
Towards automatic setup of 18MeV electron beamline using machine learning

Francesco Maria Velotti,∗ Brennan Goddard, Verena Kain, Rebecca Ramjiawan, and Giovanni Zevi Della Porta
CERN, Geneva, CH

Simon Hirlaender
University of Salzburg, Kapitelgasse 4/6, 5020 Salzburg, Austria

(Dated: September 8, 2022)

To improve the performance-critical stability and brightness of the electron bunch at injection
into the proton-driven plasma wakefield at AWAKE, automation approaches based on unsupervised
Machine Learning (ML) were developed and deployed. Numerical optimisers were tested together
with different model-free reinforcement learning (RL) agents. To aid hyper-parameter selection,
a full synthetic model of the beamline was constructed using a variational auto-encoder trained
to generate surrogate data from equipment settings. This paper introduces the AWAKE electron
beamline and describes the results obtained with the different ML approaches, including automatic
unsupervised feature extraction from images using computer vision. The prospects for operational
deployment and wider applicability are discussed.

I. INTRODUCTION AND MOTIVATION

The AWAKE experiment [1] at CERN’s Super Proton
Synchrotron (SPS) uses proton-driven plasma wake-fields
to accelerate an 18 MeV electron witness bunch to about
2 GeV over a distance of 10 m. Efficient capture and ac-
celeration relies on precise delivery of a dense low-energy
e− bunch to the correct location in space and time in the
plasma. The e− beam brightness (intensity divided by
transverse beam size) and position are therefore critical
to the performance of the overall facility, as evidenced
by the experiments performed in 2018 [2]. The work re-
ported in this paper complements the encouraging initial
results obtained for multi-objective optimisation of tra-
jectory and emittance [3].

The low energy 18 MeV/c e− beamline requires time-
consuming and frequent optimisation, given its high sen-
sitivity to initial conditions, to equipment settings and
to the bunch momentum distribution, as well as inher-
ently less predictable environmental effects like temper-
ature, magnetic history and the pulsing of the adjacent
400 GeV/c proton beamline. The commissioning of the
e− beamline highlighted the criticality of the magnetic
element modelling and of the incoming beam energy jit-
ter [4].

Some of the contributions to beam quality degra-
dation are completely random or uncontrollable, with
timescales ranging from seconds to hours or even days.
Time-consuming and sometimes non-reproducible man-
ual tuning of the e− source and beamline parameters were
needed to satisfy the experiment requirements.

The main fluctuations are observed on the transverse
beam quality and are believed to be caused by chromatic
aberrations and optical mismatch at the injection point.
Problems of this type for low-energy lines are known
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[5, 6], although large variations usually also affect the
longitudinal beam delivery. A similar multi-objective op-
timisation is needed, e.g. position, angle, emittance and
charge delivered, with a large number of free tuning pa-
rameters.

To reduce the time and personpower effort needed for
setting up, and to improve the stability and also poten-
tially the absolute performance reach, model-free ML au-
tomation approaches were investigated. Acting on the
initial matching triplet and the low-energy solenoids,
the beam brightness was optimised, using as observa-
tion the image of the beam on a beam monitoring screen
(BTV [7]) at the entrance of the plasma cell, Fig. 1. To
test and deploy the different types of optimisation agents,
an interface to the SPS control system was used together
with the generic OpenAI Gym [8] environment frame-
work for the ML tasks. A surrogate model using com-
puter vision in a Variational Autoencoder (VAE) trained
on the machine data was an important part of the work,
allowing fast in-silico testing and tuning of different al-
gorithms and approaches without beam time.

For the optimisation of the beam brightness, the two
different approaches investigated were numerical optimis-
ers and reinforcement learning. For the numerical opti-
misers, by varying the equipment parameters the algo-
rithm aims to maximise or minimise an objective function
calculated from the BTV image, which it must perform
each time it is used. For RL, the agent aims to learn
the response of the system during a training phase, such
that it can quickly move to the optimum in the subse-
quent deployment.

The relevant performance metrics for both types of ap-
proach are the sample efficiency (number of interactions
needed with the machine for the algorithm to converge)
and the final beam brightness achieved. The RL agents,
based on the Markov assumption, have the advantage of
not needing to repeat the exploration phase, once the
underlying dynamics have been learned, but unlike the
optimisers will not perform well on subsequent deploy-
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FIG. 1: AWAKE beamline showing location of the matching devices (actions) and the observation BTV.

ment if the underlying dynamics of the system are non
stationary.

