
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PS/CO/NOTE 86-10 24 March 1986
Project: SMACCDomain: SYSTEMCategory: USMAN Status: DRAFT

SMACC PROGRAMMING USER'S MANUAL.

N. de Metz-Noblat
AbstractThis manual describes the current state of the programming environment for the SMACC in the PS control system.

Geneva, Switzerland

< i >
TABLE OF CONTENTS

PageSection
1 INTRODUCTION TO THE SMACC ...1.1 SMACC : an M68OOO based Auxiliary Crate Controller ...1.2 The SMACC basic software ...

1122
2 RMS68K THE SMACC OPERATING SYSTEM ..2.1 TASK MANAGEMENT ..2.1.1 CRTCB : Create Task Control Block ..2.1.2 START : Start Task ...2.1.3 TERM : Terminate Self ...2.1.4 ABORT : Abort Self ...2.1.5 WAIT : Enter wait state ...2.1.6 SUSPND: Suspend self ...2.1.7 RELINQ: Relinquish ...2.1.8 WAKEUP: Wakeup ..2.1.9 RESUME: Resume a Target Task ..2.1.10 SETPRI: Set Priority ...2.1.11 STOP : Stop Target Task ...2.1.12 TERMT : Terminate Target Task ..2.2 MEMORY MANAGEMENT ...2.2.1 GTSEG : Allocate a Segment ...2.2.2 DESEG : Deallocate a Segment ..2.2.3 DCLSHR: Declare a Segment Shareable ..2.2.4 ATTSEG: Attach a Shareable Segment ..2.2.5 SHRSEG: Grant Shared Access to Another Task ...2.2.6 TRSEG : Transfer a Segment ..2.2.7 RCVSA : Receive Segment Attributes ..2.3 INTER-TASK COMMUNICATION ...2.3.1 GTASQ : Allocate Asynchronous Queue ..2.3.2 SETASQ: Set ASQ/ASR Status ..2.3.3 DEASQ : Deallocate Asynchronous Queue ..2.3.4 QEVNT : Queue Event To Task ..2.3.5 WTEVNT: Wait for Event ...2.3.6 RDEVNT: Read Event ...2.3.7 RTEVNT: Return from Event Service ..2.4 TASK SYNCHRONISATION ...2.4.1 ATSEM : Attach to Semaphore ..2.4.2 CRSEM : Create a Semaphore ..2.4.3 DESEM : Detach from Semaphore ..2.4.4 DESEMA: Detach all Semaphores ..2.4.5 WTSEM : Wait on Semaphore ...2.4.6 SGSEM : Signal Semaphore ...2.5 TIME AND DELAY MANAGEMENT ...2.5.1 STDTIM: Set System Date and Time ..2.5.2 GTDTIM: Get System Date and Time ..2.5.3 DELAY : Delay Self ...2.5.4 DELAYW: Delay and Wait ...

3666677777788991010101010101112121212121213141516161616161717171718

1 . 3 Notations

3

< ii >
PageSection________

2.5.5 RQSTPA: Request Periodic Activation ..2.6 SPECIAL FUNCTION CONTROL ...2.6.1 MONITOR TASK ..2.6.2 SERVER TASK CONTROL ...2.6.2.1 SERVER: Establish Server ..2.6.2.2 AKRQST: Acknowledge Service Request ..2.6.2.3 DERQST: Set User/Server Request Status ...2.6.2.4 DSERVE: Deallocate Server functions ..2.6.3 EXCEPTION MONITOR TASK CONTROL ..2.6.3.1 EXMON : Attach Exception Monitor..2.6.3.2 DEXMON: Detach Exception Monitor ..2.6.3.3 EXMMSK: Set Exception Monitor Mask ..2.6.3.4 RSTATE: Receive Task State ..2.6.3.5 PSTATE: Put Task State ...2.6.3.6 REXMON: Run Task under Exception Monitor ...2.6.4 LOCAL HANDLING OF TRAPS AND EXCEPTIONS ..2.6.4.1 EXPVCT: Announce Exception Vectors ..2.6.4.2 TRPVCT: Announce Trap Vectors..2.7 INTERRUPT SERVICE MANAGEMENT ...2.7.1 CISR : Connect Interrupt Service Routine ...2.7.2 RTE : return fron interrupt ..2.7.3 SINT : Simulate Interrupt ..2.8 TASK OR SYSTEM INFORMATION DIRECTIVES ..2.8.1 TSKATTR : Task Attributes ...2.8.2 MOVELL: Move from Logical Address ..2.8.3 MOVEPL: Move from Physical Address ..2.8.4 TSKINFO: Return Copy of Task Control Block ...2.8.5 SNAPTRAC: Snapshot of System Trace ..2.9 CDIR : Configure Directive ..2.10 Input/Output ..
3 PS MEMORY LAYOUT ON THE SMACC ...3.1 SMACC hardware requirements ...3.2 General memory partitioning from the RMS68K point of view.3.2.1 Partition 0: supervisor data ..3.2.2 Partition 1 : RAM unprotected area ..3.2.3 Partition 2: system sofware code3.3 Cluster notion ..3.4 The memory environment of a task ..

2828282929303131

181919202020202021212121222222232323242424252626262626262627

4 START-UP OF THE SMACC ...4.1 Hardware start-up ...4.2 RMS68K start-up ...4.2.1 RMS68K Pre-initializer ...4.2.2 RMS68K System Initializer ..4.2.3 Basic software initialization ..4.2.4 Application software initilization ..4.2.5 Exchange of magic memory addresses between FEC and SMACC
5 STANDARD FACILITIES ON THE SMACC ..

3232333333343535
37

< iii >
Section_____ Page

5.1 OPERATING SYSTEM, LANGUAGES, AND LIBRARIES ...5.1.1 Operating System ...5.1.2 NODAL-68K ..5.1.3 Nodal functions to access RMS68K ..5.1.4 Real arithmetic routines ...5.1.5 General library routines ...5.2 COMMUNICATIONS SOFTWARE ...5.2.1 Level 2 primitives available on the FEC ...5.2.2 Datagram service (not yet implemented) ..5.2.3 Remote Procedure Call (being implemented) ...5.2.4 IMEX/EXEC (not yet implemented) ..

3737383839394040424344
6 SPECIAL FACILITIES ON THE SMACC ..6.1 Camac LAM and front-pannel interrupts handling ...6.2 Error handling ..6.2.1 Monitor task ..6.2.2 Logging errors on terminal ...6.2.3 Logging errors to the FEC ...6.3 Error number convention ...6.4 Power-fail interrupt ...

4545454646464647
7 PROGRAM PRODUCTION FOR THE SMACC ..7.1 Software Architecture...7.2 Existing program development tools...7.3 Program production procedures...7.3.1 Assembly language source files...7.3.1.1 code sections...7.3.1.2 Static variables reservation sections..7.3.2 P+ source files..7.3.3 Plane source files..7.3.4 First link-edit..7.3.5 How to create a loadable image of the SMACC...7.3.6 Remarks on the program production procedures..7.3.7 Annexe: Supported Program production shema..

48494950505151515252525455
8 DEBUGGING A PROGRAM ON THE SMACC ..8.1 FEC Remote debugger ...8.2 Using NODAL tools ...8.3 MoniCa debugger ...8.4 Other debug informations ...8.4.1 System does not start ...8.4.2 System crashes ...8.4.2.1 System crash area ...8.4.2.2 Nothing at crashsav ...8.4.2.3 System trace table ...

56575858585959595960

< iv >
Section Page
APPENDIX
ABCDEFGHIJKLM

P-PLUS INTERFACE TO RMS68K ..Nodal interface to RMS68K ..RMS68K ERROR CODES ...ACCES TO CAMAC FROM THE SMACC ..Abolute variables for the SMACC ..Interface to NODAL ...Example of writing a NODAL compatible routine ...Example of testing an ISR from NODAL ..STANDARD EVENTS STRUCTURE ..RMS68K usefull internal tables ..RMS68K SYSGEN PARAMETERS ..REFERENCES ..GLOSSARY ..

101105109113119123127

6179899397100

Index 133

SMACC programming user's manual. 1

1 INTRODUCTION TO THE SMACC
1-1 SMACC ; an M68QOQ based Auxiliary Crate ControllerThe SMACC is an Auxiliary Crate Controller (ACC) based on a MOTOROLA 68000 (8MHz internal clock) microprocessor destinated to be placed into a CAMAC crate in the PS control system.Different operation modes are intended to be used :1) Standard Mode of operationThe standard mode of operation of a SMACC is to provide the work of an Auxiliary Crate Controller.A crate controller type SCC-L2 controls the whole crate in conjunction with a Front-End Computer (FEC) of the PS control system.The work of the SMACC is to handle locally all or part of the equipment located in this crate and thus reduce the work to be done in the FEC.An optional terminal allows for the use of local NODAL programs and thus control the operations done on this SMACC.

CAMAC control equipment S M AC< c
s
c
c
-eL 2

CAMAC serial link FECAsynchronous V24 linkTerminal (optional)CAMAC CRATE
2) Operating with a Macintosh personal microcomputer.A NODAL interpreter - version MC68000 - is available on the SMACC and on the Macintosh personal microcomputer.The Macintosh can be connected to the SMACC in two ways:- It is able to drive the serial CAMAC link instead of the FEC and it offers in this case, the same CAMAC access as from a FEC for a NODAL program.- It is also able to emulate the local terminal and in this case it offers (to the interactive NODAL program executing in the SMACC) the access to its disks and printer.

2 SMACC programming user's manual.INTRODUCTION TO THE SMACC
The Macintosh is also able to emulate a Dicodime : a routine library to accès basic functions and graphic functions has been developped.It is possible to transfer files between the Macintosh and the PRDEV (PRogram DEVelopment computer) trough the PACX network, connecting the Macintosh as terminal of the PRDEV.3) Stand-Alone.For some applications, the SMACC can also be used as a general purpose stand-alone microprocessor on which NODAL and the whole PS programming environment can be used.

1.2 The SMACC basic softwareThis manual describes the SMACC programming environment in the PS control system.It describes the following:- RMS68K the operating system and its primitives.- The PS memory layout for the SMACC.- How does run start-up and what happends at this time.- Which languages, libraries and communication softwares are offered in standard on the SMACC.- Which are the special facilities for interrupts and errors handling.- Which facilities exist for program testing and debugging.- The program production.
1.3 NotationsTo make this manual easier to read, some standard expressions andabbreviations have been used:$: This character indicates that the following value is anhexadecimal value.Kb : Kilo Bytes = 1024 bytes. All memory length are expressed in bytes. The MC68000 microprocessor is able to handle bytes, 16 bits words and 32 bits double words.RMS68K : Real-time Multitasking Software for Mc68000 family. This is the name of the monitor used on the SMACC.

SMACC programming user's manual.RMS68K THE SMACC OPERATING SYSTEM 3

2 RMS68K THE SMACC OPERATING SYSTEMThe Motorola MC68000 family Real-time Multitasking Software (RMS68K) is the operating system chosen for the SMACC. This operating system provides a full set of real-time facilities. RMS68K provides the following functions:- receive all hardware and software interrupts and dispatch them to the proprer task for processing.- act as a dispatcher of tasks competing for use of the processing unit.- provide inter-task communication and synchronisation.- provide dynamic memory allocation.- provide a system initialization facility.- provide a protection of the user environment.- provide diagnostic feedback during error conditions.Applications (whether for process control or for console devices) run as collections of tasks, procedures and data segments under the management of the RMS68K operating system. The addressing space of the MC68000 being large, and there being no virtual memory in our context, addresses in code space (tasks and procedures) and data space is unique and unambiguous. Thus there are no artificial constraints on which tasks may call which procedures and memory segments are used purely as a tool for modularity and protection. However, to gain memory space, EPROM can be used and thus all loadable modules should always be either purely dynamic data or purely code.
2.1 TASK MANAGEMENTUnder the control of RMS68K, programs which make up an application are executed as tasks.Tasks are grouped together within a "session", i.e. by default any action can only affect a task with the same session number.Two basic types of tasks are distinguished : user and system tasks. Both execute in the user mode of the MC68000 <i> . System tasks have accès to all resources and may perform all operations regardless of session number.In the SMACC context, all tasks are system tasks running in session 1.An RMS68K task is composed of a Task Control Block (TCB), up to 4 program or data memory segments <ii> and one asynchronous service queue (ASQ).
<i> The processor operates in one of two states of privilege: the user state or the supervisor state. The privilege state determines which operations are legal, is used by memory management to control accès to a part of the memory, and is used to choose between the supervisor stack pointer and the user stack pointer in instruction references.<ii> The number of segments per task is limitated in standard as delivered by MOTOROLA to 4 segments. It should be possible to grow up this number, but this imply some local modifications that are not handled by MOTOROLA.

4 SMACC programming user's manual.RMS68K THE SMACC OPERATING SYSTEM
A task can be in ten different states:- non existent : task has not been created.- dormant :

- ready :
- running :- waiting :
- suspended :

task has been created by CRTCB directive,but is not yet started, or task has been stopped by the STOP directive.task is ready to be executed, but another task with higher priority is yet in the "running" state.task is being executed.task has issued a WAIT directive and wait for a WAKEUP from another task (or from a periodic activation request).task has issued a SUSPND directive and is waiting for a RESUME from another task (or from a periodic activation request).If a RESUME directive is issued for a task which is not in the "suspend" state, the directive has no effect. If a WAKEUP is issued for a task which is not in the "wait" state, the WAKEUP directive is pending until the task actually does go in the "wait" state.- waiting for an event : task is waiting for an event to come into its ASQ.- waiting for a command : task is waiting for a debugger command.- waiting for a delay : task is waiting for a delay (or for an event or aWAKEUP from another task if DELAYW).- waiting on a semaphore: task is waiting on a semaphore.The dispatch cycle of RMS68K is entered at any time a task is removed from the "running" state. The reasons for a task to be removed from the "running" state are listed below:- task relinquishes execution.- task changes its own task state.- an event is placed into any task's Asynchronous Service Queue (ASQ).- task performs a semaphore wait operation.- task exceeds the maximum execution time slice allowed.The task scheduled for execution during a dispatch cycle of RMS68K is the task residing in the "ready" state with the higher priority and since the longest time in case of conflict.When a task is removed from the "running" state from any reason other than STOP, ABORT, TERMT, or TERM directive, the task resumes execution at the next intruction following the last executed instruction.
Following primitives are available for task management :

i

i

SMACC programming user's manual.RMS68K THE SMACC OPERATING SYSTEM 5
- CRTCB :- START :- TERM- ABORT- WAIT- SUSPND :- RELINQ :- WAKEUP :- RESUME :- SETPRI :- STOP
- TFRMT

target task is created and goes to "dormant", target task goes to "ready" from "dormant", task terminates itself.task aborts itself.task moves itself to "wait".task moves itself to "suspend".task moves itself to "ready" from "running", target task goes to "ready" from "wait", target task goes to "ready" from "suspend", target task's priority is modified.target task goes to "dormant" from any state, target task is terminated from any state.The following diagram shows out the different states of a task:
DELAY waittask exception under EXMON controlWTEVNT

ABORT TERM non-existent
WTSEM

runTRAP Xserver request pending
WAITAKRQST
SUSPEND semaphore wait CRTCBPREEMPTRELINQ (DISPATCH(SGSEM START dormant

STOP
readyRESUMEsuspend

WAKEUPwait EVENTwait for event REXMONwait for command time-outtwait delay

6 SMACC programming user's manual. RMS68K THE SMACC OPERATING SYSTEM
2.1.1 CRTCB : Create Task Control BlockRMS68K knows that a task exists only if a Task Control Block was created. Each TCB needs 512 bytes of memory <i> . CRTCB allows creation of a new TCB and thus a new task.When a task is created, it is given :- a four bytes name (and a session number — always 1 in the SMACC).- a limit priority (in the range O..255, 0 being the lowest priority)- an initial current priority :This priority can be changed at any time to a value less or equal to the task's limit priority.A given task cannot affect another task that has a current priority greater than its own limit priority.- A task entry point :the task begins execution at this location when a START directive is issued for this task.- It can be specified if task is a system task and if system stops on task abort.
2.1.2 START : Start TaskRMS68K put the target task from the "dormant" state to the "ready" state, based on its current priority, to await execution. The initial values of the registers can be specified.
2.1.3 TERM : Terminate SelfRMS68K halts execution of the requesting task and frees all resources attached to it.This results in the normal termination of task execution. <ii>
2.1.4 ABORT : Abort SelfRMS68K halts the execution of the requesting task and frees all resources attached to it.

<i> This point limit the maximum number of tasks that can be created in the system.<ii> Notice that after a TERM or an ABORT directive, the TCB is lost once the monitoring tasks awaken.

7SMACC programming user's manual.RMS68K THE SMACC OPERATING SYSTEM

2.1.5 WAIT : Enter wait stateRMS68K places the requesting task in the "wait" state until a WAKEUP directive is issued by another task.
2.1.6 SUSPND; Suspend selfRMS68K stops the execution of the requesting task and moves it to the "suspend" state. The execution of the task is started again only by a RESUME directive issued by another task. When the requesting task is resumed, the execution proceeds in sequence.
2.1.7 RELINQ: RelinquishRMS68K places the requesting task in the "ready" state so that RMS68K may enter a dispatch cycle.This directive is useful to force an exchange between tasks of the same priority before a time-slice interrupt <i> .Notice that the priority of the current task is temporarely reduced to the nearest multiple of 16.
2.1.8 WAREVP; WakeupRMS68K moves the specified task from the "wait" state to the "ready" state to await execution. If the specified task is not currently in the "wait" state, a wakeup pending condition is set and takes effect the next time the task goes into the "wait" state.
2.1.9 RESUME; Resume a Target TaskRMS68K resumes the execution of a task that is moved from the "suspend" state to the "ready" state to await execution.If the specified task was not in the "suspend" state, RESUME has no effect.
2.1.10 SETPRI: Set PriorityRMS68K changes the current priority of the target task to a value that must be less than its limit priority.A user task cannot alter priority of a system task.

<i> The time-slicer is activated only every 200ms to force a relinquish of the execution of a task and to leave the CPU to another task with the same priority

y

8 SMACC programming user's manual.RMS68K THE SMACC OPERATING SYSTEM
2.1.11 STOP : Stop Target TaskRMS68K stops the execution of the specified task and moves it to the "dormant" state, with all resources still attached. In particular, dynamically allocated memory segments for data (or code) are not released.To stop a system task, its name must be specified and the requestor must not be a user task.If no task name is specified, RMS68K select one user task and stops it. This facility is used to stop all user tasks in a session.This directive cannot be used to STOP the calling task.
2.1.12 TERMT : Terminate Target TaskIn the same manner as for STOP directive, RMS68Kforces an ABORT directive for target task.Note :The TERMT directive may require several milliseconds before the target TCB is eliminated from the the system and that this task can be created again because this work is done only at next dispatch cycle of RMS68K.

