simulations are carried out. These
are coarser lattices, than the ones needed here, which means that an extrapolation of the data is
necessary. A fit, with restriction to 1-loop perturbation theory for g0 → 0, as proposed by the
authors is

ZA = 1− 0.090488g2
0 + c1g

4
0 + c2g

6
0 + c3g

8
0 , (E.16)

with c1 = 0.127163, c2 = −0.178785, c3 = 0.051814 and

cov(ci, cj) = 10−2 ×

 0.29841165 −0.36050066 0.10868891

−0.36050066 0.43567202 −0.13140137

0.10868891 −0.13140137 0.03964605

 . (E.17)
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The right column of table 13 lists the extrapolated renormalization factors at the necessary β

values, see also figure 9.
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Figure 9: Extrapolations of ZA.

With known ZA, ZP and Ẑ, the
ZmZm in the relation between the bare and the renormalized mass is determined non-perturbatively.
The only missing pieces are the improvement coefficients bA, bP and bg, for which we take their 1
loop approximations [60, 103, 104]

bA = 1 + 0.0881(13)× CF g
2
0 , (E.18)

bP = 1 + 0.0889(14)× CF g
2
0 , (E.19)

bm = −1

2
− 0.0576(11)× CF g

2
0 , (E.20)

bg = 0 + 0.012000(2)×Nf g
2
0 . (E.21)

The perturbative result for bm will not be used, except for testing PT, bm is instead obtained as
bm = b̂− bP + bA.

If g̃0 denotes the bare coupling of the LCP defined by m = 0, g2
GF = 3.949, then the massive

simulations need to be carried out at a slightly different bare coupling, in order to keep g̃0 and
hence the volume constant. If we denote this slightly shifted coupling by g2

0 , we find that the bare
parameters of the massive simulation, g2

0 and m0, have to be chosen such that

g2
0 = g̃2

0

(
1− bg(g̃2

0)amq(g2
0,m0)

)
(E.22)

Lm(µdec) = Lmq(g2
0,m0)Zm(g̃2

0)
[
1 + bm(g̃2

0)amq(g2
0,m0)

]
(E.23)

hold. Note that bx(g2
0)amq = bx(g̃2

0)amq + O(a2) was used to derive these expressions. These
equations can be explicitly solved for the simulation parameters in three steps

amq =
1

2bm

(
±
√

1 +
4bmLm

L/a Zm
− 1

)
, (E.24)

g2
0 = g̃2

0/ (1 + bgamq) (E.25)

am0 = amq + amcrit(g
2
0) . (E.26)
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The uncertainties in all quantities entering these equations are known10 , which means that we
know the precision of the massive simulation parameters, and conversely we control the precision
that we can expect to reach for z. How an error on z propagates into the determination of Λ is
discussed below, but first, let us consider a cross-check of demonstrating that z is fixed correctly.
Once the massive simulations have been carried out, we measure the PCAC masses11 and compute

z̃ = LmPCAC
M

m̄(µ)

ZA(g̃2
0)

ZP(g̃2
0, aµ)

[1 + (bA − bP)amq] = z + O(a2) (E.27)

The results are shown in figure 10. The precision is satisfactory, and the O(a2) effects are reason-
ably small.
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Figure 10: Overview of our massive simulations for M = 1.6 . . . 9.5 GeV, T = 2L, showing the
dimensionless RGI mass z̃, eq. (E.27) which agrees well with the input z-values prescribed in
terms of the bare mass mq.

10 We treat the difference between tree-level and 1-loop values as uncertainties of the improvement coefficients, that
are known only perturbatively.

11 For the evaluation of the PCAC mass on the massive ensembles we use the improved derivative defined in [105].
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F Propagating the error of z

One would like to estimate which precision is necessary in fixing M in order to achieve a certain
precision in g2

GF(µ,M) and then in Λ(3) obtained from Λ(0).
The most relevant place where an uncertainty in M matters is the P function (to be precise

P0,3 in the notation of [28]), which relates the Λ parameters as

Λ
(0)

MS
= P (M/Λ

(3)

MS
) Λ

(3)

MS
. (F.1)

One can simply use this noting that

M∂MΛ
(3)

MS

∣∣∣
Λ

(0)

MS

= M∂M
Λ

(0)

MS

P (M/Λ
(3)

MS
)

= −Λ
(3)

MS
ηM , (F.2)

and insert the known perturbation theory for ηM = M
P ∂MP . The function ηM is known to 4 loops

and the first two perturbative terms are (cf. [28])

ηM ∼ 6

33
+

1926

(4π)2332
g2
? + . . . , (F.3)

where g? = ḡ
MS

(m?) and m
MS

(m?) = m?. This is enough to estimate the required precision in
the tuning of M .