A key requirement for RL is that an appropriate state
information can be provided to the agent. In our ex-
periments, we tested both explicit state encoding, using
the output of analytical Gaussian image fits, and im-
plicit state (or feature extraction) encoding, where the
encoder from a trained VAE gives a representation of the
image in a low-dimensional Z latent space, which was
then used directly as implicit state information for the
RL agent. This automatic unsupervised feature extrac-
tion could be critical for RL applications where explicit
state feature description and extraction is difficult (very
high dimensional problems) or impossible, for instance in
the observation of Schottky spectra.

To facilitate hyper-parameter optimisation, agent se-
lection and investigate transfer learning, the decoder of
the trained VAE was also used to generate a full syn-
thetic model of the system. This synthetic model is able
to encode and decode images to and from a latent space
Z using an additional predictor neural network to ensure
the correspondence between Z with the equipment set-
ting configuration C. In this way, it can replace the real
beamline to help tune and test any algorithms.

This paper introduces the AWAKE e− beamline with
its operational challenges, and explains the technique for
matching for maximum beam brightness at the injection
point. The methodology for the implementation of the
different optimisers and RL agents is presented, together
with the VAE. The construction of the synthetic model is
briefly described. The performances of the different ap-
proaches deployed on AWAKE are compared, including
comparison with the synthetic model results. Technical
aspects such as implicit versus explicit state represen-
tation are addressed, including a technique the authors
developed for overcoming the inherent difficulty with RL
reward shaping which simplified and stabilised training
and improved overall sample efficiency. Finally, future
work and the prospects for operational deployment and

wider applicability are discussed.

A. AWAKE electron transfer line and optics

The AWAKE experiment uses a 400 GeV/c proton
transfer line to transport the drive beam from the SPS to
the plasma cell. The 18 MeV e− beam is produced in a
side-gallery and needs to be fed into the same plasma cell
with high delivery precision. An initial S-band RF photo
injector produces a 200 pC e− beam at around 5 MeV/c
which is then accelerated in a travelling wave accelerat-
ing structure up to about 18 MeV/c [9]. Two low energy
solenoids are used just after the photo injector to focus
the beam inside the accelerating structure and hand it
over to the transfer line. The latter is equipped with
an initial and final matching quadrupole triplets to en-
sure losses transport and final focus at the plasma cell
entrance.

The existing tunnel geometry was an important con-
straint on the optics design of the e− line. In Fig. 2
the optics of the e− beamline is shown. It comprises two
achromatic sections: one vertical dog-leg and one 60° hor-
izontal bend to go from the RF gun to the plasma cell,
as well as matching elements. Due to the difference in
the vertical slope between the tunnel of the RF gun and
the plasma cell, the vertical dispersion is matched to zero
locally at the merging point but with a finite dispersion
angle.

In order to ensure capture of the injected e− in the
plasma accelerating structure, the beam size at the en-
trance of the plasma cell has to be 250 µm in both planes,
with as high intensity as possible. Due to the strong
bends and quadrupoles in the beamline, the chromatic
aberrations significantly degrade the deliverable beam
quality [4]. This is accentuated by the shot-to-shot mo-
mentum jitter observed from the e− source.

The AWAKE e− line commissioning [4] showed that
most of the non-reproducibility is due to variations in
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FIG. 2: Electron beamline linear optics functions. Top:
beta functions for both horizontal and vertical plane.

Bottom: dispersion functions.

the beam from the source, which changes the matching
needed to the target. This translates into lengthy setting
up to produce the required beam parameters, which must
be repeated every time the source is restarted.

II. OPTICS MATCHING

The beam brightness and position need to be con-
trolled at the injection point. The dependence on high
order aberration of the optics plus the variations in the
initial conditions excludes purely analytical matching of
the target beam size σ∗ using only linear optics, as a
global solution. In fact, analytical matching is possible
only if the initial conditions are close enough to the de-
sign.

The last beam screen (BTV) is located 0.8 m upstream
of the injection point, as installation inside the plasma
cell was not possible. The spot brightness can only be
maximised at this screen. An optics trim then needs to be
applied to move the optics waist to the required location.
Accurate knowledge of the beam optics functions is thus
fundamental.

With low energy e− the usage of multiple screens for
single-shot optics measurement is impossible as the beam
is completely disrupted by the screen. For the AWAKE
e− line an ad-hoc measurement optics was developed
which presents a global minimum at a specific longitu-
dinal location. The brightness is then maximised on the
final screen, using only the upstream triplet. The global
minimum is moved from this screen to the injection point
using only 4 quadrupoles in the final part of the line,
and leaving the initial matching quadrupole strengths un-
changed.