9SMACC programming user's manual.MEMORY MANAGEMENT
2.2 MEMORY ΜΑΝΛΟΕΜΕΕΤRMS68K has been designed to handle a Memory Management Unit (MMU) that is non­existent on the SMACC. This implies that there is no difference between a "logical" address and a "physical" address. <i>The memory management directives have to initiate the MMU contents at each scheduling and from the RMS68K point of view a task can only accès to 4 different segments at a time.Each time a task issues a directive, RMS68K verifies that all arguments are located in a space that is allowed for this task and reject the call if not.Each segment is a part of the memory, with any length but beginning at a location witch is a multiple of 256 bytes, and which can receive the following attributes :- read-only or physical ROM.- shareable globally (or locally : only between tasks of the same session).- memory mapped I/O space.The memory management directives of RMS68K provide in fact two different services :- a dynamic memory allocation package.- a control of the use of memory in each directive call <ii> .The following- GTSEG- DESEG- DCLSHR :- ATTSEG :- SHRSEG :- TRSEG :- RCVSA :

primitives are available for memory management:Allocates a memory segment to a task.Deallocates a memory segment from a task.Declare a memory segment shareable.Attach a shareable segment to self.Place a shareable segment into target task's address space.Transfer a segment from self to a target task.Read segment attributes.
2.2.1 GTSEG : Allocate a SegmentRMS68K allocates the smallest number of memory pages which satisfies the specified length. Page size is 256 bytes (determined at SYSGEN).The task to receive the new segment can be the requesting task or another task that must be in the "dormant" state.The physical address of the segment can be specified to include in the task address space the access to a library, or global variables.

<i> This implies also that the option bit 13 (logical address=physical address) must be specified in most of segment management directives.<ii> Take care about the fact that if your parameter block (or a parameter pointed to by it) is outside the current address space of the calling (or destination) task, the call is rejected (without any error return in some cases).

10 SMACC programming user's manual.MEMORY MANAGEMENT

2.2.2 DESEG ; Deallocate a SegmentRMS68K deletes the specified segment from the target task's address space. If the permanent option is specified, the permanent status is removed if the segment is shareable. If the segment is currently not shared by any other tasks and its status is not permanent, the memory is added back to the free memory list.A task cannot delete a segment if its current stack pointer (USP) points within the segment to be detached.A task can detach another task's segment only if this task is in the "dormant" state.This directive is assumed on all segments owned by the task when it terminates due to a TERM, ABORT or TERMT directive.
2.2.3 DCLSHR; Declare a Segment ShareableRMS68K makes a segment available for use by other tasks. If globally sharing is specified in the segment attributes, the segment is available to all tasks. The segment can also be declared as a permanent segment with this directive, so that it is not released if no task remains attached to it.
2.2.4 ATTSEG: Attach a Shareable SegmentRMS68K adds the specified segment into the address space of the requesting task. The segment must be a globally or locally shareable segment. The segment remains in the address space of all other current sharers.
2.2.5 SHRSEG; Grant Shared Access to Another TaskRMS68K adds the specified segment into the address space of the specified task. The segment must be a shareable segment that remains in the address space of all other current sharers.
2.2.6 TRSEG : Transfer a SegmentRMS68K transfer the owning of a segment to the target task's address space.
2.2.7 RCVSA : Receive Segment AttributesA description of the specified segment owned by the specified task is returned to the user buffer.

SMACC programming user's manual. INTER-TASK COMMUNICATION 11

2.3 INTER-TASK COMMUNICATIONFor inter-task communication, the standard facility offered by RMS68K is the event management.The events are queued into the asynchronous service queue (ASQ) of the destination task.The events can be serviced when they arrive in the ASQ by an asynchronous service routine (ASR) that interrupts the task's execution if enabled. <i>The following directives are available for inter-task communication :- GTASQ : task allocates its ASQ and defines ASR normal entry point.- DEASQ : task deallocates its ASQ.- SETASQ : task changes the status of its ASQ.- WTEVNT : task moves itself to "wait for event" until an event is placed inits ASQ.- QEVNT : an event is placed in the ASQ of the target task.- RDEVNT : task reads an event from its ASQ.- RTEVNT : return from ASR.Skeleton of events management without ASR:
Task AGTASQ1 RDEVNT process eventTERM

Task B
Build eventQEVENTTERM

Skeleton of events management with an ASR:
Task AGTASQ(ASRENT)

JWTEVNT(enable ASR,1--------------1 ASQ)TERMASRENT: RDEVNT process event RTEVNT

Task B
Build eventQEVENTTERM

<i> This facility is not offered to a High level language programmer.

12 SMACC programming user's manual.INTER-TASK COMMUNICATION
2.3.1 GTASQ : Allocate Asynchronous QueueRMS68K allocates memory for the specified task's ASQ. The ASQ consists of a fixed length ASQ control block and the area for receiving messages, whose maximum length is specified.This ASQ and an ASR (with its default entry point) can be enabled or not.
2.3.2 SETASQ: Set ASQ/ASR StatusRMS68K replaces the requesting task's current ASQ/ASR status field with that specified above. If the new status indicates ASR enabled and there is an event in the ASQ, an ASR “interrupt" occurs (this is not a real interrupt).
2.3.3 DEASQ : Deallocate Asynchronous QueueThe memory allocated to the requestor's ASQ is freed. Any unserviced events in the ASQ are lost. No error code is returned.
2.3.4 QEVNT : Queue Event To TaskRMS68K places the specified event into the ASQ of the target task (if the ASQ is enabled). The specified event block must conform to the message event format as follows:

Length code=03 Length=message text length+2Message text
2.3.5 WTEVNT: Wait for EventRMS68K ensures that the ASQ and ASR of the requesting task are enabled, and places the task in the "wait for event" state.The next incoming event to the task's ASQ or the presence of an event already in the ASQ causes an ASR interrupt. When the ASR returns from event service, control returns to the location immediately following the WTEVNT directive.
2.3.6 RDEVNT: Read EventRMS68K moves the oldest entry of the requesting task's ASQ into the area specified in the call.If the event moved into the receiving area is a server task message (code 7) and the server task is to receive a parameter block from the task which requested the service, RMS68K moves the parameter block into the receiving area immediately following the event text.

13SMACC programming user's manual. INTER-TASK COMMUNICATION
2.3.7 RTEVNT: Return from Event ServiceThis directive must be used to exit from an ASR.RMS68K restores all registers from the stack and returns control to the location at which point the ASR interrupt occurred. The ASR can specify whether or not it re-enables itself at exit.

14 SMACC programming user's manual.TASK SYNCHRONISATION
2.4 TASK SYNCHRONISATIONAn event is used for asynchronous interaction between tasks. Data is assumed and exists in the message field of an event. If no data is required, the receiving task can ignore the message field. The event is received by a task in its ASQ which is a part of system memory.A semaphore is a common data structure used for exchange timing signals between concurrent processes. No data is assumed. If data is required, it can be implemented by a shared data segment which is in the address space of the interacting tasks.RMS68K offers three types of semaphores to synchronise activities and control resources.- type 1 :(boolean semaphore) is used when several tasks require exclusiveaccès to one resource.- type 2 :is used to control the execution sequence of tasks.- type 3 :(semaphore with count) is used when a task controls a resourcewitch another task wishes to use.The following directives are available for semaphore management :- ATSEM : Attach to semaphore- CRSEM : Create a semaphore- DESEM : Detach from a semaphore- DESEMA : Detach from all semaphores- WTSEM : Wait on a semaphore- SGSEM : Signal semaphoreThe Normal use of semaphores is the following :Type 1 : implements mutually exclusive access to a single resource.

(necessary in all tasks just to know the KEY number)Task B ATSEM
WTSEM exclusive use of resourceSGSEM

Task A ATSEM
WTSEM exclusive use of resourceSGSEM

15SMACC programming user's manual. TASK SYNCHRONISATION
Type 2 : Control the execution sequence of two or more tasks.1) Upon entering a task, attach all semaphores (ATSEM) of tasks which are to be executed prior to this task.2) If this task is to trigger the execution of other tasks, then create a semaphore (CRSEM) for this task.3) Before proceeding with the execution of this task, wait on the semaphores (WTSEM) of the tasks which are attached in 1.4) Proceed with the execution of this task until another task is to begin execution.5) Signal this task semaphore. If the task is completed, detach from semaphore.6) If the task is not completed, wait on the semaphore of the tasks which were attached in 1.7) Return to 4.Type 3 : task C has control over a resource which tasks B and A want to use.(the count specified is in fact the work for TASK C queue length)

TASK A (requestor 1)ATSEM 1 and 2
WTSEM 1 (wait in case of saturation) SGSEM 2 (signal work to ----- ' be done)

TASK B (requestor 2) ATSEM 1 and 2
WTSEM 1SGSEM 2

TASK C (server)CRSEM 1 and 2
WTSEM 2 (wait for some work)SGSEM 1 (signal ------' work done)

2.4.1 ATSEM ; Attach to SemaphoreRMS68K allows the requesting task to use the specified semaphore. If the semaphore already exists no action is taken, else the exact function is determined by the semaphore type:- type 1 :the semaphore is created with an initial count of one.- type 2 :the semaphore is created with an initial count of zero.- type 3 :the requesting task is placed in a "wait on semaphore" state untilCRSEM directive is issued by another task on the same semaphore.

16 SMACC programming user's manual.TASK SYNCHRONISATION
2.4.2 CRSEM : Create a SemaphoreRMS68K creates or re-initializes the specified semaphore, and allows the requesting task to use it. The exact function of the directive is determined by the semaphore type:- type 1 :idem as ATSEM- type 2 :idem as for ATSEM except that an initial count is specified (#0)- type 3 :if the semaphore already exists, the CRSEM directive is rejectedelse it is created with the specified initial count and all tasks in the "wait" state resulting of an ATSEM on this semaphore prior to its creation is reactivated.
2.4.3 DESEM : Detach from SemaphoreRMS68K detaches the requesting task from the specified semaphore. The task can no longer use that semaphore until an ATSEM is issued. The semaphore is physically removed from the system according to the semaphore type :- type 1 -.when the last user detaches from it.- type 2 :when the last user detaches from it and the current signal countis equal to the intial count set by the CRSEM directive.- type 3 :when the task that created it with a CRSEM directive detaches fromit.
2.4.4 DESEMA: Detach all SemaphoresRMS68K detaches the requesting task from all semaphores to which it is attached. The rules are the same as for DESEM.
2.4.5 WTSEM : Wait on SemaphoreThe current signal count of the specified semaphore is decremented by 1. If the count is negative, the requesting task is put in "wait for semaphore" and added to the waiting list for that semaphore.If semaphore type 1, a check is made that WTSEM is issued before SGSEM directive.
2.4.6 SGSEM : Signal SemaphoreThe current signal count of the specified semaphore is incremented by one. If the count is then zero or negative, the first task waiting for that semaphore is removed from the list and placed in the ready list to await execution. The requesting task continues executing (RMS68K does not enter its dispatch cycle).If semaphore type 1, a check is made that SGSEM is issued after a WTSEM.

SMACC programming user's manual.TIME AND DELAY MANAGEMENT 17

2.5 TIME AND DELAY MANAGEMENTThe SMACC owns a MM58176A Microprocessor Real Time Clock that delivers:- an RT clock with constant frequency (with a minimum interval of 100ms) used by RMS68K to handle delays and to maintain an internal system date and time.- a calendar including seconds, minutes, hours, days, and years (unused by RMS68K).- a programmable delay interrupt (yet unused — but which could be used by RMS68K for delay management if less than 100ms delays must be handled).For time and delay management, the following directives are available:- STDTIM : Set system date and time.- GTDTIM : Get system date and time.- DELAY Wait for a delay.- DELAYW : Wait for an event with a time-out.- RQSTPA : Request for a periodic activation.
2.5.1 STDTIM: Set System Date and TimeRMS68K updates the system date and time. This service is available only for system tasks.
2.5.2 GTDTIM: Get System Date and TimeRMS68K returns the current system date and time into the return parameter block specified.Date is given as the number of days since 01/01/1980.Time is given as the number of milliseconds in the current day.Note: The date and time returned by RMS68K are not read from the calendar chip, and thus are not updated when the SMACC is suspended.
2.5.3 DELAY : Delay SelfRMS68K delays the execution of the requesting task until the specified amount of time is elapsed, after which execution resumes at the location following the DELAY directive.This directive does not affect the asynchronous event processing. If the ASR is enabled and an event comes into the ASQ, the delay is consideed to be satisfied and the event is processed.The delay precision depends on the clock precision.A zero delay cancels a periodic activation request (cf RQSTPA).

18 SMACC programming user's manual.TIME AND DELAY MANAGEMENT
2.5.4 DELAYW: Delay and WaitThis directive functions as a combination of the DELAY, WTEVNT, and WAIT directives. If the calling task has an ASQ, RMS68K enables the calling task's ASR and ASQ. It puts the calling task into a “wait" state as a result of any one of the following occurences:- The specified amount of time has elapsed.- A WAKEUP is sent to the waiting task or the wakeup pending condition exists at the time the directive is called. The DELAY is cancelled.- an asynchrounous event arrives or is already present in the caller's ASQ. Both DELAY and WAIT are cancelled. Control is given to the task at its ASR address and when the ASR returns, the execution resumes in sequence.A zero delay cancels a periodic activation request (cf RQSTPA).
2.5.5 RQSTPA: Request Periodic ActivationRMS68K activates the specified task at an initial time and at optional intervals. The task can be activated in four ways, one of which is specified:- RESUME : the task is activated by RESUME directive at the time thathas no effect if the task is not in the "suspend" state.- WAKEUP : the task is activated by WAKEUP directive at the time and awakeup pending condition is set for the task if it is not in the "suspend" state.- Timer event : the task is activated by queueing an event code 4 to thetask's ASQ that is serviced either at the default ASR service address or at a specified alternative ASR service address.If a request to activate a task has the same activation request ID as a previous request, the new parameters replace the old.To cancel any periodic activation, option bit 10 must be set and an activation ID of zero must be specified.If option bit 9 is set, an event is sent immediately to the specified task when a request is cancelled, rather than the next scheduled interval time. The activation count field has bit 15 set to 1 to identify it as a cancel event.

n

SMACC programming user's manual.SPECIAL FUNCTION CONTROL 19

2.6 SPECIAL FUNCTION CONTROLSome special features are available for task control:- Monitor tasks : a monitor task can be set up to automatically receive notification of the termination of another task - referred to as a subtask of this monitor task.- Exception monitor task : a task can be established as an exception monitor task, which provides execution control over a target task (typically a debugger is an exception monitor task).- Server tasks : A server task is able to receive and process request from any task in the system. Any task can request the services of a server task by executing a trap instruction. Thus a server task appears as a part of RMS68K.- Local handling of traps and exceptions : A task can handle its own traps and exceptions.
2.6.1 MONITOR TASKWhen a task is created (CRTCB) or started (START), a monitor task can be set up for this new task. This monitor task is noticed of the termination of this task by an event queued in its ASQ with following structure:

0261014182022
Termination code = 1 (Normal) or 2 (abnormal)Lower 2 bytes of AO on ABORT or TERMTor RMS68K abort code ($80xx)Upper 2 bytes of register DO on ABORT or TERMT ($0000 if RMS68K aborts the task)

$18 $05
Task Name and session of sub-task

Task Name and session of task which initiated the termination of sub-taskTerm code $00Abort codeUser Abort code

20 SMACC programming user's manual.SERVER TASK CONTROL
2.6.2 SERVER TASK CONTROLA server task is a special task that responds to designated trap instructions executed by other tasks (not trap 0 and 1).A server task specifies which trap instruction it recognizes. A request for services of a server task manifests itself to the server by an event. The server can then process that event synchronously or asynchronously.A server task can set itself up to receive events on more than one trap instruction and/or each time a task terminates.
2.6.2.1 SERVER; Establish ServerRMS68K establishes the requesting task as a server task of the trap instruction specified. Any task can then request the services of the server task by executing the appropriate trap intruction.
2.6.2.2 AKRQST: Acknowledge Service RequestThe receipt or completion of processing of a pending service request is acknowledged by placing the requesting task into an appropriate state (from the "server request pending" state). The acknowledging task need not to be the service task.
2.6.2.3 DERQST: Set User/Server Request StatusRMS68K sets the enable/disable status of the server event entry mechanism according to the parameter.A service request is made known to a server task trough an entry in the server task's entry. When a request caused by a given trap is entered into the ASQ, further insertion of requests of that type is automatically disabled. The server task can then decide when to re-enable receipt of that request type.Any request issued when the ASQ is disabled for that request type is queued until its turn for insertion arises.Unless the request receipt was disabled by the DERQST directive, request receipt for a given request type is automatically re-enabled when an acknowledgement is made for a request of that type.
2.6.2.4 DSERVE: Deallocate Server functionsA server task initiates orderly shutdown of service. Any request still in the ASQ continues to be served by the task, but all new request will be treated as if the server had never existed.

21SMACC programming user's manual.EXCEPTION MONITOR TASK CONTROL
2.6.3 EXCEPTION MONITOR TASK CONTROLA task can be established as an exception monitor task, which provides execution control over a target task. Exception events of interest to the exception monitor task are specified by an exception monitor mask. When an exception event occurs, execution of the target task is halted, and an event is queued to exception monitor task, which indicates the target task identification and the exception event.
2.6.3.1 EXMON : Attach Exception MonitorRMS68K attaches the target task to the exception monitor task and places the target task in the "wait for command" state. An event with event code 8, indicating the attach, is queued to the ASQ of the exception monitor.If the target task does not issue the directive, it must be in the "dormant" state.
2.6.3.2 _DEXMON: Detach Exception MonitorRMS68K detaches the target task from its exception monitor. The target task then resumes normal activity according to its current state. A detach message is queued to the ASQ of the exception monitor tsk.
2.6.3.3 EXMMSK: Set Exception Monitor MaskAn exception monitor mask is associated with a target task which is to be controlled by an exception monitor task. This mask specifies which exceptions are to cause the execution of the target task to cease and notification to be sent to the exception monitor.Each bit of the mask corresponds to a particular exception. If a bit is set, the associated exception is relevant to the target task.The bits and associated exceptions are listed below:bits 0 and 1 : must be 0bits 2 to 15 : trap 2 to trap 15bit 16 : bus errorbit 17 : address errorbit 18 : illegal instructionbit 19 : zero dividebit 20 : CHK instructionbit 21 : TRAPVbit 22 : privilege violationbit 23 : line 1010 emulatorbit 24 : line 1111 emulatorbits 25 to 26: reservedbits 27 to 31: used by RMS68K for execution control events

1

22 SMACC programming user's manual.EXCEPTION MONITOR TASK CONTROL
2.6.3.4 RSTATE; Receive Task StateAn exception monitor can receive the current state of a target task. This current state information includes the contents of all registers, the exception monitor mask, task state and execution control fields.
2.6.3.5 ESTATE; Pvt Ta?k StateAn exception monitor can modify the state of a target task by changing the values of the target task's registers and exception monitor mask.
2.6.3.6 REXMON; Run Task under Exception MonitorAn exception monitor task specifies how a target task is to be executed. There are four modes of operation which can be selected:- Normal execution.- Execute one instruction.- Value change trace.- Value equal trace.

