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Abstract. The heavy-ion programmes in the ATLAS and CMS experiments at the Large Hadron 
Collider aim to probe and characterise properties of the quark-gluon plasma created in relativistic 
nuclear collisions.  This work presents selected results of collective effects, system size effects, 
and quarkonia production in p-p, p-Pb, Pb-Pb, and Xe-Xe collisions. 

1.  Introduction 
The ATLAS[1] and CMS Collaborations[1] perform measurements in heavy ion (HI) collision 
programmes, in addition to proton-proton (p-p) discovery physics.  The goal of the HI programmes is 
to discover and explain the properties of Quark-Gluon Plasma (QGP) created in these collisions.  Smaller 
system sizes are also studied as cases in which QGP creation is not favoured.  Recent results from Pb-
Pb at centre-of-mass energies of 2.76 TeV and 5.02 Tev, Xe-Xe  at 5.44 TeV, and p-Pb at 8.16 TeV are 
presented.  Both HI programmes use p-p reactions as reference collisions to explore initial-state and 
final-state collision effects. 

 

2.  Collision System Size Effects  
Most of the current HI programme uses the Pb-Pb system to probe hot and dense matter nuclear.  More 
recent measurements are used to explore the Xe-Xe reaction, which provides a tool for exploring system 
size dependence on the production of hadrons. 

2.1  Pb-Pb and Xe-Xe 
Figure 1 shows the pseudorapidity density (dNch / dη) of charged hadrons produced in nuclear collisions 
as a function of rapidity (y) at different energies-per-nucleon [2].  The plot shows the expected growth 
in charged hadron production as both the LHC centre-of-mass energy increases, and the size of the 
collision region increases when going from Xe-Xe- to Pb-Pb reactions.  
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Figure 1.  Average and symmetrised dNch/dy as a function of rapidity [2]. 

 

2.2  System size scaling   
A study of the number of hadronic particles produced as a function of the average number of 
participants (<Npart>) is shown on the left side of Figure 2, for both Pb-Pb and Xe-Xe collisions.  For 
fixed and large <Npart> no system size scaling is observed. 

 
Figure 2.  Average dNch/dη at mid-pseudorapidity (η) normalised by <Npart>, shown as a function of 
<Npart> (left), and <Npart>/2A (right), where A is the atomic number of the nuclei [2]. 
 

The per-participant multiplicity for Xe-Xe and Pb-Pb collisions for the same <Npart> and similar 
energies but different geometry or centrality are different.  This is particularly evident for the most 
central (largest <Npart>) collisions. However, as in Figure 2 (right), where <Npart>/2A is used as a 
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substitute for centrality, the per-participant charged-hadron multiplicity for different colliding 
nuclei are equal within uncertainties when the geometry (centrality) and the energy of the 
compared systems are the same [2]. 

 

2.3   Charged particle suppression 
Measurement of the nuclear suppression factor RAA indicates how the QGP suppresses the observed 
charged hadron particle production. The data in Figure 3 show similar numbers of <Npart> but for 
different centralities in the Xe-Xe and Pb-Pb systems.  The Xe-Xe system exhibits slightly stronger 
suppression in the most central collisions. 

 
 

Figure 3.  The nuclear modification factor RAA for Xe-Xe and Pb-Pb systems [3]. 
 

3.  Collective effects 
Strong collective flow behaviour is exhibited in high energy nucleus-nucleus collisions.  Studies of 
smaller systems such as p-Pb collisions and high multiplicity p-p collisions also reveal collective flow.  
Current research is aimed at measuring the flow of heavy quarks in small systems. 

 
3.1  Charm and strange quark elliptic flow 
In Figure 4 the background corrected V2 , called V2

sub, per constituent quark for mesons and baryons is 
presented.   For particle transverse kinetic energy per constituent quark values less than 1GeV, the  V2

sub 
of prompt J/ ψ mesons is consistent with prompt D0, KS

0 and Λ scaling along with the D0meson.  There 
is a suggestion of prompt 𝐽𝐽 Ψ⁄  mesons, which consist of two charm quarks, breaking the scaling at higher 
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transverse kinetic energies. This is a hint that heavy quarks show weaker collective behavior in 
compressed nuclear matter. 

 
 

Figure 4.  Background subtracted constituent quark normalized elliptic flow (V2
sub / nq) as a function of 

normalized traverse kinetic energy [4]. 
 
 

3.2  Multiparticle correlations in azimuthal distributions 
Multiparticle azimuthal correlations produced in heavy ion collisions extend over a considerable range 
in pseudorapidity. The observed azimuthal correlations are characterized by Fourier harmonics, with 
V2  and V3  referred to as elliptic and triangular flow, respectively [5].  The ratio between the four-
particle and two-particle harmonics provides information on the relative importance of the global 
geometry and the fluctuation-driven asymmetries. 

The first ever small system four-particle measurements of V3 are shown in Figure 5.  For the small 
system formed in p-Pb (left side of Figure 5) the four-particle and two-particle harmonics are very 
similar.  This is consistent with the origin of these harmonics coming from the same initial state 
fluctuation.  For the larger system Pb-Pb (right side of Figure 5) the elliptic flow harmonic ratio is 
larger than the triangular flow harmonic.  This result if expected if the global collision geometry 
dominates the Pb-Pb results [5]. 
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Figure 5.  The ratios of four- and two-particle harmonics for pPb at 8.16 TeV (left), and for PbPb at 
5.02 TeV (right) [5]. 
 