In theory the dispersive contribution should be taken
into account, but this is not so important for our specific

application, as the initial dispersion is very close to zero.
If the beam is well centred in the initial triplet [4], no sig-
nificant contribution from the variation of the first three
quadrupoles is expected to the dispersion functions.

The displacement of the focal point was fully tested
in simulations. Although not yet deployed experimen-
tally, the results and methods shown in this paper are
not linked to the success of this methodology. For the
future, the installation of a BTV in the plasma volume
at the injection point is under investigation, which would
remove the need for this step.

The beam quality at the end of the line is also opti-
mised with the low energy solenoids before the accelerat-
ing structure, which help to minimise the emittance pro-
duced. This can be achieved using the following penalty
function rσ,

rσ =
√

(σx − σ∗x)2 + (σy − σ∗y)2 (1)

.
choosing σ∗ using the lowest achievable emittance from

the gun (as previously measured, i.e. 0.9 mm mrad). This
ensures that the target function has a single global min-
imum in the 5-dimensional action space. The validity
of this approach was tested in simulation using a model
including known non-linear effects. Figure 3 shows that
the evolution of rσ as a function of beam initial condi-
tions, i.e. (β, α)x,y, and for different initial emittances.
As the figure of merit is in each case a convex function
with a clear minimum (red dot), rσ can be incorporated
into a target function to ensure the matching of the beam
produced from the source to the transfer line. The same
minimum location is also found in initial optics space
for different emittances, which shows that the approach
should be insensitive to emittance variation.

III. MACHINE LEARNING FRAMEWORK
AND METHODOLOGY

Thanks to the high repetition rate of the AWAKE e−

source, a large set of machine learning algorithms can be
explored with the matching approach described above.
The python Open AI gym environment framework was
used as a standard, with the pyJAPC [10] library for
interfacing between the ML algorithms and the CERN
control system. The TensorFlow (version 1.14) back-end
was used for the machine vision and VAE. Different nu-
merical optimisers and Stable Baselines [11] RL agents
were explored for both explicit and implicit state rep-
resentation. BOBYQA [12] and Twin Delayed Deep De-
terministic policy gradient algorithm (TD3) [13] gave the
best results in the two classes.

A. Action space

For all synthetic and machine tests described, the
Action space consisted of the 2 solenoid and the 3
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FIG. 3: Scan of sensitivity of matched beam spot-size to initial optics conditions, for different emittances.

quadrupole currents, as indicated in Fig. 1. In the Ope-
nAI gym agents, the values are normalised to a range of
±1, while in reality the solenoid currents are 0-400 A and
the quadrupoles -100 to 100 A. The Action space is there-
fore bounded to the physical limits of the different cir-
cuits, such that no other limits or penalties are needed for
the agents. Although the line runs at 10 Hz, some time
is needed between setting and acquiring which is dealt
with in the generic OpenAI environment, which limits
the rate at which scans can be made to about 0.5 Hz.

B. Observation

The observation is the BTV image, Fig. 1, from which
we derive both the single objective function (brightness)
and the state for the RL agents. The BTV image provides
a 256×256 pixel 8-bit grey-scale array, from which beam
profiles, intensity and more complex information can be
extracted at 1 Hz. The images were down-sampled to
128x128 pixels, which was the dimensionality for the VAE
encoder and decoder used in the synthetic model.

C. Optimiser objective function

All results reported here were obtained optimising a
single objective function. Studies made using multi-
objective optimisation with an extremum-seeking opti-
miser have been reported separately [3].

The optimiser tries to minimise the objective function,
which should therefore be large and positive when far
from the optimum, and small when close to the ideal
solution. The objective function used for the optimisers
was defined as composition of two contributions:

ri =
1

i0

∑
j,k

ajk − i0 (2)

rσ = r0 −
1

rmax

√
(σx − σ∗x)2 + (σy − σ∗y)2 (3)

where
∑
i,j aij is the measured sum of all pixel values

and σ∗x and σ∗y were both set to 0.1 mm to represent a tar-
get minimum beam size, i0 was set at a numerical value of
1.3× 106 slightly above the maximum ever recorded sum

of pixels; r0 and rmax were set to 0.25 mm and 3.0 mm
respectively, as minimum and maximum spot sizes. The
two contributions are then put together to for the actual
penalty function for the optimiser as:

ro = −1[rσαs + ri(1− αs)] (4)

where αs represent the weight for the beam size con-
tribution. It was empirically found that 20% weighted
contribution from the image amplitude ra over all pixels
and 80% from the beam size rσ is a good compromise
to achieve the desired beam parameters. The function
is designed to encourage simultaneous high intensity and
small beam size.