P

R

R

23SMACC programming user's manual.LOCAL HANDLING OF TRAPS AND EXCEPTIONS
2.6.4 LOCAL HANDLING OF TRAPS AND EXCEPTIONSThe normal handling of a trap or an exception results in standard to an abort of the task (except for trap 0 and trap 1 handled by RMS68K).Some of the traps have been removed from RMS68K handling to solve particular problems :- Trap 3 is used to mask all interrupts.- Trap 4 is used to unmask interrupts.- Trap 5 is used to do a single CAMAC action with a sure CAMAC QX response.Some other traps and exceptions are handled by some servers, such as thedatagram service (trap 6), or the debugger (line 1010 emulator).It is possible for a task to handle those excpetion and not to go to the default server by the mean of the following directives.
2.6.4.1 EXPVCT: Announce Exception VectorsA task can handle its own exceptions. This directive is used to specify to RMS68K the nine possible exception handling routine entry points through the following address table :

bus error address error illegal instruction zero divide CHK instruction TRAPV instruction privilege violation line 1010 emulator line 1111 emulatorA value zero in any table entry results in default processing of that exception.Later the task can dynamically alter exception processing by swapping values in specific table entries without re-issuing an EXPVCT directive.
2.6.4.2 TRPVCT; Announce Trap VectorsA task can handle its own traps. This directive is used to specify to RMS68K the handling routine entry points for trap 2 to trap 15.RMS68K uses the trap vector table (that consists of 14 four-bytes entries, each of which is the transfer address for TRAP #2 to TRAP #15) given as argument to handle trap instructions which occur during the execution of the issuing task. A zero value in any table entry results in default processing of the corresponding trap.After the TRPVCT directive has been executed, the requestor can dynamically alter trap instruction processing by swapping values into the trap vector table.

E

T

24 SMACC programming user's manual.INTERRUPT SERVICE MANAGEMENT
2.7 INTERRUPT SERVICE MANAGEMENTA task can include one or more Interrupt Service Routines (ISR) which are activated as the result of an external interrupt (or exception), and execute in the MC68000 user hardware state at the priority level of the interrupt. This mechanism is useful in creating device drivers.The ISR code is a part of a task, totally shares its address space, and executes independently of this task. Therefore an ISR can run concurrently with the task.When an external interrupt occurs, RMS68K save the current state of the processor and invokes the ISR. When the ISR is active, all task level activities are disabled, but the ISR can be interrupted in favor of an ISR with a higher priority level. Therefore, it is important that an ISR consumes a minimum amount of execution time to avoid system performance degradation and lost interrupts.Upon exit, the ISR can reactivate the task in which it is included, for the purpose of processing results in background mode.
2.7.1 CISR___: Connect Interrupt Service RoutineRMS68K offers the possibility for a task to handle some exception vectors with an Interrupt Service routine.When the interrupt occurs, RMS68K enter the ISR quickly, <i> and give control to the ISR with register AO containing the vector number in the low order 16 bits, and register A1 set equal to the value of the argument provided in the CISR directive. The contents of all other registers are completely unreliable.
2.7.2 RTE______ ; return from interruptDuring ISR execution, only one RMS68K directive is allowed, which is the RTE directive, and thus all ISRs should be coded so as to ensure this and to ensure also that a minimum of time is lost at an interrupt level.Three possibilities are offered to exit from an ISR:D0=0 : simple return from ISR.D0=1 : return from ISR and wakeup the task associated to the ISR.D0=2 : a 4 bytes message with event code 2 is queued into the associated task's ASQ and the corresponding ASR if any is executed at task level.

<i> Take care to TRACEFLAG SYSGEN parameter that can grow-up this time if trace is enabled

25SMACC programming user's manual. INTERRUPT SERVICE MANAGEMENT
The normal sequence of an ISR code is the following:ISRENTRY EQU * (Here A1 = parameter passed to CISR callAO = vector number all other registers have any value => do not useJSR or BSR instructions without initiating A7 so that the stack is coherent.MOVEQ #x,D0 (choose the exit mode) TRAP #1

2.7.3 SINT___ ; Simulate InterruptRMS68K activates the ISR as if the actual exception (or interrupt) had occured at the specified level.

26 SMACC programming user's manual.TASK OR SYSTEM INFORMATION DIRECTIVES
2.8 TASK OR SYSTEM INFORMATION DIRECTIVES.The following primitives are provided by RMS68K, but i think that you will never use them except if you are writing some system information primitives.
2.8.1 TSKATTR : Task AttributesThe target task's user number and attributes are returned to the requestor.
2.8.2 NOVELL : Move from Logical AddressA block of data is moved from one logical address to another. A user task may only move data to other tasks within its own session and cannot move data to a system task's address space.It is forbidden to move from an odd address to an even address or vice versa.
2.8.3 MOVEPL: Move from Physical AddressA block of data is copied from a physical address to a logical address within the destination task's address space.It is forbidden to move from an odd address to an even address or vice versa.
2.8.4 TSKINFO: Return Copy of Task Control BlockA copy of the target task's TCB is moved to the requestor's buffer. The requesting task must be a system task.
2.8.5 SNAPTRAC: Snapshot of System TraceThe contents of the system trace table are copied into the buffer provided within the address space of the requesting task.The pointers within the trace table to the next free entry and to the end of the table are adjusted to point to equivalent address within the requestor's buffer.Refer to chapter 7 for a detained description of the system trace table.
2.9 CDIR____ : configure DirectiveThis directive provides a means by which new system directives can be created for use by specific applications and thus to add code running in the supervisor hardware mode.

27SMACC programming user's manual. Input/Output
2.10 Input/OutputTo handle the asynchronous lines of the SMACC, the Channel Management Request service of RMS68K is not used.Instead, the Monica Input Output system (MIOS) has been adapted to RMS68K in order to implement the Monica symbolic debugger.Two communication are available on the SMACC front panel:- the first one (RS232/current loop) is normally used by NODAL through MIOS andis dedicated to terminal communications and to Macintosh file access.- the second one (RS232/RS422) is planned to be used to implement a Local AreaNetwork (Appletalk for example).For the first implementation of the stand-alone MONICA concurrently with RMS68K, the first line is dedicated to MONICA and the second one is used by NODAL.Since NODAL, a debugger or a LAN management is still using the different channels, access to standard connected display units should be made only through NODAL (or by a call to a subroutine internal to NODAL).In a first time, only the following primitive (with standard CERN interface) should be used by user programs to access to the terminal (and thus to the Macintosh peripherals if connected):PROCEDURE ALERT(RO Logical_unit:INTEGER;RO texte : STRING)- The normal output device is logical_unit 1.- The Macintosh devices are accessed through logical_units from 128 to 255.

e

e S

28 SMACC programming user's manual.PS MEMORY LAYOUT ON THE SMACC
3 PS MEMORY LAYOUT ON THE SMACC
3.1 SMACC hardware requirement?The memory board of the SMACC consists of 6 columns of 8 chips.The first column must be equiped with 64Kb RAM because all interrupts vectors are located at addresses $00000 to $00400 and a part of this column is hardware protected by an access in the user hardware state of the MC68000.The four following columns can be equiped with either 64Kb RAM or with 128Kb EPROM.The last column is normally equiped with 256Kb EPROM.In a first time, only system is located on EPROM, what give us a maximum memory amount of 327Kb RAM and 262Kb EPROM. (For program development and testing purpose only, an extra memory card can be added if necessary).The programming of different jumpers and of two PAL ensure the following:- RAM is decoded as locations from $000000 to $04FFFF- ROM is decoded as locations from $080000 to $OBFFFF- Locations $000000 to $007000 are hardware protected against write from a task running in the user harware mode of the MC68000.- The Restart vector can be fetched from location $080000 instead of location $00000.
3.2 General memory partitioning from the RMS68K point of view.The various constraints of the 68000 architecture, the SMACC hardware, and RMS68K have led to the following physical memory layout for the SMACC. Memory is divided for RMS68K Memory Management into the following partitions:- RAM protected area to receive RMS68K data.- RAM unprotected area to receive all application program and data.- ROM area to receive invariant code.[- RAM extension if present.]

29SMACC programming user's manual. PS MEMORY LAYOUT ON THE SMACC
The following diagram shows the partition layout:

Partition 1 : RAM hardware protected against write in user mode
$000000($1000)($7000)AP-BAS
AP-END
$050000SY-BAS RMS68K codeBasic software code Partition 3 : EPROM

System static variablesSystem dynamic tablesBasic software static var.Applic. static global var.Application codeBasic software and application dynamic variable area

This memory partitioning must remain as static as possible because it must be known at initialization time from RMS68K and cannot be changed after this time.
3.2.1 Partition 0; supervisor dataThis memory area consists of RAM used for system data, hardware-protected against write access except in supervisor mode.It starts at address $00000 to accomodate :- exception vectors- RMS68K system parameters- supervisor stack- crash save area- RMS68K's dynamically created tablesThe supervisor data memory partition uses 29Kb.
3.2.2 Partition 1 : RAM unprotected areaThis memory area consists of unprotected RAM and is used by all software running in user mode that require RAM.This partition is shared between resident basic software and application software as follow:The begin of this partition is used by all basic software requiring a static memory reservation such as MIOS or Remote procedure call (for the interface with the FEC).Then a gap is left for further evolution of the basic software static reservations.Then we will find application global data, and then the application code.

Partition 2 Unprotected RAM

30 SMACC programming user's manual.PS MEMORY LAYOUT ON THE SMACC
The rest of this partition is under the control of RMS68K for dynamic allocation purpose (take care that this area is reset to zero at start-up) and must not be used without allocating by the GTSEG directive.The main utilization of this dynamic area will be the following:- NODAL working area.- Remote servers working area.- Datagram service buffer area.- application tasks stack area.

3.2.3 Partition 2: system sofware codeThis memory area consists of EPROM starting at address SY_BAS ($80000) and used for pure code and constants (NO variables) of basic software.The maximum amount of memory that can be installed here is 256Kb EPROM.The very first item in this partition is the RESET vector, followed immediately by a System Jump Table. <i> This table consists of a fixed sequence of instructions of the form :XYZ: JMP.L _XYZThus application code wishing to call subroutine _XYZ (whose address may vary according to the system version) call in fact XYZ (whose address is constant). This allows an applications package to be loaded into a SMACC without knowing which version of the basic software is installed, as long as it contains all necessary subroutines. Unused entries in the Jump Table jump to an error routine.This arrangement is insensitive to the RAM/EPROM configuration: either or both of the application code and system code may be in EPROM.The full contents of Partition 4 is:RESET vectorSystem Jump TableRMS68K kernel, reset code, initial task (25Kb)MIOS (MoniCa/RMS Input-Output system) (7Kb) Communications software:Low-level Datagram (1Kb)Datagram servicesNODAL kernel (52Kb)functions (12Kb)system functions (3Kb)System call library (3Kb)P+ libraryTotal used : 100Kb[MoniCa symbolic debugger - optional] (64Kb)

<i> This system jump table is maintened by G.Cuisinier and if you need that some extra jumps to system routines, please contact him.

31SMACC programming user's manual. PS MEMORY LAYOUT ON THE SMACC

3.3 Cluster notiQbThe maintenance problem due to the big number of SMACC that will be installed in the PS control system has led to the choice of separating the program production in at least two independant Link-Edit and pushing called “Cluster": <i>- the EPROM resident part (Sytem software constant part).- the RAM loaded part (Application software part).The only link between those 2 "cluster" must be done by a minimum of fixed "magic addresses" that must be fixed at link-edit time or found at start-up by the initialization routines. This will result that the only references to the EPROM part must be either through the trap handling facilities, either through jumps via the system jump table.The loading of the SMACC will be done in two steps with the LDACC routine:- loading of basic software cluster (unless system is in EPROM)- loading of the application software cluster.
3.4 The memory environment of a taskWhen running, a task owns at least the following segments:a) The library code segment "LIBR" containing all basic software located in partition 2 (EPROM).b) The global variable segment "PROG" including basic software global variables, Application software global variables and application code.c) Task's local variable segment (named with task's name) where we find:- The current stack (pointed to by A7).- The variables of the current routine (pointed to by A6).- The variables global to this task (pointed to by A5).d) Task's code segment if dynamic loading is provided.
The allocation of an ASQ and of other dynamic memory is under the responsibility of the task.

<i> In fact this number was planned to be bigger than 2 to allow a partial reload of the SMACC without any stop but this seems not to be possible in a first time.

i

32 SMACC programming user's manual.START-UP OF THE SMACC

4 START-UP OF THE SMACCThe system can be stopped and then restarted at any moment from the FEC by the use of some CAMAC functions.The start-up of the SMACC is divided into several steps:- Hardware Start-up.- RMS68K initialization and start-up.- Basic software Start-up.- Application software Start-up.
4.1 Hardware start-upPower-up, Z or F28.AO cause an external hardware reset.The reset provides the highest exception level and is designed for system initialization and recovery from catastrophic failure. Any processing in progress at the time of the reset is aborted and cannot be recovered. The processor is forced into the supervisor state (and the trace state is forced off).The processor interrupt priority mask is set at level seven. The vector number is internally generated to reference the reset exception vector decoded as location SY_BAS (or $00000 according to the RESTART jumper).Because no assumptions can be made about the validity of register contents, in particular the supervisor stack pointer, neither the program counter nor the status register are saved. The reset exception vector contains the initial supervisor stack pointer (SSP) and the initial program counter (PC). Finally, instruction execution is started at the address in the program counter. The power-up/restart code must be pointed by the initial program counter.The reset signal resets all peripheral circuitry, i.e. CAMAC address counter, CIR, COR,...Notes: - In some cases (trap during trap handling) the microprocessor can hang in halt and the only way to restart it is to force a hardware reset.- The AFTER-RESET jumper selects if, after a reset, the microprocessor continues executing (position CONT), or first goes in the suspend state (position SUSP). The latter possibility has to be used if the reset vector can only be loaded after reset. After loading the program, the microprocessor is put to its executing state by F25.AO.- The RESET instruction does not cause loading of the reset vector, but does assert the reset line to external devices. This allows the software to reset the system to a known state and then continue processing with the next instruction.

SMACC programming user's manual.START-UP OF THE SMACC
4.2 RMS68K start-upThe RMS68K start-up is divided in two parts :- Pre-initializer- System initializer

33

4.2.1 RM$68.K pre-iniUfljizerThe vector address SY_BAS branch in the supervisor hardware state to the RMS68K system pre-initializer whose work is to initialize application dependant system initializer parameters:- It make a copy from EPROM to RAM of all system parameters that must dynamically adjusted before start-up.- It finds at location $400 a pointer to a Partition description vector (PDV) described as following:PDV DC.L AP-ENDDC.L 0,0,0,0,0,0,0,0,0DC.L TASK-ADDC.L NODAL-CAP-END is the first free address for dynamic memory management of partition 1 and the end of loaded code.NODAL-C is the pointer to the chain of all application defined NODAL headers.TASK-AD is the pointer to the task description blocks used by the Application initialization module.This PDV is used to initiate the memory partitionning.- It then clears and disables all possible LAMs in the crate (except for station 18 that should be the SMACC itself).- It jumps to the RMS68K initializer.
4.2.2 RMS68K System InitializerThe system initializer can then initiate all non-SYSGEN fixed parameters <i> by doing the following work :- It loads system stack pointer from SYSPAR.- It clears memory partition 0 through the end of SYSPAR- It initializes exception vectors.- It constructs the list of memory free for dynamic management and reset it to zero (except for statically reserved area).- It initializes system parameters and tables used by RMS68K.

<i> refer to appendix for SYSGEN parameters

SMACC programming user's manual.START-UP OF THE SMACC34
- It initializes serial ports- It makes resident the following tasks and places them in the ready list :- MIOS : MIOS Main task- GOGO : basic software initialization task- It goes to RMS68K exec.Then the system starts the first task into the ready list.

4.2.3 Basic software initializationThe basic software initialization task "GOGO" is the very first task to be dispatched by RMS68K.- It gets a data segment for its own stack.- It gets global segment "PROG" containing all static global variables and the application code and then declare this segment shareable.- It gets global segment "LIBR" containing all basic software code and then declare this segment shareable.- It connects timer ISR to exception vector 30.- It enables timer's 100ms interrupts.- It updates the system date and time from the MM58176A chip current date.- It calls the application initialization routine which does the following jobs :- Initializes the Initialized Global Variables. (This is done by copying the INIT-DATA section into the INIT_VAR section).- Creates a Task Control Block (CRTCB) for every Process described in the TASK_INIT_BLOCK section.- Give the owning of the global segments (PROG and LIBR) to those task.- Start every task described (attaching them to an exception monitor if specified).
- Then it starts the NODAL monitor task NODL.- Then it put itself into the "wait" state.

The "NODL" task starts the different servers and the interactive NODAL ("NODI") and acts as monitor task for all those system tasks.In case of abnormal terminaison of one of those tasks, it restarts it and write an error message on the connected terminal - if there is one. <i>
<i> Refer to chapter 6 - logging errors.

SMACC programming user's manual.START-UP OF THE SMACC 35

4.2.4 Application software initilizationOnce the basic software is running, the application task with the highest priority can then provide an extra initialization according to application software requirements.The following problems are not yet solved:1) Delay management.The delay precision is yet 100ms (the minimum value that can be genarated by the clock circuit without any complicated binary->BCD date and time conversion for delay handling). This value could be shorter with a new clock delays management software.2) Short time power-fails.There is no different management between short-time power-fails and an initial memory loading : the software initialization does the full reinitialization in each case.3) Dynamic memory loadingThe dynamic loading of a task can yet be provided only for a single task written with the restriction that its code is position independant which is not the case except for special assembly-written tasks.
4.2.5 Exchange of magic memory addresses between FEC and SMACCThe FEC needs to know several magic addresses in the SMACC for different purpose, but a minimum of system dependant addresses must remain in the FEC.The SMACC software is split in two parts :- system independant part (because EPROM resident)- application dependant part.Locations from $80000 are reserved for a system jump table (maintened by G.Cuisinier and addresses refering to the system independant part (for example address of some internal to RMS68K tables) must be found by the FEC in that table.Some application part dependant addresses are found from the PDV, whose address is found at magic address $00400 (for example, the end of statically reserved memory, the begin of the application NODAL headers and the list of task).For application, another fixed location ($00404 by example) will contain a pointer to a table maintened by application developpers, in which at a constant displacement, the FEC NODAL or P+ programs will find the pointers they require to access to information.References to application dependant part must be found through the PDV and no absolute magic address must be used in the FEC programs to refer to SMACC addresses.