 

3.3  Dijet asymmetry 
Dijets are sprays of particles produced in nucleus-nucleus collisions.  If the dijets are approximately 
back-to-back then the phenomenon of jet quenching, the difference between thetransverse energies of 
the two jets, can be observed. 
     New results on the dijet asymmetry (defined as   XJ =  PT2 PT1⁄    , in which  PT1  is the leading jet 

transverse momentum, and  PT2  is the sub-leading jet transverse momentum) for Xe-Xe and Pb-Pb 
collisions are presented across four centrality bins in Figure 6 [3].  There appears to be very little 
difference in the behaviour of XJ as the size of the nuclear overlap changes.  The jet quenching is 
uniform for central (0-10%) collisions and potentially evolves smoothly towards a non-uniform 
shape in the most peripheral (60-80%) collisions.   
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Figure 6.  The normalised dijet asymmetry XJ in Xe-Xe and Pb-Pb collisions for four centrality bins [3]. 

 
 
Photons act as calibration probes in HI collisions as they essentially lose no energy as they traverse 
the QGP. One of the jets can be replaced by a high energy gamma ray.  When comparing p-p 
collisions to Pb-Pb collisions the jet-gamma asymmetry parameter (defined as   XJγ =  PT

jet PT
γ� ) 

behaves in a substantially different way than XJ defined for Figure 6.   The XJγ parameter for p-p 
reactions is compared to two centrality choices in Pb-Pb collisions at 5.02 TeV in Figure 7.  Since 
the gamma-ray balances the jet momentum in p-p reactions we see a prominent peak at XJγ = 1.  In 
the Pb-Pb collisions we see a similar peak in peripheral collisions, but this peak smoothly evolves 
with increasing centrality. It nearly disappears for the most central (0-10%) Pb-Pb collisions.  The 
jet momentum is quenched by the QGP in the central Pb-Pb collisions. 



International Workshop on Discovery Physics at the LHC (Kruger2018)

IOP Conf. Series: Journal of Physics: Conf. Series 1271 (2019) 012007

IOP Publishing

doi:10.1088/1742-6596/1271/1/012007

7

 

 

 
Figure 7.  The jet-gamma asymmetry XJγ in p-p and Pb-Pb collisions at 5.02 TeV for two centrality bins 
[6]. 

 
4.  Quarkonia and heavy quarks 

Quarkonia and heavy quarks are also useful probes of QGP produced in HI collisions.  The relevant 
observable quantity is the nuclear suppression factor (RAA).  The J/ψ meson is composed of charm and 
anti-charm quarks.  As shown in Figure 8, suppression of J/ψ production in Pb-Pb collisions gets larger 
as the collision centrality increases, e.g., more QGP is produced in the most central collisions (0-10%). 
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Figure 8.  The nuclear modification factor RAA as a function of pT for prompt J/ψ production in Pb-Pb 
collisions at 5.02 TeV, shown for three centrality bins [7]. 
 
The J/ψ meson has an excited state called the ψ(2S).  The less tightly bound ψ(2S) is more sensitive to 
the high temperature QGP.  This is illustrated in Figure 9 (left) where the RAA is plotted for both the J/ψ 
and ψ(2S) mesons, as a function of participant particles in the Pb-Pb collision [8].  Prompt ψ(2S) are 
suppressed uniformly across the number of participants when compared to prompt J/ψ in Pb-Pb 
collisions at 5.02 TeV.   

 
On the right side of Figure 9 is presented the nuclear suppression factor RpPb for the p-Pb collisions 
at 5.02 TeV.  p-Pb collisions are used to observe final state interactions.  The ψ(2S) is expected to be 
suppressed by the same amount as the J/ψ meson, but the data in the negative rapidity region suggests 
that the ψ(2S) is more suppressed [8].  This may be due to the larger size of the ψ(2S) meson.  
 
The ϒ meson also has a third excited state accessible in HI collisions.  These mesons are labelled 
ϒ(1S), ϒ(2S), and ϒ(3S) in Figure 10 [9].  Similar to the J/ψ meson and the ψ(2S) the three upsilon 
mesons, consisting of bottom and anti-bottom quarks, show a sequential suppression that increases 
as the collision centrality increases. The ϒ(3S) has the smallest RAA observed for any hadron. 
Superimposed upon the data are ideal fluid hydrodynamics calculations [9]. 
Strangeness enhancement in HI collisions is accompanied by heavy quark creation.  This motivates 
the search for strange neutral B mesons; e.g., BS0  → J Ψ⁄  φ →  µ+ µ− K+ K− in A-A collisions.  In 
Figure 11 (left) is an invariant mass yield plot of BS0 mesons[10].  In Figure 11 (right) is the nuclear 
suppression RAA for B mesons, with and without a strange quark, moving through QGP. Within 
current uncertainties, the results are consistent with models of strangeness enhancement and a 
suppression as observed for the B+ mesons. 
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Figure 9.  Nuclear suppression factors RAA for J/ψ and ψ(2S) mesons in Pb-Pb(left) and in p-Pb (right) 
collisions plotted versus the number of participating particles (Npart), and the rapidity (yCM), respectively 
[8]. 
 
 

 
Figure 10.  The nuclear modification factor RAA as a function of pT for ϒ(1S), ϒ(2S), and ϒ(3S)  
production in Pb-Pb collisions at 5.02 TeV, shown as a function of the number of participating nucleons 
[9].  Ideal fluid model calculations by Krouppa and Strickland are also presented [9]. 
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Figure 11. The invariant mass distribution for BS0 decay in Pb-Pb collisions (left).  Nuclear suppression 
factor for B measons from Pb-Pb collisions (right) [10]. 
 

5.  Conclusions  
      The heavy ion reaction programmes at both ATLAS and CMS are focussed on the study of QGP.   
A variety of particles and observables are used to investigate the earliest stages of nucleus-nucleus 
collision. System size effects, particle correlations, jet quenching, quarkonia, and heavy quark nuclear 
suppression provide insight to the earliest moments in relativistic nucleus-nucleus collisions.  
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