D. Generative VAE for synthetic model

A Variational Autoencoder (VAE [14]) based on com-
puter vision convolutional neural networks was used to
generate synthetic BTV images from the real AWAKE
data in an unsupervised manner. This was then used
both for state encoding from the BTV images, as well as
building a synthetic model (digital twin) of the AWAKE
beamline. The basic autoencoder (AE) is a pair of neu-
ral networks consisting of an encoder, an information
bottleneck, and a decoder. The loss function is built of
two parts: the reconstruction accuracy which measures
how close the decoded data is to the original data, and
a divergence term which measures how the information
contained in the latent encoding differs from a Gaussian
distribution. The pair of networks try to reconstruct the
original data as accurately as possible, passing through
the low-dimensional information bottleneck.

The VAE uses an additional random term added to
the encoded latent space coordinate. Even with limited
discrete training data this has the effect of producing
a continuous variation of encodings in the latent space,
ideal for state variables which we expect to be continu-
ous with changes in the actions for our system. In our
experiments we tried different VAE flavours, settling for
the β-VAE with loss function of the form:

L(θ, φ, β) = −Ez≈qφ(z|x) log pθ(x | z)+

βDKL(qφ(z|x) || pθ(z))
(5)
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as from [15], where the first term represents the recon-
struction loss and the second one is the Kullback-Leibler
divergence (KL) which pushes the probability distribu-
tion of decoder and encoder to be as similar as possible
to a Gaussian distribution. The KL term is weighted
with the β parameter which can be considered an addi-
tional hyper-parameter to choose (examples of produced
images are shown in Annex Fig. 14). To complete the full
synthetic model, a densely connected neural network was
used as surrogate model to make the correspondence be-
tween the (labelled) Action space and the latent space Z
encoding. The overall architecture for training the VAE
and Predictor is shown in Fig. 4, with the synthetic model
shown in Fig. 5.

FIG. 4: Architecture for training VAE and Predictor
networks used for AWAKE synthetic model and RL

encoding.

FIG. 5: Use of AWAKE synthetic model for RL testing.
Note that the decoder and encoder networks do not

need to come from the same VAE model.

These networks were trained on machine data, from
a grid-scan made in the 5-D action space. This was
a lengthy one-off process needing the accumulation of
some 1500 valid images to train the VAE, but allowed
the efficient and comprehensive off-line training and
hyper-parameter optimisation for comparison of different
agents, objective functions, state encoding and reward
shaping for the different agents investigated.

The lengthy grid search was made to train the surro-

gate model but could theoretically be used to find the
optimal working point. But it would not be a viable
method as the beamline input conditions vary quite sig-
nificantly from day to day (which also impacted the suit-
ability of the single RL agent approach, as addressed in
the discussion).

E. RL state space

RL agents need a state space based on the observa-
tion, as well as an action space which changes the state.
Two approaches for state representation were investi-
gated. For explicit state extraction, the parameters σx,
σy, µx and µy were obtained from numerical fitting of
a 2D Gaussian to the BTV image and the intensity ex-
tracted from the pixel sum. For implicit state extraction
from the image we used the computer vision encoder
network from a trained VAE and fed the latent vector
Z directly to the RL agent as the state representation.
In this case it is important to note that the elements
of the state vector do not correspond directly to indi-
vidual physics parameters. This automatic unsupervised
feature extraction could be essential for problems where
the explicit extraction of state features is difficult or im-
possible, or where some hidden state features are to be
expected. Given that some of the profiles obtained from
the AWAKE BTV are highly non-Gaussian (see Annex
Fig. 15a), it was hoped that this implicit approach would
help more completely capture the underlying image dy-
namics.

Since most of the information encoded in a low-
dimensional latent space corresponds to the position of
the beam spot, we experimented testing a centring al-
gorithm to produce the correct sized data array centred
about the brightest part of the image. The results were
rather similar and we finally ran almost all experiments
without explicitly correcting for the beam position on the
screen. This was valid in the context of optimising for the
beam brightness - separate studies have shown that the
beam position stabilisation can be treated separately [3],
using dipole correctors and position monitors.