36 SMACC programming user's manual.START-UP OF THE SMACC
For example, the chain of NODAL headers is found in memory as follow:- read the address of the PDV:GETBL(smacc.,[[400,0,tb,2,cc)- read the 12th address in the PDV :GETBL(smacc.,tb(2)+44,tb(1),tb,2,cc)- now (tb(1),tb(2)) is the address inside the smacc for what we were looking.

SMACC programming user's manual.STANDARD FACILITIES ON THE SMACC 37

5 STANDARD FACILITIES ON THE SMACCThe following facilities for operational software are available:Operating system (plus system initialisation and input/output driver) Elementary communication with host minicomputer General library Interactive Nodal CAMAC/LAM accessMacintosh personal computer link: not discussed in this document.The following facilities are in preparation:P+ environment (plus MoniCa symbolic debugger) Datagram service (simple message passing) Remote call servicesThe following facilities will be provided later: Remote file access Dynamic task loadingThe CERN convention for programming the MC68000 must be used in all programming.
5.1 OPERATING SYSTEM, LANGUAGES, AND LIBRARIES
5.1.1 Opqmjriq SystemThe operating system RMS68K is available to run in the SMACC with its full set of directives.CAMAC interrupts (LAMs) and front-panel interrupts do not require special handlers: they can be treated by user-written interrupt service routines as allowed by RMS68K.Applications may be built of task segments (several tasks on one segment), library segments (many subroutines on one segment), and data segments. Any task or subroutine may call any library segment: virtual addresses are unique throughout user address space.Tasks are differentiated by priority, with higher priority reserved for short, urgent tasks. Thus the CPU is shared as a result of tasks voluntarily entering wait states for external interrupts, the clock, or input-output. In consequence, to prevent abuse, interactive Nodal must have the lowest priority.A dynamic down-line loader may be provided later to load a new application task into a running system (This is intended primarily for tests).

38 SMACC programming user's manual.STANDARD FACILITIES ON THE SMACC
5.1.2 NODAL-68KNodal has been adapted as follows:1) Input/Output:- Terminal I/O uses MIOS. (ODEV=1)- the accès to the different peripheral of a Macintosh personal computer (connected as terminal) and the use its files and line-printer are possible(syntax : OLD file-name or SET ODEV=OPEN("W",".PRINTER")).- a 64Kwords CAMAC File Module can be used for local file support, (syntax : SAVE <n>file-name where n=CAMAC station number)- the access to the FEC files will be provided later, (syntax : OLD <computer>(user)file-name)

2) New data type 32 bits integer has been added (DIM-LONG A(20)).3) CERN standard 68K calling sequences are supported (new function types 28, 29, 30 and 31).4) The edition commands have been extended (lower-case commands are accepted).5) IMEX/EXEC will be supported.6) New NODAL functions headers are automatically generated by P+ compiler if compatible with NODAL interface and those new functions are directly callable from NODAL after startup.7) It is not possible to use compiled LDEF functions. <i>8) It is possible to start an event-driven or a scheduled non-interactive NODAL for low-priority background activity.
5.1.3 Nodal functions to access RMS68KNodal is used as an interactive command interpreter for RMS68K: a special module has been added to Nodal for this purpose with interactive commands beginning withIt is possible to run Nodal at extra high priority when it is necessary to abort a looping program during debugging with @SET-PRIORITY "NODI" xx command.

<i> A Nodal compiler for MC68000 has been developped at SPS but is uncompatible with our NODAL.

SMACC programming user's manual.STANDARD FACILITIES ON THE SMACC 39

5.1.4 Real arithmetic routinesAlthough the basic software (compiler, code generator, library and interpreter) is made as independent of real-number format as possible, the ND 48-bit floating point format is used. The Nodal-68K software package emulating this format is used.
5.1.5 General library routinesThese are specified and implemented as the need arises, including:1) RMS68K system calls <i>2) Input/Output from a user task (for debug or error handling only): It is yet only possible to use the ALERT primitive for print-out of a string.3) CAMAC access (SCAM)4) Datagram service primitives (see below)5) “Context" routines such as- USERC to obtain network user code- FROMC to obtain source of remote call- LOCAL to obtain local computer identifier
For efficiency, CAMAC access don't use SCAM, but uses MOVE instructions to and from memory-mapped CAMAC. In P+, this effect is achieved by declaring variables equivalenced to memory-mapped CAMAC by ENTRY statements <ii> .There is no 'process manipulation' or 'global variable' package since task and message facilities are provided by RMS68K and the communications software.

<i> Refer to appendix P-PLUS interface to RMS68K and Nodal interface to RMS68K.<ii> Refer to appendix ACCESS to CAMAC.

40 SMACC programming user's manual. STANDARD FACILITIES ON THE SMACC

5.2 COMMUNICATIONS SOFTWARE
Communications software for the SMACC follows the layered philosophy outlined in the diagram below. The layers correspond to those of the OSI Model to facilitate integration of the emerging international protocol standards, but there is no claim to conform to any standards.

Level 7 : Application layer
Level 5 : FAP/PAD

Level 4 : Transport service IMEX/EXEC/RPC
Level 3 : subset ISO datagram

Level 2 : PUTBL/GETBL or TITN
Level 1 : Hardware

RPC= Remote Procedure CallFAP= File Access ProtocolPAD= Packet Assembler/Disassembler (remote terminal protocol)SMACC software includes:Level 2: PUTBL/GETBL/TRACC/STACC and LDACCLevel 3: CERN datagram primitivesHigh level: Remote Procedure Call (FEC calls SMACC)IMEX/EXEC protocol (FEC calls SMACC)The following facilities are not yet provided :High level: File access protocol (SMACC calls FEC) Remote Procedure Call (SMACC calls FEC)
5.2.1 Level 2 primitives available on the FECThe following procedure declarations apply to the SMACC. SMACCs are identified by an integer (currently in the range O..59).PROCEDURE STACC (RO smacc_id : INTEGER;RO bit_number : INTEGER;

41SMACC programming user's manual. STANDARD FACILITIES ON THE SMACC
WO completion_code: INTEGER);Returns in the completion code the current value of the indicated software status bit in the specified SMACC and clears it. Guaranteed to be an indivisible operation. Bits 0 to 5 are free for applications, and may be set by appropriate MOVE instructions (see SMACC hardware user's manual; in P+, variables are used as for CAMAC access).PROCEDURE TRACC (RO smacc_id : INTEGER;RO bit.number : INTEGER;WO completion_code: INTEGER);Sets the indicated software trigger bit in the specified SMACC. Guaranteed to be an indivisble operation. Bits 0 to 5 are free for applications, and their occurrence is indicated by a 'signal' operation on the corresponding type 2 semaphore SEMO to SEM5.PROCEDURE PUTBL (RO smacc_id : INTEGER;RO address_low : INTEGER;RO address_high : INTEGER;RO dummy : INTEGER;RO user.buffer : ROW [lo..hi:INTEGER] OF INTEGER;RO word_count : INTEGER;WO completion_code: INTEGER);PROCEDURE GETBL (RO smacc.id : INTEGER;RO address_low : INTEGER;RO address_high : INTEGER;WO dummy : INTEGER;WO user.buffer : ROW [LO..HI : INTEGER] OF INTEGER;RO word_count : INTEGER;WO completion_code: INTEGER);These write and read 16-bit words to/from a SMACC memory zone from/to the given buffer in the user program. 'address_low' is the bottom two bytes and 'address_high' is the high byte of the address of the buffer in the SMACC. The SMACC address must be even.PROCEDURE LDACC (RO smacc_id : INTEGER;RO image_file_name: STRING;WO completion_code: INTEGER);This down-loads the specified ACC from the specified image file. As mentioned in the chapter on the memory layout, LDACC loads the basic software image from a standard file (unless it is in EPROM) before loading the specified applications image.The following calls are used in NODAL to administer the ACC definition table:DFACC(N,L,C,S,CO) Defines ACC number N in loop L, crate C, station S (CO=O means OK)If top bit of N=1, the ACC is a SMACC.DFACC(N,0,0,0,CO) Clears ACC number N from tableDFACC(-1,L,C,S,N) Finds number N of ACC in loop L, crate C, station S

42 SMACC programming user's manual.STANDARD FACILITIES ON THE SMACC
(N=-1 means no such ACC)If top bit of N=1, the ACC is a SMACC.ADACC(N,L,C,S) Returns loop, crate & station of ACC number NIn the ACC definition table, the top bit of the table entry is set to indicate a SMACC. The next-to-top bit is used to indicated that the basic software is in EPROM in an individual SMACC.

5.2.2 Datagram service (not yet implemented)The datagram service provides the transport of complete, self-contained messages of limited size, known as datagrams, between two user programs. An individual datagram is delivered complete and correct or not at all, but there is no mathematical guarantee of delivery or sequence.The full set of calls and their semantics are defined in the DG2 interim report (CERN/DD/KIK-X/R1) and are not repeated here.For future compatibility, all fields of the 'internet_address' exist. 'ISO_code' and ‘network_number' are fixed, 'station_number' is the SMACC number, and 'socket' is application-dependent. All seven of the CERN standard datagram access primitives are implemented:dg_open dg_set dg_close dg_send dg_receive dg_wait dg_info

associates a user program with a socket number sets up characteristics of a socketcancels 'dg_open'send a datagramreceive a datagramwait for datagram(s)obtain information about socketIn the SMACC, there are no problems of layout. The 'dg_' routines are implemented as P+ routines referenced through the general basic software jump table.In the FECs, the 'dg_' routines implemented as ICCI procedures. Only SRT programs and ICCI procedures can access the datagram service: HRT programs cannot do so.TRACC/STACC/PUTBL/GETBL are used to provide a line protocol, with appropriate enhancements to give a 'send packet' and 'get packet' interface for use by the datagram service itself.The packet header format is as follow :
Segment length 2 bytesHeader checksum 2 bytesDest addr 8 bytesSrce addr 8 bytesSegment offset 2 bytesTotal length 2 bytesTOTAL 24 bytes2

43SMACC programming user's manual. STANDARD FACILITIES ON THE SMACC
The first version does not switch packets between SMACCs or forward them through TITN to other FECs, but the use of full addresses allows this in the future.
5.2.3 Remote Procedure Call (being implemented)The P+ programmer in the FEC can issue a remote call to any SMACC connected to that FEC.SMACC identifiers are integers of type COMPUTER.- TITN network FECs have computer number less than 256.- SMACCs have numbers of the form : N+256*FEC_number.The code produced by the P+ (Version A) compiler for an RPC is unchanged. This also means that NORD-PL code in the FEC can execute RPC to a SMACC by following today's COOKBOOK.The run time code issues a standard P+ call to 1REM with the A-register pointing to a remote call descriptor. The NORD-PL format of the descriptor is as follows:INTEGER ARRAY <remca> := (#AB,#CD,#EF, <computer_number>,<tag>,<param_ref>, <tag* >,<param_ref'>,...,ENDPA);where <remca> is an identifier chosen by the user"ABCDEF" is the name of the procedure to call remotely(filled with zero if necessary) <computer_number> is the remote computer number<tag> is the tag for the following parameter <param_ref> is the address of an actual parameter(address of descriptor for STRING parameters) and <tag> ::= <acces> + <type> where <acces> ::= RO ! WO ! RW<type> ::= REMI ! REMR ! REMS ! REMRI ! REMRRAlternatively, <tag> is defined by.CASE INTEGER OF 0 : RO INTEGER;1 : RO REAL;2 : RO STRING;3 : RO ROW [INTEGER] OF INTEGER;4 : RO ROW [INTEGER] OF REAL;8 : WO INTEGER;9 : WO REAL;10 : WO STRING;11 : WO ROW [INTEGER] OF INTEGER;12 : WO ROW [INTEGER] OF REAL;16 : RW INTEGER;17 : RW REAL;18 : RW STRING;19 : RW ROW [INTEGER] OF INTEGER;20 : RW ROW [INTEGER] OF REAL;END CASE;If the tag indicates a ROW, it is exceptionally followed in the descriptor by the array size (number of elements).If the tag is 63 (77 octal), it is a dummy and there is no parameter.With the restriction that only 16-bit integers can be used in remote calls to a SMACC, the above descriptor remains unchanged. Note that record types are tagged as integer arrays, and variants can be sent as 2 ordinary parameters.

44 SMACC programming user's manual.STANDARD FACILITIES ON THE SMACC
RPC datagrams are in the format:<call_datagram>: := <header XusercodeX6_byte_name> (<tag>[parameter >]) ENDPA <reply.datagram>::= <header> <error_code> (< tag >[parameter >]) ENDPA<header>::= datagram header as above<usercode>: := 32-bit network usercode<6_byte_name>: := remote procedure name in ASCII, null-filled<error_code>: := 32-bit error code for RPC protocol<tag>::= as above<parameter>::= <row_size> [<array>] | <string_descriptor> [<string_buffer>] |<16_bit_integer_value> | <48_bit_real value>The tags for all parameters are transmitted in both directions. The parameters are transmitted only if necessary, i.e.:RO parameters: only in call datagramRW parameters : alwaysWO parameters: in reply datagram: all transmittedin call datagram: only row size & string descriptorThe call datagram is sent to an agreed socket number in the SMACC. The reply datagram is returned to the source address of the call datagram. 1REM reports failure either on time-out or when it receives a non-zero RPC error code.The RPC server in the SMACC is a permanently active program listening to the agreed socket number. It hold a table of known remote procedures and their entry-point addresses. Its algorithm is (without error cases):dg_open (attach to socket number)LOOP dg_wait (until a datagram arrives)dg_receivelook up procedure name & addressbuild actual parameter listcall procedurebuild replydg_sendEND LOOPNote: To start several RPC at the same time in different SMACCs the best way is to make a first RPC that starts a remote process and a second RPC later to read the results of this process.
5.2.4 IMEX/EXEC (not yet implemented)The general scheme is similar to that for RPC. Message formats are specific to NODAL and are not detailed here.

SMACC programming user's manual.SPECIAL FACILITIES ON THE SMACC 45

6 SPECIAL FACILITIES ON THE SMACC
6.1 Camaç LAM and frpnt-pannel interrupts handlingThe SMACC is intended to handle a CAMAC hardware with hard real-time constraints and has to respond to many application dependant interrupts.Except for timer, Serial control interface and communication registers, the basic software offers a default handling of interrupts that only clear them.The normal way for the applications to handle those external interrupts is to write (in assembly language) an Interrupt Service Routine to service them.The treatement done at interrupt level should be as quick as possible while during this time all other LAMs are masked and also the communications with the FEC.Notice that an ISR is always under the control of a task and that the connexion disappears whith the task.The normal skeleton of a task controlling one or more ISR is the following:- allocation of an ASQ (GTASQ) to be able to receive end of ISR code 2 messages and to be noticed of any exception occuring while ISR execution.- connexion of the ISR code (CISR) to the corresponding vector <i>- wait for the event.- process the event- return in the wait for event state - except in case of exception.
6.2 Error handlingSeveral kinds of errors can be detected during execution :- Software predicted errors: at this time - especially for debugging - the programmer want to post a text to signal an error condition (or a normal completion).- Software fatal errors the programmer can have not predicted someconditions that even occurs and wants to ABORT its own task to signal thiscondition.- Hardware fatal errors some operations can produce an hardware errorduring the execution of a task : for example a "bus error" exception canoccurs if a read is made for a write camac function.
<i> Refer to appendix Absolute variables for the SMACC

46 SMACC programming user's manual.SPECIAL FACILITIES ON THE SMACC

6.2.1 Monitor taskAn exception monitor task gets control over the execution of any task it controls. In particular, such a task is woken up on any fail in a task and is able to logg this to the terminal.Frank di Maio did develop a basic exception monitoring task that can yet be used to get a minimum of informations when a task does crash.
6.2.2 Logging errors on terminalIn any case it is useful to log all errors on the local terminal - if connected - for maintenance purpose: the link with the FEC can be broken or non-existant and at this time local messages must be displayed on the local terminal.
6.2.3 Logging errors to the FECTo be able see the connexion between errors detected and the general environment, and also to keep a paper trace of all detected errors, some errors (or perhaps all) have to be logged on the FEC error device. <i>
6.3 Error number conventionRMS68K error codes <ii> are in the form $08XX00YY where XX is the directive number and YY a general mean error code.RMS68K abort codes are in the form $80XX, where XX is an exception numbered from 0 to 31. <iii>MONICA, stack handling and pushing errors are handled via Axxx instructions.The result of the SMACC integration meetings have hold to choose the following error numbering convention:2 bits for severity level- 4 bits for error type (type 0 reserved for NODAL)- 10 bits for error number in this type- 16 bits to precise error source.G.Cuisinier holds the list of the error codes and will develop a FLIRT function to transform RMS error code to PS error code.

<i> An error message primitive must be provided for end-users,<ii> Refer to appendix RMS68K ERROR CODES.<iii> Refer to appendix RMS68K EVENTS STRUCTURE- Exception monitor events

47SMACC programming user's manual.SPECIAL FACILITIES ON THE SMACC

6.4 Power-fail interruptIn case of power fail, the SMACC is able to continue its execution after power-restart without reloading it because its RAM has a power-fail supply battery. <i>The internal RMS68K clock is not updated during the power-fail but the MM57167A internal calendar is updated during this time.No standard power-fail/power-restart handling is done: the system is yet only restarted.This results in the following actions:1) current programs running under NODAL (interactive or not) are lost.2) dynamically allocated memory is given back to RMS68K and is cleared.3) statically initialized data are set back to their initial value.4) current situation is mainly lost.

<i> the low consumption allows up to 4 years!

SMACC programming user's manual.PROGRAM PRODUCTION FOR THE SMACC48

7 PROGRAM PRODUCTION FOR THE SMACCThe standard PS programming environment offers the following languages to program on the SMACC:- Interpreted NODAL- Compiled P+- Macro-assembler M68MILExcept for interpreted NODAL, program production is on the PRDEV computer following this diagram :
High level language P-plus Low level language Macro Assembler

P+ Compiler
m68mil macro assembler

CUFOM object modules
cuflink link-edit

CUFOM object module
pusher

Motorola S-code
create-smacc-image

LDACCLoadable format This file must be transfered on the FEC trough the TITN network for loading.