Another place where M mistunings need to be accounted for, is the continuum extrapolation
of the massive coupling. To propagate the M uncertainty onto ḡ2, its derivative with respect to the
mass must be known.

For this we are going to use the fundamental formula Eq. (2.10)

Λ
(3)

MS
= µdec × ϕ(0)

GF(ḡGF)×
Λ

(0)

MS

Λ
(0)
GF

× P (M/Λ
(3)

MS
) . (F.4)

where ḡ2
GF is the massive coupling in the GF scheme in Eq. (2.11). First note that

ϕ
(0)
GF(ḡGF) = exp

{
−
∫ ḡGF dx

β
(0)
GF(x)

}
× constant , (F.5)

with z = M/µdec only appearing in the first term. Now we can take the logarithm

log Λ
(3)

MS
= −

∫ ḡGF dx

β
(0)
GF(x)

+ log(P (µdecz/Λ
(3)

MS
)) + z independent terms . (F.6)

Taking a derivative with respect to z gives

∂ḡGF

∂z
= −β(0)

GF(ḡGF)∂z logP (F.7)

and finally
∂ḡ2

GF

∂z
=
ηM

z
× (−2ḡGFβ

(0)
GF(ḡGF)) , (F.8)

where we have used ∂z logP = ηM/z.
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Figure 11: (a) The derivative ∂z logP = ηM/z. (b) The full derivative of the coupling Eq. (F.8).

Figs. 11 show the results. The derivative is not that small, especially at z = 4 (z = 2 is
irrelevant).

Numerically we find with excellent approximation that

z∂z logP ≈ 0.19 (F.9)

so that we will use for the error propagation the formula

1

ḡ2
GF

∂ḡ2
GF

∂z
= − 0.38

zḡGF
β

(0)
GF(ḡGF) , (F.10)

so that
δḡ2

GF = 0.38ḡGFβ
(0)
GF(ḡGF)

δz

z
. (F.11)

Finally, note that the massive coupling ḡ2
GFT is different from ḡ2

GF (because of T = 2L, the
mass effects and possibly the different values of c). The relation between couplings is known
non-perturbatively in the region of interest for the Nf = 0 case

1

ḡ2
GFT
− 1

ḡ2
GF

= f(ḡGF) , (F.12)

see Eq. (B.2). Neglecting 1/z2 terms, we have that

δḡ2
GFT =

(
1

ḡ4
GF

− f ′(ḡGF)

)
ḡ4

GFT0.38ḡGFβ
(0)
GF(ḡGF)

δz

z
. (F.13)

In practice f ′(ḡGF) ≈ 0, and the whole uncertainty δḡ2
GFT is well below the statistical uncertainty

of ḡ2
GFT. The uncertainty δz contributes less than a 0.2% to the final error squared in Λ

(3)

MS
.

53



G Line of constant physics for L/a = 40, 48

ForL/a > 32 we do not have direct simulations to fix our line of constant physics ḡ2
GF(µdec, aµdec) =

3.949. For the case aµdec = 1/48, we first determine the inverse lattice step scaling function from
the data available in the literature [35], in particular for the fit used in [35] for the β-function. The
result of such determination is

Σ−1(3.95, aµdec = 1/24) = 2.9951(62) . (G.1)

Now we determine the value of β for aµdec = 1/24 such that the coupling equals 2.9951. This
can be determined by interpolating the data of table 14 using as fit ansatze

1/ḡ2
GF − β/6 = P3(β) , (G.2)

where P3(x) is a third degree polynomial. The result of this procedure is

β = 5.1742(58) (L/a = 48) . (G.3)

s.t. the coupling for L/a = 48 would be exactly 3.95. Note that this value has to be slightly
corrected to the true LCP ḡ2

GF(µdec) = 3.949 (see table 1).
Finally, the values of table 1 with L/a ≤ 32, together with this last determination can be used

to interpolate the value of β s.t. ḡ2
GF = 3.949 for L/a = 40. We choose as fit functional

log(L/a) = P4(β) , (G.4)

where P4(x) is a fourth degree polynomial. The resulting value is

β = 5.0497(41) (L/a = 40) . (G.5)

β ḡ2
GF 1/g2

GF − β/6
5.543070 2.5043(76) -0.5245(12)
5.242465 2.8963(87) -0.5285(10)
4.938726 3.403(11) -0.52930(95)
4.634654 4.180(14) -0.53319(81)
4.331660 5.380(25) -0.53609(85)
4.128217 6.785(36) -0.54065(78)

Table 14: Simulations with L/a = 24 used to interpolate the vaulue ḡ2
GF = 2.9951.
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