An investigation of VAE architecture and hyper-
parameters was made to achieve stable results. Differ-
ent flavours of VAE were tried in attempts to produce a
more disentangled latent space description, eventually we
used a β-VAE flavour [15]. The dimensionality of the Z
space was also studied in terms of suitability for RL state
encoding, since a larger value allows more accurate recon-
struction, but would intuitively seem likely to complicate
the encoding challenge for the RL agent. One useful met-
ric was the eigenmode decomposition of the latent space
matrix for all encoded images, 6, which allowed us to see
how many of the latent dimensions were actually encod-
ing independent information, see for example Fig. 6.

Tests on the synthetic AWAKE model confirmed that
RL agents using a state encoding dimension of 64 or 512
failed to converge. We therefore fixed the latent space



6

FIG. 6: Eigen modes of latent space matrix for encoded
images with Z-dimension of 8. It can be seen that only

5 significantly independent image modes exist,

dimensionality at 5.

F. RL reward

The RL agent needs a reward which is provided after
each action. One important aspect is that the agent aims
to maximise the reward over the learning process. Since
we are interested in finding a sample-efficient solution
which takes as few action steps as possible, our reward
function needs to be large and negative when far from
the optimum solution, and small but still negative when
close to the optimum.

We found that an appropriate choice of reward func-
tion per iteration ri was a very important factor in stable
RL agent performance. Our function was constructed to
be always negative for realistic observation parameters,
and to have a maximum of around 0. This was done com-
bining Eq. 3 and Eq. 2, as done in Eq. 4 but multiplying
it by -1 to obtain suitable reward for our agent:

ri ≡ −ro (6)

Importantly, the two separate contributions were
clipped in the range [−1, 0].

Another aspect that was investigated was the ending-
episode reward: this is usually a large positive number
which would significantly increase the cumulative reward
along the whole episode. It was experimented with and
without and found that the difference in terms of number
of machine iterations needed for full training was negli-
gible. To compare different techniques to represent the
observation space though, the end-episode reward was
found to help the metric chosen to classify them, and
hence only in this particular case, a positive reward of
20 (chosen arbitrarily large) was assigned to the agent at
successful completion of an episode.

G. RL episode termination and reward dangling

The correct termination of the RL episode was also a
critical factor in the stable performance. For this, we

introduced a reward target rt, which when achieved ter-
minated the episode. This introduced a new problem,
since the correct setting of this threshold value then also
turned out to be an important hyper-parameter. Too
low (easy) and the agent would not achieve a good per-
formance, while too high (hard) and the agent would fail
to train. Since the reward at the start of the episodes
varied unpredictably, and also since the final achievable
performance varied depending on the specific run condi-
tions, we needed to develop an automatic way of setting
rt. We opted for reward dangling, where we split the RL
agent training into two parts - in the first part, rt was
fixed at a very low easy value, typically -0.5. A pseu-
docode of the procedure is detailed below:

Algorithm1 Reward dangling

procedure reward dangling(α, γ)
α = 0.1
γ = 0.99
rt ← −0.5
while ie < Ne,max do

rf ← Run-episode-training(ie, rt)
if rf > rt then

rt ← rt ∗ γ
ie ← ie + 1

rt ← rt ∗ (1 + α)
trained-agent ← Run-training(rt)

Every time that an episode was successfully concluded,
rt was then increased slightly (by multiplying by a factor
γ, typically 0.99). The training then got slightly more
difficult, until at some stage with a high rt the agent
failed to train, or takes many iterations.

The training was then repeated with a fixed value of
rt, set at 1 + α times of the final value of rt during the
dangling phase. With this approach, we observed stable
results despite variations in the final value of the reward
per episode.

A final validation run with the trained agent was then
used to determine the performance, starting in a random
configuration in the action space. An example of the
full reward dangling technique tested on the synthetic
AWAKE is shown in Fig. 7.

H. VAE encoders trained on synthetic image data

One of the drawbacks of training the VAE on the real
AWAKE machine is the time needed to acquire the data.
Since the state encoding is implicit, we reasoned that
training an encoder to respond to artificially-generated
images with similar spatial variations could remove the
need for this step. We prepared three different data sets.