SMACC programming user's manual.PROGRAM PRODUCTION FOR THE SMACC 49
7.1 Software Architecture.
The SMACC memory is divided in 3 partitions:- 0 : RMS68K reserved RAM (write protected from an user program).- 1 : unprotected RAM- 2 : Permanent software resident EPROM (or RAM in a first time).The memory partitionning is done at system generation, but adjusted dynamically at system start-up for the end of the static unprotected RAM partition.
7.2 Existing program development tools.
The following software are available for program development :- INCLUDER: utility to produce a new source file from another by replacing the $INCLUDE <file> lines by the contents of the specified line (include commands can be nested to a deapth of 10 files calling another file).- P-PLUS : P+ compiler to produce M68MIL source code from P+ source files.- M68MIL : Motorola 68000 assembler that produce CUF binary.- PLANC-MC68 : PLANC compiler producing NRF code.- NRF-CUFOM : utility translating NRF code in CUFOM binary format with therestriction to 2 sections (DATA and PROG) allowing the use of the PLANC-MC68 compiler.- CUFMERG : utility to concatenate several CUF files in one CUF file.- CUFLINK : link-editor producing CUF with a maximum of resolved externalreferences.- PREPUSH : utility to prepare the work for the pusher: all sections areevaluated in length and an implantation starting address is proposed to the user for each implantation section.- UNIPUSH : utility to produce from the CUF an absolute memory image in thestandard motorola S-code format (MSC).- CREATE-IMAGE utility to produce the loadable format from the S-code format.- DATAIO-LOAD : utility to load the contents of EPROM into a DATAIO model 29AEPROM programmer and to produce also a loadable image from the non romable part of the application.

50 SMACC programming user's manual.PROGRAM PRODUCTION FOR THE SMACC
7.3 Program production procedures.

For the SMACC program production a set of XCOM procedures is available under M68K-CROSS-SOFT file space called as follow:@XCOM (M68K) <file-name> <print-listing>The following file naming convention is used for <file-name>: xxx-yyyyyyyy:SYMB or yyyyyyyy:Sxxxwhere xxx = procedure to apply on this source file: PPL = P+ M68 = M68MIL macro-assembler PLC = PlaneTSK = List of CUF files link together to produce a new CUF with a maximum of resolved external referencesIMA = List of CUF files to link together and to push to produce a SMACC loadable memory image.
7.3.1 Assembly language source files.

The documentation of the macro-assembler used is the CERN 83- 12 yellow report: M68MIL CROSS MACRO ASSEMBLER. (Horst von Eicken - DD - 22.12 .1983).It is recommended to the user to read the chapter 5, that describes a set of general purpose macros, and to list the contents of thoses macros found in the file : (M68K-CROSS-SOFT)SYSTEM-MACROS :SYMB.The rules used at CERN by the compilers for data generation and for stack handling conventions are described in the CERN 84-12 yellow report: CERN CONVENTION FOR PROGRAMMING THE MC68000 FAMILY (PS - 20.11.1984)The name an assembly source file must be M68-xxxxxxxxxx:SYMB or xxxxxxxxxx:SM68. To assembly it, you just have to specify:exCOM (M68K) <source> <list>- The use of the INSERT pseudo instruction results in nothing because this facility is offert by the INCLUDE utility called in a systematic way to treat the following commands:SINCLUDE (<user>)<file>- The use of the SYSTEXT pseudo-instruction results in the including of the file (M68K-CROSS-SOFT)SYSTEM-MACROS:SYMB.- If more than 5000 lines are to be assembled, the switche /S1 (or /S2 if more than 10000 lines) must be specified as follow·.0XCOM (M68K)/S1 <source> <list>- The result of the assembly is a :CUF file.The following sections must be used by the user to allow a further link-edit without any problem:

51SMACC programming user's manual.PROGRAM PRODUCTION FOR THE SMACC
7.3.1.1 code sections.

- TASK_INIT_BLOCK: Section receiving the task's descriptor used by the initialisation procedure to start all tasks after system start-up.Its contents is :DC.L '!INB'DC.L 0DC.L 'xxxx'DC.L 1DC.L xxxxDC.B 50DC.B 100DC.W $8000DC.W 0DC.L 'ERLG'DC.L 1DC.L $1FFFFFCDC.W XX

Eye catcher link-list (not yet used) Task Name Task Session Entry pointInitial priority [0..255]Limit priority [0..255]Task attributes (system task) Global segments mapException monitor name and sessionException monitor maskTask code language (1=assembly, 2=Pascal, 4=P+, 6=C, 9=Planc) used by error logging task.- NODAL_HEADER : Section containing only the NODAL header part:- INIT-DATA: Section receiving the initial values to be copied to theINIT-VAR section at restart time.- CONSTANT_DATA: Section containing only Read-only constants.- PROGRAM : Section receiving the program part.
7.3.1.2 Static variables reservation sections.

- GLOBAL-VAR : Section containing static global variables without anyinitialisation (not reset to zero at restart time).- INIT—VAR : Section containing static variables that will be reinitiatedby the P+ initialisation program by copy of the contents of the INIT-DATA section.
7.3.2 P+ source files.
The name an P+ source file must be PPL-xxxx:SYMB or xxxx-.SPPL. To compile it, you just have to specify:

1

1

S

52 SMACC programming user's manual. PROGRAM PRODUCTION FOR THE SMACC
@XCOM (M68K) <source> <list>The P+ compiler used is the new P+ version B generating code for the MC68000.

7.3.3 Plane source files.
The name of a PLANC source file must be in the form PLC-xxxx:SYMB or xxxx:SPLC. To compile it and to produce CUFOM, you just have to specify.@XCOM (M68K) <source> <list>The PLANC-MC68 compile is able to produce code on 2 separate sections: data and program. The NRF-CUFOM translater transform the NRF and produce code on 2 sections: PROGRAM and INIT_VAR.
7.3.4 First link-edit.

A lot of :CUF files can be link-edited in one single resulting :CUF file to reduce EXTERN/ENTRY conflicts with the rest of the system. You are allowed to do such a link-edit by furnishing a file with a name TSK-xxxx:SYMB or xxxx:STSK that contains a list of all files to be linked together.Lines beginning with a % character are considered as comments.No blank lines are allowed.example: file (CONS-MAC)TASK-TEST :STSK% link-descriptor of task test: (cons-mac)test % main program(cons-mac)subr1 \ 1st subroutine...(cons-mac)subr2 % 2nd subroutine...% end of list...The resulting :CUF file will get a name with the same convention as for a source file.
7.3.5 How to create a loadable image of the SMACC.

A list of the application :CUF files to be linked together must be provided in a file with the name IMA-xxxx:SYMB or xxxx:SIMA. The rules are the same as for previously described :STSK files.To produce the application loadable memory image of the SMACC (:BIN), you just have to specify.@XC0M (M68K) description file) <list>

SMACC programming user's manual.PROGRAM PRODUCTION FOR THE SMACC 53
A link-edit is done, including the following files :- (LIBRARY-PPL-M68K)PPL-HDR-BEGIN:CUF that will fix the order of allexisting sections and the description of all sections.- the list of your CUF modules- (LIBRARY-PPL-M68K)PPL-HDR-END:CUF that will define the end of allsections.- (SMACC-SYSTEM)M68-SYSTEM-TABLE:CUF that will be used to define allsymbols used from the system part.From this link-edit, no undefined external reference must persist.After this link-edit, the pusher is called, with the magic addresses specified in the memory partitionning.This will result in the production of an MSC file.To load the application on the SMACC, two commands must be issued:- LDACC(smacc,"(P-PLUS-TEST)SMACC-SYSTEM",cc)- LDACC(smacc,"<file>",cc)

54 SMACC programming user's manual.Remarks on the program production procedures.
7.3.6 Remarks on the program production procedures.

By default all program production procedures are submitting a job to the batch number 1. You don't need to specify your current user name and password because XCOM is able to find them. However, it is possible but not recommended to execute those job as MODE files instead of batch jobs by specifying @XCOM (M68K)/MODE.Notice that XCOM needs at least 50 pages free in your user file space to work.XCOM checks the existence of the file and finds the full file name.The following files are dynamically created under VOLATILE: yyyyyyyyy:Bxxx = Job batch file to compile yyyyyyyyy:Cxxx = Second batch file to edit the result of this job. yyyyyyyyy:Dxxx = Job auxiliary data file if needed (for example byCUFLINK).The listing output file is created by default under VOLATILE : yyyyyyyyy:Lxxx = Resulting listingThe asked print listing option can be one of the following :L = Line-printerP = PhilipsF = Laser-printer horizontal formatW = Laser-printer vertical formatX = Central DD Xerox 8700 laser printer (55 lines/page, 4 page/page)R = PS xerox 2700 laser printerN = No print out of the listing file.T = direct print out on terminal (only if /MODE switch is specified)The following parameters can be modified for each user by creating a file USER-PARAMETERS:XCOM whose contents is following:tAP_PASSW:=='xxxx' \ Application project password (default: none) tMAX_TIME==100 \ Maximum job time (default: 10)tVOL_LIST:=='user' % File-space to keep LIST files (default: VOLATILE) tJNAM:=='XC#yyyyy' % Title for IBM laser printer (default:XC#user)
% XC -> delivery point 'XC F1 6/R.O12

La
La

)

55SMACC programming user's manual.Annexe: Supported Program production shema.
7.3.7 Annexe: Supported Program production shema.

file source
Compile

P+ PPL Assembly M68 Plane PLC

First Link-edit(TSK)
CUF CUF CUF

CUF system jump table entry points CUF

Final Link-Edit(IMA)(fcreate image) MSC Application
Memory ImageBINNotice than other program productions chains can be used, for example the PRIAM VAX chain can be used to use other languages as C, FORTRAN or PASCAL whose produce CUF files, that can then be transported through CERNET to the PRDEV and then integrated to this program production.

56 SMACC programming user's manual.DEBUGGING A PROGRAM ON THE SMACC
8 DEBUGGING A PROGRAM ON THE SMACCNow that your know how to produce an application image, you want to debug it.To debug a program on the SMACC, different ways of operation are possible and complementary :- From remote computer a low-level debug facility is available. (This will be principally used by the operation people, because it does not need to connect any terminal to the SMACC).- On the smacc interactive NODAL, it is possible to use the system commands and also to make a low-level debug of a NODAL function using the TILT, DUMP and LOOKAT functions to place break-points.- The stand-alone MONICA monitor and debugger can be used to control RMS68K and the whole system, but the result of any call to MONICA is to stop the whole system until an action is taken by the operator.- MONICA debugger running under the control of RMS68K will be implemented later to allow to place a break-point in any task, resulting in the stop of only that task.The first debugging problem is to load the SMACC memory and to start it up.The best thing to do is to start the FEC remote debugger and to use it to load the SMACC.For that purpose, the questions asked by this NODAL program are the following:- SMACC number ?- Application to be loaded.You can now load your SMACC by typing D090.In case of error 132, you must unbypass the serial crate by typing D091.After that your application is loaded and the interactive NODAL must be available on the connected terminal - if any (or the MONICA system if used).In case of problems, the following steps must be followed:1) Test if the system part does work alone without your application: restart the remote debugger and specify no application.2) If this does not work, check the hardware connexion between SMACC and terminal.3) If the link seems to be correct, check the communication parameter setting of the terminal (or of the Macintosh): 4800 bauds, 8 bits, 1 start bit, 2 stop bits, No parity.4) Now that you are sure of the fact that the hardware works, reload your application and check with the remote debug tools that all your tasks are started and that tasks MIOS and NODI are in wait state.If no one of the application tasks is started, check the contents of the task init blocks.If your tasks are started, you can now check the connexion of your ISR from the FEC and check for the current state of all tasks.

SMACC programming user's manual.DEBUGGING A PROGRAM ON THE SMACC 57

8.1 FEC Remote debuggerA low level remote debug facility is available on the FEC.This program is called from RT-NODAL by the command: RUN SMACC-DEBUGIt asks you first for the smacc number on which you are working, and then on the application to be loaded on the smacc after the loading of the system image (what is the normal case if you follow chapter 8 for program production.The most command available are the following:- D02 : re-edit the menu- D040 : edit menu for CAMAC basic functions (usefull in case of hardwareproblems only).- DO98 : activate <PRDEV>TRANSFER-FILE utility to read your image from thePRDEV to the local computer.- D091 : unbypass serial crate (this results also in a system restart if thepower was not cut on the crate).- D090 : load the system image and then the application image.- D050 : patch some words into memory.- D051 : dump 128 words from any even memory location- DO52 : dump system debug area- DO53 : dump system crash save area (and system stack)- D060 : look at Task control blocks.- D061 : list memory partitionning (usefull to check what dynamic area is yetunused).- DO62 : list all Interrupt Service routines connexions.- DO63 : list contents of semaphore table.- DO64 : dump contents of system trace table: this is significant only if thesystem is crashed.- DO65 : look at task's segments tables- DO66 : list contents of global segment table- DO67 : dump contents of periodic activation and delay table- DO68 : set the system trace flag (after start-up)- D071 : put an irrecoverable break-point in memory (destroying 6 words) andwait for the user action). Then try to dump the registers contents at this location.

SMACC programming user's manual.DEBUGGING A PROGRAM ON THE SMACC58

8.2 Using NODAL toolsOnce interactive NODAL started, you can now use it to debug your programs.The set of RMS68K commands allows you to issue any RMS68K call <i> and thus to check the state of any task.To debug a NODAL function, a primary debug facility exists that allows you to place a breakpoint at 1 location (function TILT(address))- that will save the contents of all registers and then restart NODAL at the interactive level.The contents of the registers and of the memory can then be checked through the DUMP and LOOKAT functions.
8.3 MoniCa debuggerThe DD-supported RMS68K environment includes MoniCa debugger, an interactive symbolic debugger allowing such operations as:1) tracing2) breakpoints3) inspection/modification of variables4) single stepping/single procedure callsbased on information output by the compiler in addition to the object code.The Monica debugger can be used in different ways:in stand-alone mode (outside RMS68K): It is possible to load RMS68K as a MONICA application and to use Monica debugger on the 2nd line provided on the SMACC. Take care to the fact that in this case, any breakpoint will make a full stop of the system.- as an application running under RMS68K control: in this mode it will be possible to put a breakpoint inside a task, halting only this task and not the whole system.No final documentation exists yet on MONICA, but you can get a draft on the IBM under WYLBUR from the file $CG.HVE.LIB(MONICA) and print it out by following the first lines of this file.
8.4 Other debug informations

<i> Refer to appendix Nodal interface to RMS68K

SMACC programming user's manual.DEBUGGING A PROGRAM ON THE SMACC 59

8.4.1 System does not startIf interactive NODAL does not, the system sofware initilization programs includes some debug points:1) The basic software initialization programs write on the CAMAC station 1, for system debug purpose.2) The system sofware use location "Debug_Area" - cleared initially by PRE- INIT - to notice some events for tasks ΊΝΙΤ', 'GO ', 'MIOS', and for the line driver.
8.4.2 System crashesThere is no fail indicator on the SMACC, so - except the running level indicator lamp, the only indication that the running system may have crashed is that there is no response to operator input. When this happens, memory must be examined to determine the cause of the system crash.
8.4.2.1 System crash areaIf the system did detect an error condition and call its crash procedure (subroutine KILLER in RMS68K), the registers are saved in the CRASHSAV area as follow:

08$18$28$38

PCDOD4AQA4

SRDnsAlA5

D2D6A2A6

D3D7A3
A7

If the program counter and the status register displayed at CRASHSAV are zero, then the system did not crash.
8.4.2.2 Nothing at crashsavThe symbol RUNNER is at offset $C from the start of SYSPAR. This is the current running task's TCB address.Next display the contents of the running task's TCB (512 bytes).

1

60 SMACC programming user's manual. DEBUGGING A PROGRAM ON THE SMACC
8.4.2.3 System trace tableThe system trace table can provide information about the most recent events that have occured while the system was running.Entries are built in the system trace table when various events occur. The setting of the SYSGEN parameter TRACEFLG determines which events cause an entry to be built.

Bit number in TRACEFLG Event Trace code
1514131211109876

TRAP #1Interrupt not serviced Timer interruptUser trap (#2 - #15)ExceptionDispatchInterrupt serviced Return from LOADMMU SINT interrupt SYSFAIL interrupt

$FF15 $EE 14 SFF13 $AA12 $AA11 SFD10 $EE09 SDD08 SDD07 SEE07At TRACEBEG address is a pointer to the start of the trace table.
Pointer to the trace table
Pointer to the next free entry (26 bytes/entry)Pointer to the TOP of the table

TRACEBEG
TRCPTRTRCLNG

most recent
code SR PC AO A6 DO time
code SR PC AQ A6 DO time
code SR PC AQ A6 DO time

SMACC programming user's manual. 61

APPENDIX A

P-PLUS INTERFACE TO RMS68K

SMACC programming user's manual.62

SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K 63

MODULE PROVIDING rms.tools AS LIBRARY: PROVIDE ALL WITH
1) Task control directivesPROCEDURE Rms_crtcb (* Create Task Control Block *)(RO p1: INTEGER;RO p2: INTEGER;RO P3: INTEGER;RO p4: INTEGER;

(* name of new task *)(* session of new task *)(* options *)(* Monitor task name: This field is used only if options bit 15=1. If this field is 0, the new task's monitor will be the requesting task, otherwise, the monitor will be the task specified in this field *)(* Monitor task session: This field used only when options bit 15=1 and the requesting task is a system task. If the field has the value 0, the session of the new task's monitor is the requestor's session. Otherwise, it will be assigned to this specified value *)(* Initial priority to be assigned to the new task.This priority can be changed at any time to a value less or equal to the task's limit priority. (A given task cannot affect another task that has a current priority greater than its own limit priority.) *)(* Highest priority which can be assigned to the new task. *)
(* Task attributes ·

RO p5: INTEGER;

RO p6: INTEGER;

RO p7: INTEGER;RO p8: INTEGER; Bit 15=1 Bit 13=1 Bit 12=1 Bit 11=1
New task is a system task.Crash system if new task terminates abnormally.Task dump if new task terminates abnormally.Relocatable task running with no MMU. Entry address will be adjusted when task is started. *) (* task entry point *)(* user generated ID [-32767..32678]: Not used by RMS68K, but is for the user's informationRO p9: address;RO pA: INTEGER)only. *)ENTRY '.CRTCB';(* options :

15 14 13 reservedNew task's monitor is the same as for requesting task if=1New task's monitor p if=1 *)
3

o

64 SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
FUNCTION Rms-Start(RO p1: INTEGER;RO p2: INTEGER;RO p3: INTEGER;RO p4: INTEGER;
RO d5: INTEGER:

(* start task *)(* target task's name: If the field is 0, look for a task to re-start. *)(* target task's session *)(* options *)(* monitor task's name (only if options bit 15) if 0 monitor = requesting task. *)(* monitor task's session (only if options bit 15)if 0 session = same as requesting task *) RO p6: R0W[1..15]0F INTEGER) (* This field contains the init. value of D0-D7, A0-A6 if option bit13=1 *)INTEGER (* if start was called with TASKNAME=O, the *) ENTRY '_START'; (* Taskname of the started Task will be returned *)(* options:
o151413 12 reservedregisters supplied monitor propagated monitor specified *)PROCEDURE Rms.relinENTRY '-RELINQ'PROCEDURE Rms.waitENTRY '.WAIT';PROCEDURE Rms_suspnENTRY '-SUSPND'PROCEDURE Rms_term ENTRY '_TERM';FUNCTION Rms-Stop(RO p1 : INTEGER;RO p2: INTEGER)INTEGERENTRY '.STOP';FUNCTION Rms_termt(RO p1 : INTEGER;RO p2: INTEGER;RO p3: INTEGER)INTEGERENTRY '-TERMT';

(* relinquish *)
(* enter wait state *)
(* suspend self *)
(* terminate self *)
(* stop target task *)(* target task's name *)(* target task's session*)(* Name of stopped task returned if stop Session *)(* mode used *)(* terminate target task *)(* target task's name *)(* target task's session*)(* abort code 16 bits *)(* Name of terminated Task returned if *)(* "Terminate" session used. *)

q

d

SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K 65
FUNCTION Rms-setpri(RO p1 : INTEGER;RO p2: INTEGER ;RO p3: INTEGER) INTEGERENTRY '-SETPRI';PROCEDURE Rms.abort(RO p1 : INTEGER) ENTRY ’.ABORT';PROCEDURE Rms_wakeup(RO p1 : INTEGER;RO p2: INTEGER) ENTRY '-WAKEUP';PROCEDURE Rms_resume(RO p1 : INTEGER;RO p2: INTEGER) ENTRY '.RESUME';

(* set priority *)(* target task's name *)(* target task's session*)(* target task's new priority *)(* If error code 10 is returned in DO, then the *)(* target task's limit priority will be returned *)(* Abort Self *)(* abort code *)
(* wakeup target task *)(* target task's name *)(* target task's session *)
(* resume target task *)(* target task's name *)(* target task's session*)

66 SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
2) Memory management directives(* Common to all segment management directives *) (* attributes :

14131211109 0reservedsegment is physical ROM segment is memory mapped I/O. 00 : private segment01 : segment globally shareable.10 : segment shareable within this session.Segment is read only. *)(* Allocate a segment *)PROCEDURE Rms_gtsec(RO p1 : INTEGER;R0 p2: INTEGER;RO p3: INTEGER;R0 p4 : INTEGER;R0 p5: INTEGER;RO p6: address;RO p7: INTEGER;WO p8: address;WO p9: INTEGER)
ENTRY '-GTSEG';(* options :

1 3________________ 1 0 9 8 7 6___________ 4 3__________________ 0

0 0 1 0 0

(* Name of task to receive the segment *)(* Session of task to receive the segment *)(* directive options (16 bits) *)(* segment attributes *)(* Name of new segment *)(* logical or physical address if specified *)(* segment length in bytes *)(* Physical address of new segment (reg A0) *)(* size of largest free block available if directive is rejected, Number of bytes allocated if option bit 9=1 *)

Partition number(0..5)Tvne number (0..7)

Logical address = physical address. *)

L-*If=1 : RMS68K looks at options bits 6..0 to determine which memory partition else RMS68K uses SYSGEN default*-»If=1: RMS68K atttempts to allocate segment at specified physical address.—»If=1 and space not available, allocate largest as possible.If=1 and space not available, wait

67SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
(* Attach a shareable Segment *)FUNCTION Rms.attseg(RO p1 : INTEGER;RO p2: INTEGER;RO p3: INTEGER;RO p4: INTEGER;

(* N/A *)(* N/A *)(* directive options *)(* segment attributes (16 bits):Bit 13=1 segment to attach is a locally shareable segment.Bit 12=1 segment to attach is a globally shareable segment.Either bit 12 or 13 (but not both) must be set to 1. *)(* name of the required segment *)(* Logical address of segment within task's address space. Not applicable if options bit 13=1 *)(* Length of segment to be attached. Applicable only if options bit 10=1. The value specified must be < or = to the actual length of the segment *)(* return physical address of allocated segment *)

RO p5: INTEGER;RO p6: address;
RO p7: INTEGER)

INTEGER ENTRY '-ATTSEG'(* options:
13 10 reservedo o 1 o__ o Length of segment is specified Logical address = physical address. *)

68 SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
(* Declare a segment shareable *)PROCEDURE Rms.dclshrRO p1: INTEGER;RO p2: INTEGER;RO p3: INTEGER;RO p4 : INTEGER;Bit 13=1Bit 12=1RO p5: INTEGER;RO p6: address;

RO p7: INTEGER)
Either

(* N/A *)(* N/A *)(* directive options (16 bits):(* segment attributes (16 bits):segment to attach is a locally shareable segment.segment to attach is a globally shareable segment.bit 12 or 13 (but not both) must be set to 1. *)(* name of the required segment *)(* Logical address of segmentO within task's address space. Not applicable if options bit 13=1 *)(* Length of segment to be attached. Applicable only if options bit 10=1. The value specified must be < or = to the actual length of the segment *)ENTRY '-DCLSHR';(* options :
15 12 reservedmake shareable segment permanentall segment attributes are specified (bits 14-12) *)FUNCTION Rms-shrseg(RO p1 : INTEGER;RO p2: INTEGER;RO p3: INTEGER;RO p4: INTEGER;RO p5: INTEGER;RO p6: address;RO p7: INTEGER) addressENTRY '-SHRSEG';(* options :

13 10

(* grant shared accès to another task *)(* target task's name *)(* target task's session *)(* options *)(* segment attributes *)(* segment name *)(* logical address *)(* segment length in bytes *)(* Physical address of segment *)

o o 1 o o reservedlength of segment is specified logical address = physical address *)(* transfer a segment *)FUNCTION Rms-trseg(RO p1: INTEGER;RO p2: INTEGER;RO p3: INTEGER;RO p4: INTEGER;
RO p5: INTEGER;

(* target task's name *)(* target task's session*)(* options: *)(* attributes :Bit 14=1 Segment is to be read-only.=0 Segment is to be read-write. *) (* Name of segment to be transferred. *)

(

SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K 69
RO p6: address)INTEGER ENTRY '-TRSEG';(* options:
15 14 13

(* Logical address if bit 14=1 *) (* Physical address of segment *)

1
reserved1-------♦ logical address = physical address.logical address is supplied by requestor in segment block attributes are changed according to attributes field *)PROCEDURE Rms_deseg(RO p1: INTEGER;RO p2: INTEGER;RO p3: INTEGER;RO p4: INTEGER;RO p5: INTEGER) ENTRY '-DESEG';(* options:

1 1

(* Deallocate a Segment *)(* Name of target task to loose the segment *)(* session of target task to loose the segment *)(* directive options *)(* N/A *)(* name of the required segment *)

reserved reservedremove permanent status of a shareable segment *)

ΊΟ SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
PROCEDURE Rms rcvsa (* receive segment attributes *)(* name of task owning the segment *)(* session of task owning the segment *)(* options : *)(* N/A : directive attributes *)(* Segment name if Bit 14=0 *)(* logical address if bit 14=1 *)(* N/A : segment length *)INTEGER) (* destination buffer address *)

(RO p1: INTEGER;RO p2: INTEGER;RO p3: INTEGER;RO p4: INTEGER;RO p5: INTEGER;RO p6: address;RO p7: INTEGER;WO p8: R0W[1..5] OF ENTRY '.RCVSA';(* options:
14 13

0
reservedNo information is returned in the caller's buffer. Segment is identified by the specified address.The returned buffer has the following structure : p8(1) = segment name p8(2) = segment attributes (16 usefull bits) p8(3) = segment begin logical address p8(4) = segment ending logical address p8(5) = segment begin physical address *)

71SMACC programming user's manual. P-PLUS INTERFACE TO RMS68K
3) Semaphore management directivesFUNCTION Rms_crsem (* Create a semaphore *)(RO p1 : INTEGER; (* semaphore name *)RO p2 : INTEGER; (* semaphore key *) (* N/A *)RO p3: INTEGER; (* initial count used for type 2 & 3Must be non-negative value *)RO p4 : INTEGER) (* semaphore type [1,2,3] *)INTEGER (* returned semaphore key *) ENTRY '-CRSEM';PROCEDURE Rms_wtsem (* wait on semaphore *)(RO p1: INTEGER; (* semaphore name *)RO p2: INTEGER) (* semaphore key *)ENTRY '.WTSEM';PROCEDURE Rms_sgsem (* signal semaphore *)(RO p1: INTEGER; (* semaphore name *)RO p2: INTEGER) (* semaphore key *)ENTRY '.SGSEM';FUNCTION Rms_atsem (* Attach to semaphore *)(RO p1: INTEGER; (* semaphore name *)RO p2: INTEGER; (* N/A *)RO p3: INTEGER; (* N/A *)RO p4: INTEGER) (* semaphore type [1,2,3] *)INTEGER (* returned semaphore key *)ENTRY '-ATSEM';PROCEDURE Rms_desem (* detach from semaphore *) (RO p1: INTEGER; (* semaphore name *)RO p2: INTEGER) (* semaphore key *)ENTRY '.DESEM';PROCEDURE Rms_desema (* Detach from all semaphores *) ENTRY '-DESEMA';

3

)

]

72 SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
4) Event management directives

PROCEDURE Rms.gtasq (* Allocate ASQ *)(RO p1: INTEGER; (* target task name or 0 if own task *)RO p2: INTEGER; (* target task session *)RO p3: INTEGER; (* ASQ status *)RO p4: INTEGER; (* max message length in bytes *)RO p5: INTEGER; (* max queue length in bytes *)RO p6: address) (* ASR entry address *)ENTRY '.GTASQ';(* ASQ status :
1 5 4 3 2 1 0reserveddisable register stacking if =1 enable ASR if =1 «------------------------ enable ASQ if =1 <------------------------ *)

o

PROCEDURE Rms.setasq (* Set ASQ/ASR Status *)(RO p1: INTEGER) (* new ASQ status : (only bit 0 bit 2 used)Bit 0 : enable ASQ if =1Bit 2 : enable ASR if =1 *) ENTRY '-SETASQ';PROCEDURE Rms_deasq (* Deallocate ASQ *)ENTRY *-DEASQ';PROCEDURE Rms_qevnt (* queue event to task *)(RO p1: INTEGER; (* destination task name *)RO p2: INTEGER; (* destination task session *)RO p3: INTEGER; (* directive options *)RO p4: event_sended;(* buffer address *)RO p5: address) (* Alternate ASR entry point if specified *) ENTRY '-QEVNT';(* options:
15 14 reserved o

validation of alternative ASR entry address specified if=1 *)PROCEDURE Rms_rdevnt (* read event *)(WO p1: event_received) (* event receiving area *) ENTRY '.RDEVNT';PROCEDURE Rms_wtevnt (* wait for event *) ENTRY '.WTEVNT';

)
)

s
)

(
(
(

SMACC programming user's manual. P-PLUS INTERFACE TO RMS68K 73
5) Time and delay management routinesPROCEDURE Rms_stdtim (* set system date and time *)(RO p1: INTEGER; (* New System Date *)RO p2: INTEGER) (* New System Time *)ENTRY '-STDTIM';PROCEDURE Rms_gtdtim (* get system date and time *)(WO p1: INTEGER; (* number of days since 01/01/1980 *)WO p2: INTEGER) (* number of milliseconds *)ENTRY '-GTDTIM';PROCEDURE Rms.delay (* Delay self *)(RO p1: INTEGER) (* Number of millisecondes to Delay *) ENTRY '-DELAY';PROCEDURE Rms_delayw (* Wait for event or Delay *)(RO p1: INTEGER) (* Number of millisecondes to Delay *) ENTRY '-DELAYW';PROCEDURE Rms_rqstpa (* request periodic activation *)(RO p1: INTEGER; (* target task's name *)RO p2: INTEGER; (* target task's session*)RO p3: INTEGER; (* options :RO p4: INTEGER; (* Initial activation time *)RO p5: INTEGER; (* Period in milliseconds *)RO p6: address; (* ASR entry address (only if bits 13-12=1) *)RO p7: INTEGER) (* Activation request ID used to identify thisrequest *)ENTRY '-RQSTPA';(* options:

151413121110 9 8 0reservedsend an event on cancelAn ID is supplied in the activation request ID field task is activated only once if =1.Activation method :- 00 - issue RESUME- 01 - issue WAKEUP- 02 - timer event to default ASR address.- 03 - timer event to specified ASR address,activate at initial time and then after each interval time of first activation is specified. *)

) s

s

74 SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
6) Server directives (* establish server *)(♦ TRAP ASR address *)(* Trap instruction identifier: *)(* Parameter block size in bytes, Required if TRAP instruction identifier bit 5=1. Specifies size of parameter block which will be given to the task with the event *)

PROCEDURE Rms_server(RO p1: address;RO p2: INTEGER;RO p3: INTEGER)
ENTRY '-SERVER';(* trap instruction identifier:

7 6 5 4 3 00 server handles trap instruction N (2..15) server expects a parameter block with the event task will receive an event each time a task terminates user task if=O / system task if =1 *)PROCEDURE Rms_derqst (* set user/server request status *)(RO p1: INTEGER) (* trap number & status *) ENTRY '.DERQST';(* parameter :
3 1 8 7 6 4 3___________ 0

Enable(O)/Disable(1) request receipt* Trap number of interest (2.. 15) < *)PROCEDURE Rms_akrqst (* Acknowledge service request *)(RO p1 : INTEGER; (* target task name *) (* whose request is *)RO p2 : INTEGER; (* " " session *) (* being acknowledged *)RO p3 : INTEGER; (* directive options (16 bits) :RO p4 : INTEGER; (* Trap number being acknowledged [2..15] *)RO p5 : INTEGER; (* condition codes supplied if options bit 14=1 *)RO p6 : INTEGER; (* DO register, supplied if options bit 13=1 *)RO p7 : INTEGER) (* AO register, supplied if options bit 12=1 *)ENTRY '-AKRQST';(* options:
14131211 90 0000000001xx = reactivate target task.01x = place target task in WAIT state001 = place target task in SUSPEND state• set target task's AO to ρθ• set target task's DO to p• set target task's condition code to p^4

te

SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K 75
PROCEDURE Rms_dserve (* Deallocate server functions *)(RO p : integer); (* trap number (2..15) *)EÎlTRY '-DSERVE' ;

7) Exception monitor handlingPROCEDURE Rms_exmon (* Attach Exception Monitor *)(RO p1: INTEGER; (* target task name *)RO p2: INTEGER; (* target task session *)RO p3: INTEGER; (* exception monitor task name *)RO p4: INTEGER) (* exception monitor task session *)ENTRY '-EXMON';PROCEDURE Rms_exmmsk (* set exception monitor mask *)(RO p1: INTEGER; (* target task's name *)RO p2: INTEGER; (* target task's session*)RO p3: INTEGER) (* exception monitor mask *)ENTRY '-EXMMSK';FUNCTION Rms_tskattr (* read task attributes *)(RO p1: INTEGER; (* target task's name *)RO p2: INTEGER) (* target task's session*)INTEGER (* Task attributes (32 bits) *)ENTRY '-TSKATTR';(* returned attributes :
31 16151311 876543210

user number *Task is system task *--Task is memory resident *-— Crash system if task aborts* Task's code is relocateable* (no MMU) - convert entryTask has created user semaphore ♦------------------Task is controlled by exception monitorTask is exception monitor for another taskTask has own exception vectors «-------------------Task has own trap vectors ♦---Task is the last task in session (set only by TERM)Task was aborted «------------------------Task has claimed a user vector *)PROCEDURE Rms_pstate (* put task state *)(RO p1: INTEGER; (* target task's name *)RO p2: INTEGER; (* target task's session*)RO p3: ROW[1..25] of INTEGER) (* task state *)ENTRY '-PSTATE';

)

SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K76
(* P3 contents :p3(1..15) = registers D0..A6p3(16) = User stack pointerp3(17) = Program counterp3(18) = status register (only 16 bits used)p3(19) = exception monitor mask *)PROCEDURE Rms.rstate (* receive task state *)(RO p1: INTEGER; (* target task's name *)RO p2: INTEGER; (* target task's session *)RO p3: task_state) (* buffer address *)ENTRY '-RSTATE';(* P3 contents :p3(1..19) = idem as for Pstate p3(2O) = task status p3(21) = execution options p3(22) = value location p3(23) = value p3(24) = value mask p3(25) = max.instruct.count *)(* task_status:
31 29 27 25 23 21 19 17 reserved o

term message to server sent while ack outstandingtask has pending wakeuptask is on ready listtask is headed for asrtask will return to exectask has pending terminationtask is suspendedtask is waiting for command from exmontask is waiting for service req acknowledgementtask is waiting for eventtask is waiting on semaphoretask is in wait statetask is dormantPROCEDURE Rms_tskinfo (* return a copy of tcb *)(RO p1: INTEGER; (* target task's name *)RO p2: INTEGER; (* target task's session*)RO p3: INTEGER; (* options :Bit 15=1 Return copy of target task's TCB.Bit 15=0 Do not return copy of target task's TCB. *)RO p4: TCB_table) (* 512-byte buffer where a copy of the target task's TCB will be moved. *)ENTRY '-TSKINFO';PROCEDURE Rms_rexmon (* run task under exception monitor *)

77SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
(RO p1: INTEGER; (* target task's name *)RO p2: INTEGER; (* target task's session*)RO p3: ROW[1..5]OF INTEGER) (* array reference *) ENTRY '-REXMON';(* p3(1) = execution optionsp3(2) = value locationp3(3) = valuep3(4) = value maskp3(5) = max.instruct.count *)PROCEDURE Rms_dexmon (* Detach exception monitor *)(RO p1: INTEGER; (* Target task being detached *)RO p2: INTEGER) (* Target task session *)ENTRY '-DEXMON';PROCEDURE Rms_expvct (* Announce exception vectors *)(RW p1: ROW[1..9] OF ADDRESS)ENTRY '.EXPVCT';(* Exception vector table structure :p1(1) = bus error handling addressp1(2) = address error handling addressp1(3) = illegal instruction handling addressp1(4) = zero dividep1(5) = CHK instructionp1(6) = TRAPV instructionp1(7) = privilege violationp1(8) = line 1010 emulatorp1(9) = line 1111 emulator *)

8) Miscellaneous directivesPROCEDURE Rms_trpvct (* Announce trap vectors *)(RW p1: R0W[2..15] OF ADDRESS) (* trap vector table *) ENTRY '-TRPVCT';PROCEDURE Rms_cisr (* Configure Interrupt Service Routine *)(RO p1: INTEGER; (* target task name *)RO p2: INTEGER; (* target task session *)RO p3: INTEGER; (* directive options *)RO p4: INTEGER; (* vector number: The vector number of theexception vector being allocated, deallocatedor switch. Values can be $00 to $ff *)RO p5: address; (* ISR entry point address *)RO p6: INTEGER) (* A user-defined value that will be loaded intoaddress register A1 when an interrupt occurs*)ENTRY '.CISR';(* options:
15 1312 reserved o