Firstly a set of about 9’500 real BTV images with
distinct action parameter settings were filtered from all
30’000 or so 2019 measurements using Isolation Forest
regression - this was necessary as the source could trip
randomly during the different data taking campaigns and
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FIG. 7: Training of TD3 agent on synthetic AWAKE model. The first figure shows the evolution of the total reward
(black) and its two components as a function of the iteration with the environment during the first part of the

reward dangling algorithm. The evolution of the reward threshold is shown in blue dashed line. The middle figure
shows the evolution of the total reward per episode for the training of the agent with the chosen reward threshold.
The right figures shows the evolution of the cumulative reward as a function of the episode during the two stages of

training of the reward dangling algorithm.

these anomalous data had to be removed. These were re-
scaled to 128 × 128 pixels, divided into 6 sub-datasets of
1’588 images and normalised to the range [0, 1] using the
min-max pixel values of the first sub-dataset.

A fully synthetic dataset of 1’588 images was also pre-
pared by combining random numbers of 2D Gaussian
with randomly determined amplitude, σx(y), µx(y) and
tilt angle. Again, all images were then scaled to [0, 1]
using the min-max pixel values of this dataset.

Finally, a Wasserstein Gradient Penalty GAN [16] was
constructed and trained on images from the real image
dataset. As we were interested in the possibility of pro-
ducing synthetic data from small training sets, the W-
GAN was trained on only 200 images. This training took
about 10 hours on a 12 GB NVIDIA Tesla K80 GPU,
and a synthetic dataset of 1’588 images again scaled in
the range [0, 1] was produced.

The 8 datasets (6 real data, 2 synthetic) were used to
train different β−VAEs, from which the encoder circuits
were used in the synthetic AWAKE model (Fig. 5) to
compare the results.

Both sets of synthetic images are significantly different
from the real data, but could be well reconstructed by the
β−VAE trained on each dataset. Examples are shown
in the Annex, Fig 15b and 15c. RL tests were made
with each encoder on the synthetic AWAKE model, using
the TD3 agent. It should be noted that the synthetic
AWAKE model was based on data taken in 2018, i.e.
using a different set of images to those used for the real
image datasets described above.

A full comparison of the above described encoders, to-
gether with the classic explicit representation of the state
space, is shown in Fig. 8, where basically no difference
can be seen on the choice of the encoder type. In the
figure, the effect of α can be clearly seen, where all the
trained agents with slightly larger α succeed to pass the

final reward target, at the cost of a very slightly lower
instantaneous reward.

IV. RESULTS ON AWAKE BEAMLINE

A. Numerical optimisation tests

The usage of numerical optimisers has been explored
and some of the main results already published in [3].
A large set of algorithms were tested and most of them
showed successful results, although still needing a large
number of iterations (larger than 100 in most cases) and
ensuring that a global minimum search was in place. An
example of a successful optimisation is shown in Fig. 9.
In this example, the target beam size parameters were
obtained using only 3 degrees of freedom, i.e. the initial
quadrupole triplet, but very similar results were obtained
also for 5, as detailed in [3]. All of the experiments suc-
ceeded when the beam size requested was indeed a global
minimum for the line. If the requested size was larger,
convergence was not achieved, as the only quadrupoles
used in the optimisation procedure are the initial three
and not those responsible for the final focus. The impact
of the initial conditions is nevertheless very significant
and cannot be neglected. As these are not stable, the
optimisation procedure needs to be regularly run to ob-
tain the design beam size at the BTV or plasma cell.

B. Reinforcement learning tests

For the RL tests the metrics used to measure the
performance were the cumulative reward per episode
rep =

∑ep
i r, the length of episode Lep in number of
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dangling. In all these plots, the average is done over the
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of 10 if the agent managed to overcome the threshold.
The error bars represent the standard deviation of the

results taken over 10 different trained agents.

interactions, and the final weighted reward of the last
iteration rep.

After extensive tuning of hyperparameters for differ-
ent agents and the development of the reward dangling
approach using the synthetic AWAKE model, tests were
made with the real AWAKE machine. The Stable Base-
lines DDPG RL agent ‘TD3’ worked reliably and learned
the problem dynamics, taking about 350 iterations in
each of the two training phases. The system was then
tried with the implicit state extraction, using different
versions of encoder trained on the various real and syn-
thetic datasets described above. The RL agents also
converged in a similar time to the explicit state ver-
sions, showing that the RL state can be successfully auto-
encoded in an unsupervised manner, as shown in Fig. 10
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FIG. 9: Optimisation result for BOBYQA algorithm
using only the first 3 quadrupoles of the beamline. The
global minimum is represented by the grey dashed line.

and Fig. 11.