000 : Allocate exception vector to target task's ISR

ber
ted

o
)

78 SMACC programming user's manual.P-PLUS INTERFACE TO RMS68K
001 : Dissolve an existing ISR vector(only vector number must be specified) 010 : Switch an exception vector to a new ISR.PROCEDURE Rms_sint (* simulate interrupt *)(RO p : integer 1; (* Hardware interrupt priority *)RO p1 : integerl) (* Exception vector number (O..$FF) *)EN^RY '.SINT';PROCEDURE Rms_movell(RO p1: INTEGER; (* source task name *)RO p2: INTEGER; (* source task session *)RO p3: address; (* source logical address *)RO p4: INTEGER; (* destination task name *)RO p5: INTEGER; (* destination task session *)RO p6: address; (* destination logical address *)RO p7: INTEGER) (* Length of data block in bytes *) ENTRY '-MOVELL';PROCEDURE Rms_movepl(RO p1: address; (* source physical address *)RO p2: INTEGER; (* destination task name *)RO p3: INTEGER; (* destination task session *)RO p4: address; (* destination logical address *)RO p5: INTEGER) (* Length of data block in bytes *)ENTRY '-MOVEPL';

SMACC programming user's manual. 79

APPENDIX B

Nodal interface to RMS68K

80 SMACC programming user's manual.

SMACC programming user's manual.Nodal interface to RMS68K 81
The following commands are available from SMACC nodal as system commands and can be used to test the different calls to RMS68K and to find the right values to be specified as parameters.The @HELP function can be used for online help (but do not give any explanation on the use of the different arguments).Task, semaphore, segment names parameters are given as 4 character strings. Session parameter should be equal to 1 when specified.On error, NODAL prints always an error message in the form:Rms directve failure : xx.The value of xx can be tested via the RMS_D0 nodal variable and interpreted according to the RMS68K error codes appendix.
0ABORT-SELF p1 (abort)p1 : abort code (integer: 2 bytes)@ACKNOWLEDGE-SERVICE-REQUEST p1,p2,p3,p4,p5,p6,p7 (akrqst)p1 : name of Target task whose request is being acknowledged.p2 : sessionp3 : directive optionsBit 14=1 Set target task's condition codes in status register as specified.Bit 13=1 Set target task's register DO to value specified.Bit 12=1 Set target task's register AO to value specified.Bit 11-9 =1xx Reactive target task.=01x Place target task in WAIT state.=001 Place target task in SUSPEND state.p4 : Trap number being acknowledged.p5 : condition codes supplied if options bit 14=1.p6 : register dO supplied if options bit 13=1.p7 : register aO supplied if options bit 12=1.@ALLOCATE-A-SEGMENT p1,p2,p3,p4,p5,p6,p7,p8,p9 (gtseg)p1 : Name of task to receive segment.p2 : Session N/A if requestor is user task.p3 : Directives optionbit 13 = 1 must be specified (logical address=physical)bit 10 = 1 : wait if space not yet availablebit 9=1: allocate as much as possible if space not availablebit 8=1: allocate segment at specified addressbit 7=1 : do not use defaultd) partition for allocation,but

use bits 6..0 for oartition tvoe and numberp4 : Segment Attributesbit 14 = 1 : segment is read only bit 13..12 = 00 : private segment01 : globally shareable segment10 : locally shareable segment bit 11=1: segment is memory mapped 1/0 bit 10 = 1 : segment is physical ROM p5 : Name of new segment.p6 : Address of segment Logical or Physicalp7 : Segment length (in bytes)p8 : returned physical address of segmentp9 : returned size of largest block available@ALLOCATE-ASYNCHRONOUS-SERVICE-QUEUE p1,p2,p3,p4,p5,p6,p7 (gtasq) p1 : Task name

82 SMACC programming user's manual.Nodal interface to RMS68K
p2 : sessionp3 : ASQ statusp4 : max mess, lengthp5 : queue lengthp6 : ASR service vectorp7 : receiving area address0ANNOUNCE-EXCEPTION-VECTORS p1 (expvct)p1: exception vector table consists of 9 Long integer entries, each of which is the Transfer Address for the appropriate Exception.p1 (1) : bus errorp1(2) : address errorp1(3) : illegal instructionp1(4) : zero dividep1(5) : chk instructionp1(6) : trapv instructionp1(7) : privilege violationp1(8) : line 1010 emulatorp1 (9) : line 1111 emulatorOANNOUNCE-TRAP-VECTORS p1 (trpvct)p1 : trap vector table consists of 14 4-byte entries, each of which is the the transfer address for the appropriate trap instruction. The table covers TRAP 2 through TRAP 15.0ATTACH-A-SEGMENT p1, p2,p3, p4, p5, p6, p7, p8 (attseg)p1 : task namep2 : sessionp3 : directive optionsBit 13=1 RMS68K supplies logical address of segment equal to physical address of segment.Bit 10=1 length of segment to be attached specified in the segment length field.p4 : segment attributes (value : 2 bytes)Bit 13=1 segment to attach is a locally shareable segment.Bit 12=1 segment to attach is a globally shareable segment.Either bit 12 or 13 (but not both) must be set to 1.p5 : name of desired segmentp6 : logical address of segment within task's addressesNot applicable if options bit 13=1.p7 : length of segmentApplicable only if options bit 10=1. The value specified must be < or = to the actual length of the segment.p8 : returned physical address of segment@ATTACH-EXCEPTION-MONITOR p1,p2,p3,p4 (exmon)p1 : target task name p2 : target task session p3 : exception monitor task name p4 : exception monitor task session@ATTACH-T0-SEMAPHORE p1,,,p4 (attsem)p1 : semaphore name p2 : ** N/A **p3 : ** N/A **p4 : semaphore type 1,2 or 3 p5 : returned semaphore key0CONFIGURE-INTERRUPT-SERVICE-ROUTINE p1,p2,p3,p4,p5,p6 (cisr) p1 : target task name or requesting task if 0

)

83SMACC programming user's manual.Nodal interface to RMS68K
p2 : session n/a if requestor is a user taskp3 : directive optionsBit 15-13 =000 Allocate exception vector to target task's ISR=001 Dissolve an existing ISR vector connection. If thisoption is specified, only the vector numberfiels must be supplied.=010 Switch an exception vector to new ISR.p4 : vector numberp5 : ISR addressp6 : argument to pass in A1 at ISR entry^CREATE-A-SEMAPHORE p1,,p3,p4,p5 (crsem)p1 : Name of semaphore to create.p2 : ** N/A **p3 : initial count for type 2 & 3.p4 : semaphore type 1, 2, or 3p5 : returned semaphore key0CREATE-TASK-CONTROL-BLOCK p1,p2,p3,p4,p5,p6,p7,p8,p9,p10 (crtcb)p1 : Name of new taskp2 : session n/a if requestor is a user taskp3 : directive optionsBit 15=1 New task's monitor is specified in monitor fields of TCB block.Bit 14=1 New task's monitor will be requesting task's monitor.p4 : monitor task name (if p3 bit 15=1)p5 : monitor sessionp6 : initial priorityp7 : limit priorityp8 : task attributesBit 15=1 New task is a system task.Bit 13=1 Crash system if new task terminates abnormally.Bit 12=1 Task dump if new task terminates abnormally.Bit 11=1 Relocatable task running with no MMU. Entry address will be adjusted when task is started.p9 : task entry pointp10: user generated i.d. (16 bits)@DELAY-SELF p1 (delay)p1 : Number of millisecondes to Delay@DELAY-AND-WAIT p1 (delayw)p1 : Number of millisecondes to delay0DECLARE-A-SEGMENT-SHAREABLE ,,p3,p4,p5,,, (dclshr)p1 : ** N/A ** p2 : ** N/A ** p3 : directive options p4 : segment attributes p5 : Name of segment to be shareable. p6 : ** N/A ** p7 : ** N/A **0DELALLOCATE-A-SEGMENT p1,p2,p3,p4,p5,,, (deseg)p1 : name of target task to lose segment p2 : session n/a if requestor is a user taskp3 : directive optionBit 11=1 Remove permanent status of a shareable segment.p4 : ** N/A **p5 : name of segment to be deallocatedp6 : ** N/A **

g

84 SMACC programming user's manual.Nodal interface to RMS68K
p7 : ** N/A **0DEALLOCATE-ASYNCHRONOUS-SERVICE-QUEUEGDEALLOCATE-SERVER-FUNCTIONS p1p1 : BIT 3-0 relevant Trap Instruction Number@DETACH-ALL-SEMAPHORE

(deasq)(dserve)
(desema)(dexmon)
(desem)

0DETACH-EXCEPTION-MONITOR p1,p2p1 : name of target task to detach from exception monitor p2 : session n/a if requestor is user task.0DETACH-FROM-SEMAPHORE p1,p2,,,p1 : semaphore namep2 : semaphore keyp3 : ** N/A **p4 : ** N/A **0ESTABLISH-SERVER p1,p2,p3 (server)p1 : Address at which specified TRAP instruction is to be serviced. p2 : trap instruction identifierBit 6=1 task elects to receive an event each time a task terminates. Bit 5=1 server expects a parameter block with the event.Bit 3-0 specify the number of the TRAP instruction which the requesting TASK will serve at the above request service address. Valid values are 2 through 15.p3 : Parameter block sizeRequired if TRAP instruction identifier bit 5=1. Specifies size of parameter block which will be given to the task with the event.0GET-SYSTEM-DATE-AND-TIME p1,p2 (gtdtim)p1 : returned current system date p2 : returned current system time0GRANT-SHARED-ACCESS-TO-ANOTHER-TASK p1,p2,p3,p4,p5,p6,p7,p8 (shrseg) p1 : task name p2 : session p3 : directive option p4 : segment attributes p5 : segment name p6 : logical address p7 : segment length p8 : returned physical address of segment0MOVE-FROM-LOGICAL-ADDRESS p1,p2,p3,p4,p5,p6,p7 p1 : source task p2 : source session p3 : source logical address p4 : destination task p5 : destination session p6 : destination logical address p7 : length of data block0MOVE-FROM-PHYSICAL-ADDRESS p1,p2,p3,p4,p5 p1 : source physical address p2 : destination task p3 : destination session p4 : destination logical address p5 : length of data block

(movell)

(movepl)

SMACC programming user's manual.Nodal interface to RMS68K 85
(pstate)0PUT-TASK-STATE p1,p2,p3p1 : task namep2 : sessionp3 : Long-integer array containing task state p3(1) = DO p3(2) = D1p3(8) = D7p3(9) = AOp3(16) = A7P3(17) = PCp3(18) = SRp3(19) = exception monitor mask (qevnt)@QUEUE-EVENT-TO-TASK p1,p2,p3,p4,p5 p1 : destination task name p2 :sessionp3 -.directive optionsp4 : event (Long integer array) p5 : alternate service vectorWARNING : It is not possible to determine the data contents.It is the user's responsability to use the contents of the provided buffer@READ-EVENT p1 (rdevnt)p1 : event (long integer array)^RECEIVE-SEGMENT-ATTRIBUTES p1, p2, p3,,p5, p6, , p8 (rcvsa)p1 : tasknamep2 : sessionp3 : directive optionsBit 14=1 segment identified by logical address in logical address field.Bit 14=0 Segment identified by segment name.Bit 13=1 No information will be returned in the user's buffer The logical address of segment referenced will be returned in AO.Bit 13=0 All information about segment will be returned in caller's buffer.p4 : ** N/A **p5 : segment name if bit 14=0p6 : logical address if bit 14=1p7 : ** N/A **p8 : return buffer address (long words array)0RECEIVE-TASK-STATE p1 ,p2,p3 (rstate)p1 : task name p2 : session p3 : long-integer array receiving task state: p3(1) = DO p3(2) = D1p3(8) = D7p3(9) = AOp3(16) = A7 P3(17) = PC p3(18) = SR

86 SMACC programming user's manual.Nodal interface to RMS68K
p3(19) = exception monitor maskp3(2O) = task status (4 bytes) p3(21) = execution options (2 bytes) p3(22) = value location (4 bytes) p3(23) = value (4 bytes) p3(24) = value mask (4 bytes) p3(25) = max.instruct.count (4 bytes)^RELINQUISH@RESUME-A-TARGET-TASK p1,p2p1 : task namep2 : session@RETURN-A-COPY-OF-TASK-CONTROL-BLOCKp1: name of target taskp2: sessionp3: options

(relinq)(resume)
(tskinfo)

Bit 15=1 Return copy of target task's TCB.Bit 15=0 Do not return copy of target task's TCB.p4: 128 long integer buffer address to receive TCB@REQUEST-PERIODIC-ACTIVATION p1,p2,p3,p4,p5,p6,p7 (rqstpa)p1 : name of task to be activatedp2 : session n/a if requestor is a user taskp3 : directive optionsBit 15=1 Time of specified activation is specified in initial time field.=0 Time of 1st activation = interval+calling sequence time.Bit 14=1 The interval is specified in interval field. Task will be activated at initial time , initial time + interval, initial time + 2*interval, etc...=0 Task is activated at initial time only.Bits 13-12 Activation method.00 - issue resume.01 - issue wakeup.10 - timer event to default ASR service addr.11 - timer event to ASR service addr. specified in serviceaddr. field.Bit 11=1 Task will be activated only one time (not required if Bit 14=0).=0 Task will be activated as option bit 14.Bit 10=1 An argument is supplied in Activation Request ID field.=0 Activation Request ID of all zeros is assumed.Bit 9=1 Send an event to target task when the activation is cancelled.p4 : initial time time of day, in milliseconds.p5 : interval period of time, in millisecondsp6 : ASR service address (only if bits 13-12=1).p7 : activation id used to identify this requestNota : if bits 15-14 = 0, this is a request to cancel a currently-active periodic activation.0RUN-TASK-UNDER-EXCEPTION-MONITOR p1,p2,p3 (rexmon)p1 : task namep2 : sessionp3 : long integer array :p3(1) = execution options (2 bytes)p3(2) = value location (4 bytes)p3(3) = value (4 bytes)

ti
ti

s

87SMACC programming user's manual.Nodal interface to RMS68K
(4 bytes)(4 bytes) (setasq)

(exmmsk)
(setpri)

p3(4) = value maskp3(5) = max.instructions count0SET-ASQ/ASR-STATUS p1p1 : new asq statusBit 0 : ASQ disable if =0, enable if =1Bit 2 : ASR disable if =0, enable if =10SET-EXCEPTION-MONITOR-MASK p1,p2,p3p1 : task namep2 : sessionp3 : exception monitor mask@SET-PRIORITY p1,p2,p3,p4p1 : name of target task with changing priority.p2 : session n/a if requestor is a user task.p3 : New current priorityp4 : returned priority if error 100SET-SYSTEM-DATE-AND-TIME p1,p2p1 : New System Datep2 : New System Time0SET-ÜSER/SERVER-REQUEST-STATUS p1p1 : trap number & status
(stdtim)
(derqst)

^SIGNAL-SEMAPHORE p1,p2,,, p1 : semaphore name p2 : semaphore key p3 : *** N/A *** p4 : *** N/A ***0SIMÜLATE-INTERRUPT p1,p2 p1 : interrupt priority p2 : vector number

(sgsem)

(sint)
0SNAPSHOT-OF-SYSTEM-TRACE p1,p2 (snaptrac)p1 : buffer where the System Trace table will be copied@START-TASK p1,p2,p3 (start)p1 : task namep2 : sessionp3 : directive optionsBit 15=1 the monitor of the target task is specified in monitor field.Bit 14=1 the monitor of the target task is the requesting task'smonitor.Bit 13=1 the registers of the task being started are to be initializedto the values in the registers field of the parameter block.p4 : monitor task name (only if options bit 15)p5 : monitor session (only if options bit 15)p6 : init value of registers DO-D7,AO-A6 (only if options bit 13)p7 : return parameter : if start was called with taskname=0, the taskname of the started Task will be returned0STOP-TASK p1,p2,p3 (stop)p1 : task name p2 : session p3: Name of stopped task returned if stop Session mode used0SUSPEND-SELF (suspnd)

88 SMACC programming user's manual.Nodal interface to RMS68K
(tskattr)
(term)(termt)

^TASK-ATTRIBUTES p1,p2,p3p1 : Task namep2 : Sessionp3 : returned task attributes@TERMINATE-SELF@TERMINATE-TARGET-TASK p1,p2,p3,p4 p1 : task name p2 : session p3 : abort codep4 : Name of terminated Task returned if Terminate session used.^TRANSFER-A-SEGMENT p1,p2,p3,p4,p5,p6,,p8 (trseg)p1 : Target task to receive segment. p2 : session p3 : directive optionsBit 15=1 the attributes of the segment are changed according to the segment attribute field.Bit 14=1 logical address supplied by requestor in segment block.Bit 13=1 RMS68K supplies logical address equal to physical address.If options bits 13 & 14 both are equal to zero, the logical address of the segment will be the same as currently assigned in the requestor's address space.p4 : directive attributes Bit 14=1 Segment is to be read-only.=0 Segment is to be read-write.p5 : Name of segment to be transferred. p6 : logical address if bit 14=1p7 : ** n/a **p8 : returned Physical address of segment@WAIT-STATE0WAIT-FOR-EVENT0WAIT-ON-SEMAPHORE p1, p2, , , p1 : Semaphore Name p2 : Semaphore Key p2 *** n/A ***** p4 *** n/A *****@WAKEUP-A-TARGET-TASK p1,p2 p1: taskname p2: session

(wait)(wtevnt)(wtsem)

(wakeup)

SMACC programming user's manual. 89

APPENDIX C

RMS68K ERROR CODES

90 SMACC programming user's manual.

SMACC programming user's manual. RMS68K ERROR CODES 91
'RMS68K ERROR CODES'On return from most RMS68K directives, a return code is given as follow :

31____________2 7 2 G 1G 15 000001 directive number Error code
1) error codes$01 invalid directive number.$02 parameter block out of requesting task's address space.$03 target task does not exist.$04 required table does not exist.$05 table is full.$06 duplicate request : function cannot be performed again.$07 entry not found in table or list$08 memory space not available$09 requesting task is not a system task$0A invalid target task state.$0B request conflicts with existing$0C address out of requesting task space$0D address out of requesting task space$0E function is not enabled$0F invalid options specified$10 invalid count or length field2) directives number in error codes$01 GTSEG Allocate a segment$02 DESEG Detach a segment$03 TRSEG Transfer a segment to another task$04 ATTSEG Attach a shareable segment$05 SHRSEG Grant shared segment accès$06 MOVELL Move from logical address$07 DCLSHR Declare a segment shareable$08 SNAPTRAC Snapshot of system trace$09 RCVSA Receive segment attributes$0B CRTCB Create task control block$0D START Start a target task$0E ABORT Task aborts itself$0F TERM Task terminates itself$10 TERMT Abort target task$11 SUSPND Task moves itself to suspend state$12 RESUME Move target task from suspend to ready state$13 WAIT Task moves itself to suspend state$14 WAKEUP Move target task from wait to ready state$15 DELAY Task moves itself to delay state$16 RELINQ Task moves itself from run to ready state$17 TSKATTR Receive task user number and attributes$18 SETPRI Change priority of a task$19 STOP Move target task from any state to dormant$1A EXPVCT Announce exception vectors$1B TRPVCT Announce trap vectors$1C TSKINFO Receive a copy of the TCB$1D RQSTPA Task is set up for periodic activation$1E DELAYW Wait for event or delay$1F GTASQ Allocate ASQ$20 DEASQ Detach ASQ

92 SMACC programming user's manual.RMS68K ERROR CODES
$21 SETASQ$22 RDEVNT$23 QEVNT$24 WTEVNT$29 ATSEM$2A WTSEM$2B SGSEM$2C DESEM$2D CRSEM$2E DESEMA$33 SERVER$34 DSERVE$35 DERQST$36 AKRQST$3A CDIR$3D CISR$3E SINT$40 EXMON$41 DEXMON$42 EXMMSK$43 RSTATE$44 PSTATE$45 REXMON$48 MOVEPL$49 STDTIM$4A GTDTIM

Task changes its ASR/ASQ status Task reads an event from the ASQ Queue an event to a target task's ASQ Task moves itself to wait for event state Attach to semaphore Wait on semaphore Signal semaphore Detach from semaphore Create semaphoreDetach from all semaphores Task is made server task Detach server function Set user/server request status Server acknowledge request Configures a new directive Configures ISR Simulate interruptAttach exception monitor Detach exception monitor Set exception monitor mask Receive task state Modify task stateRun task under exception monitor control Move from physical to logical addresses Set system date and time Get system date and time

SMACC programming user's manual. 93

APPENDIX D

ACCES TO CAMAC FROM THE SMACC

SMACC programming user's manual.94

SMACC programming user's manual.ACCES TO CAMAC FROM THE SMACC 95
This Appendix explains how to access the CAMAC on the SMACC from a P+ programmer point of view, or from an assembly language programmer point of view.
A CAMAC function is generated by writing or reading into the CAMAC address space (locations $800000 to $80FFFC).