Equally importantly, for applications where sample ef-
ficiency of the overall method is important, we demon-
strated that encoders trained with fully or partially (W-
GAN) synthetic data were also effective for state encod-
ing. This is illustrated in Fig. 10 and compared with
fully explicit state description and with an implicit one
but trained on real data. The training time is rather sim-
ilar in the terms of total machine interactions, which is
about 600 iterations for the first stage where the target is
adapted to the agent performance and about 450 for the
actual agent training. The episode length reached after
training for all three different ways of encoding the states
is rather similar and less than 10 machine iterations in
all cases.

Another metric to show the evolution of the training
(after choosing the target reward with the reward dan-
gling algorithm) of the TD3 agent is ∆rep ≡ re − r0,
which gives a magnitude of the improvement on the en-
vironment made by the agent after a reset. In Fig. 12-a
it is clear that after 10 episodes all the agents manage to
always improve the performance of the beamline.

The performance of the three different agents trained
on the real beamline are summarised in Fig. 12-b. For
each agent, the delta reward between start and end of
the episode is plotted as a function of the episode num-
ber used to perform the validation. In this situation the
agents trained are free to operate on the beamline in the
context of an episode after the random reset of the ac-
tions.

The final beam spot obtained was of very good quality,
as shown in the projections plotted in Fig. 13, when using
implicit state encoding from a VAE trained on synthetic
data.
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FIG. 10: Reward per episode for two-step training
process for TD3 RL agent on real AWAKE machine. (a)
Initial stage of reward dangling and (b) actual training
of TD3 agent with the maximum reward target found.
The training were performed using three different state

representation: implicit state encoding with VAE
trained on real images, explicit state encoding and

implicit state encoding using fully synthetic data for
VAE training.

The main problem encountered with the RL approach
was the longer-term stability of the beamline. Although
the trained agent performed well if tested during a few
hours of the training, the results were less good when
tested some weeks or months later. In these cases, the
trained agent failed to converge, indicating that the prob-
lem dynamics had shifted outside of the valid training
data space. The contributing factors are likely to be the
‘hidden’ action variables which change the beam spot dis-
tribution and hence the encoded state - this is not sur-
prising given the adjustments made to the source includ-
ing the laser power, alignment, synchronisation and RF
phasing which are all empirically adjusted before a new
run, or indeed at the start of each day during a running
period.
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FIG. 11: Episode length for two-step training process
for TD3 RL agent on real AWAKE machine. (a) Initial
stage of reward dangling and (b) actual training of TD3

agent with the maximum reward target found, as for
Fig. 10.

V. DISCUSSION

A. Usage of RL agents in operation

The training of RL agents using implicit or explicit
state encoding proved to be successful regardless on the
encoding chosen and on the initial state of the system - it
was in fact possible to train a large number of RL agents
on different days, where the source states (unknown to
the agents) were changing either on purpose or randomly.
The main problem though, was that trained agents were
very difficult to reuse days after their training, showing
very poor performance. We believe that this behaviour is
to be attributed to the unknown states of the source and
basically to the change of the mapping between actors,
states and reward that follows. A clear solution would be
to include more state dimensions describing the source
and the possible parameter configuration, but unfortu-
nately the beam time available was not sufficient to test
also this state parameterisation.

These results are not suitable for operational deploy-
ment of the trained RL agents, but clearly showed their
potential. For this reason, it was decided to rely on nu-
merical optimisers to provide the required beam quality
to the experiment and continue the studies on the usage
of RL agents with a larger state description.
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FIG. 12: Evolution of ∆rep during training (a) and
validation (b) for three different state encoding.

B. Performance reach

Numerical optimisers could take up to a few hundred of
iterations to achieve a suitable beam configuration for the
experiment, strongly depending on the initial conditions
of the optimisation. RL agents, instead, could perform
this task in just a handful of action steps, if the mapping
at training time is preserved. Clearly this would mean a
huge improvement in the usage of machine time, although
work it is still needed to include the hidden states that
are causing the variation of the mapping in time.

The full process is done today all manually and using
linear optics approximations to treat the line initial con-
dition changes. Already the deployed environment and
the tested numerical optimisers would provide a speed up
in setting up time and possibly more reproducible con-
ditions for the experiment. Studies are still ongoing to
fully deploy operationally this method.

A possible extension to the manual optimiser launch-
ing is to use model-free adaptive feedback systems, like
extremum seeking [17], to maintain the optimal value
found via numerical optimisation even after drift of the
settings. This is of course only possible in case the drift
are slow with respect to the probing frequency.
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FIG. 13: Beam size measurements for one episode after
training of TD3 agent using implicit state description

and VAE trained on synthetic data. (Top-left)
Measurements at the start of the episode after

randomly reset the action settings. (Top-right) BTV
image after the agent has acted is shown. (Below)

Horizontal (black) and vertical (blue) projections of the
images above.

C. Applicability to other systems and outlook

The tools and methodologies presented in this paper
are rather generic and the application to the AWAKE
transfer line case could be seen as a first proof-of-
principle. The unsupervised state encoding via auto-
encoders could be used in many other systems and do-
mains of accelerators. Also, the methodology presented
to assess the optimal reward threshold for RL agents
training can be equally applied to any other RL train-
ing case were the episode termination threshold strongly
drives the training speed and success rate. For example,
this is under study for the training of RL agents to auto-
matically extract information from Schottky spectra in
the CERN Low Energy Ion Ring (LEIR) [18].

The full methodology as described could also have
other applications in transfer lines with very sensitive
final focus. Depending on the available instrumentation,
the same basic methodology, but, for instance, using mul-
tiple screens for more accurate optics estimation, could
be envisaged. The technique presented in this paper
could be applied almost entirely, basically changing only
the source of image.

Looking at further development, the access to multiple
beam observations could open the way to a full phase-
space reconstruction using lower projection needed than
classic tomography. This would allow a more detailed
state description and hence a much more robust system
to unknown variables and drifts.
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VI. CONCLUSIONS

The feasibility of automatic optimisation of the
AWAKE e− beamline brightness based on machine learn-
ing techniques has been successfully explored using a va-
riety of approaches. The performance of suitable numeri-
cal optimisers was demonstrated, despite the non-convex
nature of the overall problem. A number of other use-
ful techniques have been developed and tested, includ-
ing successful RL agent training, a generative synthetic
model using β-VAE for offline testing and hyperparam-
eter optimisation, the use of implicit unsupervised RL
state encoding with a β-VAE encoder based on computer
vision, the training of these encoder networks with fully
synthetic data and the development of automatic reward
target value setting for RL episode termination.

The limitations of RL were also reached for this specific
configuration, where the variations from the e− source
meant that the trained RL agents could not reproducibly
be deployed over long time scales. The work showed the
importance of capturing all the generative factors in the

observation of the RL state space, as well as including
all the corresponding actions which are used to correct
the performance. Given the high repetition rate of the
AWAKE e− beamline, the simpler optimisation approach
is the one which will be deployed operationally. Never-
theless, the RL paradigm with a learned response remains
relevant for applications like injection into LHC, where
each sample is much more expensive to take, and the
repetition rate is orders of magnitude lower.
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Appendix A: Synthetic images for different Z dimensionalities

Random samples of real, VAE recovered and fully synthetic 128x128 pixel images for different Z dimensionalities.
The images in the top rows are the original BTV measurements, those in the lower rows have been generated through
the full synthetic AWAKE model from the labelled action values, using the predictor and decoder networks.

FIG. 14: Example of real (top rows) and images produced by the VAE (bottom rows) for different dimension of the
latent space.
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Appendix B: Real and synthetic images for VAE state encoder training

Random samples of 128x128 pixel images used to train VAE for image encoding (top rows) and recovered VAE
images (bottom rows) for the real and two synthetic datasets.

(a) Real AWAKE BTV images (top) and β-VAE reconstruction (bottom).

(b) Synthetic images from analytical superimposed Gaussians (top) and β-VAE reconstruction (bottom).

(c) Synthetic images from Wasserstein GP-GAN (top) and β-VAE reconstruction (bottom).

FIG. 15: Example of real images, analytically and W-GAN produced images are shown on top rows. Examples of
images reconstructed with the VAE are instead shown on bottom rows.


	Towards automatic setup of 18 MeV electron beamline using machine learning
	Abstract
	I Introduction and Motivation
	A AWAKE electron transfer line and optics

	II Optics matching
	III Machine Learning framework and methodology
	A Action space
	B Observation
	C Optimiser objective function
	D Generative VAE for synthetic model
	E RL state space
	F RL reward
	G RL episode termination and reward dangling
	H VAE encoders trained on synthetic image data

	IV Results on AWAKE beamline
	A Numerical optimisation tests 
	B Reinforcement learning tests

	V Discussion
	A Usage of RL agents in operation
	B Performance reach
	C Applicability to other systems and outlook

	VI Conclusions
	VII Acknowledgements
	Bibliography
	 References
	A Synthetic images for different Z dimensionalities
	B Real and synthetic images for VAE state encoder training