2 32 2 1615 1110 76 2101 0 0 0 0 0 0 0 N A F 0 0
From the programmer point of view, the CAMAC address space is seen as a big memory buffer declared in P+ as follow:VARIABLE CAMAC ENTRY '.CAMAC: R0W[0..32767] OF INTEGER[WORD];VARIABLE CSR ENTRY '.CSRREAD': INTEGER[WORD]The different access to the CAMAC are performed as follow:val:=CAMAC[N*1O24+A*64+F*2]; for a CAMAC read functionCAMAC[N*1O24+A*64+F*2]:=val; for a CAMAC write functionQX:=CAMAC[N*1O24+A*64+F*2]; for a CAMAC control functionThe QX response from a read or write function can be read from the Communication Status Register (CSR) as follow:QX:=CSR;The QX response (read from CSR or as result of a CAMAC control function) has the following structure :

15 14 13 12 8 0Q X N CIR Communication Input register Last CAMAC function NAbort bitXQ responseBut after a read or a write function, the CSR read can be not the right one (because for example, an interrupt has started an ISR that does access to the CAMAC). To solve this problem, an extra P+ subroutine has been added :PROCEDURE CAMAC.TRAP(R0 NAF:INTEGER; (* N*512+A*64+F to execute *) RW val-.INTEGER; (* value to read or to write *) WO qx -.INTEGER) (* camac QX response *)

96 SMACC programming user's manual.ACCES TO CAMAC FROM THE SMACC
In assembly language, the programmer works as follow:EXTERN _CAMAC * refer to the base of the CAMAC areaEXTERN .CSRREAD * refer to the CSRMOVEA.L #_CAMAC,A0 * CAMAC basis in AOMOVE.W #N<<11+A<<7+F<<2,D1 * NAF*4 in D1MOVE.W #val,D0 * value to writeMOVE.W D0,0(A0,D1.W) * to perform a CAMAC write functionMOVE.W 0(A0,D1.W),DO * to perform a CAMAC read or control function * DO = value read if CAMAC read function * DO = CSR read if CAMAC control functionMOVE.W -CSRREAD,D2 * read the CSR register in D2If a read or write CAMAC function (or also a control function) needs a safe qx response, the TRAP #5 can be used, but requires more CPU time:MOVEA.L #N<<11+A<<7+F<<2,AO * A0=NAF to execute (bits 2 to 15)MOVE.W #val,D0 * D0= value to write if writefunctionTRAP #5at exit, AO holds always NAF, but the high word is destroyed, DO holds the 16 bits value read in bits 0..15 if the function was a camac read function, and holds the qx response (CSR) in the bits 16..31 independantly of the performed function.

SMACC programming user's manual. 97

APPENDIX E

Abolute variables for the SMACC

98 SMACC programming user's manual.

SMACC programming user's manual.Abolute variables for the SMACC 99
The following magic values are known as entry-point so that they can be referenced either from high level languages, either from assembly language. For P+ users, a definition module SMACC___HARDWARE will be provided..CAMAC EQU $800000 Camac address space begin ** .CORSET defines a byte array and a write to any of its location will force* the corresponding bit in the COR and trigger the FEC* -CSRREAD defines a byte or a word used to read either only the CiR, either* the CSR and the camac QX+N response* CSRTSET defines a byte used only to reset the communication input register*.CORSET EQU $COOOCO Set Bit 0 of COR.CSRREAD EQU $C00120 Read Communication status register.CSRTSET EQU $C00100 Test and reset CSR** following variables define bytes and any write to those locations will* result in the corresponding action*_FPI1RST EQU $C00140 Reset Front Panel Interrupt 1-FPI2RST EQU $COO142 Reset Front Panel Interrupt 2-FPI3RST EQU $C00144 Reset Front Panel Interrupt 3-FPI4RST EQU $COO146 Reset Front Panel Interrupt 4-FPI4ON EQU $C00180 Enable Front Panel Interrupt 4-FPI40FF EQU $C001C0 disable Front Panel Interrupt 4** following symbols are used to define vector numbers when connecting* interrupt service routines:*-V-FPI1 EQU -V-FPI2 EQU .V-FPI3 EQU .V-FPI4 EQU -V-IRQ1 EQU -V-IRQ2 EQU -V-LAM1 EQU -V-LAM2 EQU -V-LAM3 EQU -V-LAM4 EQU -V-LAM5 EQU -V-LAM6 EQU -V-LAM7 EQU -V-LAM8 EQU -V-LAM9 EQU -V-LAM10 EQU -V-LAM11 EQU —V—LAM12 EQU _V-LAM13 EQU —V—LAM14 EQU —V—LAM15 EQU -V—LAM16 EQU —V—LAM17 EQU -V-LAM18 EQU —V—LAM19 EQU -V-LAM20 EQU _V-LAM21 EQU -V-LAM22 EQU -V-LAM23 EQU

$67 $66 $65 $64 $61 $60 $41 $42 $43 $44 $45 $46 $47 $48 $49 $4A $4B $4C $4D $4E $4F $50 $51 $52 $53 $54 $55 $56 $57

vector number to connect to fpi1 vector number to connect to fpi2 vector number to connect to fpi3 vector number to connect to fpi4 vector number to connect to Int.RQI vector number to connect to Int.RQ2 vector number to connect to LAM1 vector number to connect to LAM2 vector number to connect to LAM3 vector number to connect to LAM4 vector number to connect to LAM5 vector number to connect to LAM6 vector number to connect to LAM7 vector number to connect to LAM8 vector number to connect to LAM9 vector number to connect to LAM10 vector number to connect to LAM11 vector number to connect to LAM12 vector number to connect to LAM13 vector number to connect to LAM14 vector number to connect to LAM15 vector number to connect to LAM16 vector number to connect to LAM17 vector number to connect to LAM18 vector number to connect to LAM19 vector number to connect to LAM20 vector number to connect to LAM21 vector number to connect to LAM22 vector number to connect to LAM23

R

100 SMACC programming user's manual.Interface to NODAL
The CERN standard programming convention must be used each time it is possible.The NODAL for the MC68000 was designed and written before the definition of the CERN programming convention for the MC68000 and does not use this standard.Four new NODAL function types have been added to handle the STANDARD call interface with NODAL:- Type 28 : standard call- type 29 : call with return DO = returned integer value.- type 30 : call with implicit returned real parameter- type 31 : call with implicit returned string parameter
A variable or function can only be found by NODAL only if a NODAL header with the following structure does exists:DC.W 10 * length (=10 words for function)DC.W 28 * function type =28, 29, 30 or 31DC.B 'name' * name (6 char padded with nulls)DC.L $xxxxxxxx * parameters descriptionJMP.L yyyy * JMP to entry point

Parameter descriptors are eigth 4-BIT fields, rigth justified Parameter types are given by field values, ZERO terminating1 = (RV) address of a 48 bits read-only real value2 = (IV) address of a 32 bits read-only integer value3 = (SV) address of a string value, (can take concatenation) 4 = (NR) address of a NODAL header5 = (RR) address of a real6 = (IR) address of a read-write 32 bits integer7 = (RA) starting address of a 48 bits real array8 = (IA) starting address of a 16 bits integer array9 = (NM) address of a 3 words NODAL name10= (LA) starting address of a 32 bits integer arrayThe normal way of parameter passing is always a "call by reference" either for P+, either for NODAL.A string consists of a string header and a buffer to contain the the information representing the string. The format of the string header is as follows : HEADER DC.LDC.WDC.WDC.W
start address of the buffer holding the string current read pointer, relative to startaddress current write pointer, relative to startaddress length of buffer allocated to hold string

l

$

SMACC programming user's manual. 101

APPENDIX G

Example of writing a NODAL compatible routine

102 SMACC programming user's manual.

SMACC programming user's manual.Example of writing a NODAL compatible routine 103
We try to write an assembly routine callable from NODAL by:SET a=DEM0(p1,p2,p3)doing the following work:SET k=p1*2 all comuptation done on 32bits integer valuesSET p3=K+p2SET VALUE=k result=k

This function get 3 parameters 32 bits integer p1,p2 and p3.- p1 and p2 are read-only values while p3 is a read/write parameter.- a 32 bits integer value is returned.A standard CERN calling sequence can be used.The program looks at follow:IDENT demo * identification of resulting binaryTTL 'Example of NODAL function'SYSTEXT * define macros for CERN standard calling *** Integer function DEMO(p1,p2,p3) NODAL header * NODAL.HEADERsection rdc.w 10 * header length = 10 wordsdc.w 29 * function type = 29dc.w 'DE','MO',0 * function namedc.l $00000622 * p3 = RW integer, p1 and p2 = R0 integerjmp.l DEMO * jump to the effective entry point * **Program part: * PROGRAM section r * ** declare parameter names and volumes : *S_param p1,4,p2,p4,p3,4 * ** declare local variables : *S___local k,4 * ** entry point declaration and stack reservationfor local variables: *S___enter DEMO * * parameters and local variable access is donethrough A6 *movea.l p1(a6),a0 * read p1 valuemove.l (a0),d0asl.l #1,dO * compute p1*2move.l d0,k(a6) * save result in k local variablemovea.l p2(a6),aO * compute k+p2add.l (a0),d0movea.1 move.1move.1S.return end

p3(a6),a1 * store result in p3dO,(a1)k(a6),d0 * restore k value in DO for return* standard exit of the reoutine

o

2

y

20

104 SMACC programming user's manual.

SMACC programming user's manual. 105

A P P E N D I X__ H

Example of testing an ISR from NODAL

SMACC programming user's manual.106

107SMACC programming user's manual.
Example of testing an ISR from NODAL

The following example can be followed to write and test an ISR:
The Assembly program looks as follow:
NODAL_HEADER SECTION R

dc.w 10,29,'V_','FP','11',0,0
jmp.l get_V_fpi1

PROGRAM SECTION R
S_ENTER get_V_fpi1
extern _V_FPI1
MOVEQ #_V_FPI1,D0
S_RETURN

* this integer nodal function returns
* the value of the FPH vector number

NODAL_HEADER SECTION R
dc.w
jmp.l

10,29,'I_' ,’FP','11',0,0
get_I_fpi1

* this integer nodal function returns
* the value of the ISR entry point

PROGRAM SECTION R
S_ENTER get_I_fpi1
MOVE.1 tfISR_FPI1,D0
S_RETURN

PROGRAM
ISR_FPI1

SECTION R
entry ISR_FPH
equ *

* at input only A0=vector number
* and A1=parameter of CISR
* are valid

MOVEQ #x,D0
TRAP #1

* choise the ISR exit mode
* exit from ISR

1

0

SMACC programming user's manual.
Example of testing an ISR from NODAL

108

We can now test this ISR, starting it from interactive NODAL:
Attach interactive NODAL (NODI) to the global segment where ISR is located:
1.20 SET AD=O ;% init return physical address
1.21 GATTACH-A-SEGMENT,,,[[2000,,'PROG',,,AD

Allocate an ASQ to NODAL to be able to receive bus error return message
and also end of ISR messages code 2.
1.30 GALLOCATE-ASYNCHRONOUS-SERVICE-QUEUE,,,1,24,5*24,0

Connect Interrupt service routine :
1.40 SET arg.=xxxx 0⅞ input parameter for the ISR
1.41 GCONFIGURE-INTERRUPT-SERVICE-ROUTINE,,,0,V_FPI1,I_FPI1,arg.

You can now read an event - if any - with the following NODAL code:
10.10 DIM-LONG EVT.AR(10)
10.11 SET EVT.AR(0)=0
10.12 GREAD-EVENT EVT.AR
10.13 IF EVT.AR(0)=0; TYPE 'No event recived';RETURN
10.20 ... event treatement
10.99 GO 10.11 ;% try to Ioop on the ASQ if another message did arrive

You can also wait for such event or for a time-out with the command:
2.10 SET T0=n*1000 ∙,o'∙ define time-out = n seconds
2.11 GDELAY-AND-WAIT TO
2.12 D010 ;% try to read and treat the message
2.13 GO 2.11 ;% Ioop to wait for next message

SMACC programming user's manual. 109

A P P E N D I X I

STANDARD EVENTS STRUCTURE

110 SMACC programming user's manual.

SMACC programming user's manual.
STANDARD EVENTS STRUCTURE

111

This Appendix shows the detailled format of RMS68K defined event messages
wich a task can receive in its ASQ. One of the event messages (code $03)
originates in a user task. In this latter case, RMS68K adds some fields to
the event so that the format is different for the sender and the receiver.

Return from ISR Event (code $02) This event is returned to a task when
one of its ISR's has encountered an exception (bus error,...)

0
2
6

$0A $02
$FF $FF $F0 code
PC at time of exception

code $10 : bus error
$11 : address error
$12 : illegal instruction
$13 : zero divide
$14 : CHK instruction
$15 : TRAPV instruction
$16 : privilege violation
$17 : unimplemented instruction (1010 code)
$18 : unimplemented instruction (1111 code)

User task created event (code $03) This message originates in a user
task and is sent to a user task. The text of the message can be any
format which has been agreed upon by sending and receiving tasks.
Event sent:

0
2

length $03
message text (length-2 bytes)

Event received:
length $03
sending task.name
sending task,session
message text (Iength-Wbytes)

0
2
6

10

Time-out event (code $04) This event originates in RMS68K when a task
is to receive an event as the result of the previously issued RQSTPA directive.

If no request ID was supplied, the message
is restricted to 10 bytes.
length=$OA or $10

The activation count is incremented by 1
each time an event is queued.

length $04
current system date
current system time
activationrequest ID

(usually the DCB address)
Count

0
2
6

10
14
18

SMACC programming user's manual.
STANDARD EVENTS STRUCTURE

Sub-task termination event (code $05) This event is sent to the sub­
task's monitor when a task terminates.

112

0 $18 05
Task Name and session of sub-task

Action initiating Task Name & session

2

10

18
20
22

Term code $00
Abort code

User Abort code

Termination code = 1 (Normal) or 2 (abnormal)
Lower 2 bytes of AO on ABORT or TERMT

or RMS68K abort code ($80xx)
Upper 2 bytes of register DO on ABORT or TERMT
($0000 if RMS68K aborts the task)

Server task request Event (code $07) When a task request the service
of a server task through the use of a trap instruction, this event is
sent to the server task:

0 $18 $07
priortrap

requesting task's name
requesting task's session

(see CRTCB procedure)user gen. ID
requesting task's DO
requesting task's AO
PBST PBSZ

2
4
8

12
14
18
22

PBST

PBSZ

parameter block status (0=total moved,
1=partially moved, 2=bad parameter block
3=no parameter block requested).
parameter block size in bytes for the
block which follow.

Exception monitor event (code $08) This event is sent to the exception
monitor task when a task is attached or detached from it, or when a
task is halted.

Type

code

$01 : attach
$02 : detach$03 : exception event (see code)
$00 to $0F : trap #n
$10 to $18 : idem as for event code $02
$1B : maximum count reached
$1C : traced 1 instruction
$1D : value change occured
$1E : value equal occured

$0C $08
target task's name
target task's session

code type

0
2
6

10

SMACC programming user's manual. 113

A P P E N D I X J

RMS68K usefull internal tables

114 SMACC programming user's manual.

SMACC programming user's manual.
RMS68K usefull internal tables

115

The following appendix describe the structure of some internal tables of
RMS68K useful for debug:
- Task Control Block
- Asynchronous Service Queue
- User Semaphore table
- Periodic activation table.

1) TCB : Task control block The TCB is used to control the execution of
the relevant task

! T C B Next TCB addr
Next ready TCB addrNext TCB of the group

$00
$08
$10 Task Name Task session

Monitor task name and session$18
$20
$28
$30
$36
$3A
$40
$48
$50
$58
$60
$68
$70 User number SSP UTRP

unused
task's entry pointunused

addr of delay in PAT UPDO ISRS
unused

trap vector pointer
unusedtask's ASQ pointer

Exception vector ptr

CPRI current priority
LPRI limit priority
RPRI priority to enter

task in ready Iist
IOCNT count of pending 1/0

see RSTATE primitive for state
see TSKATTR primitive for attributes

UPDO upper 1/2 of DO
on trap 1's

ISRS ISR error code
for wakeup

Semaphore wait Iink CPRI LPRI RPRI IOCNT
stateattributes abort code currenï

task's TST semaphore
task's TST pointer

task'a ASQ semaphore

SSP exec stack depth
UTRP user trap number set when trap occurs

$74 registers D0..A6 to be retored when the task will be dispatched
$B0 Termination task name and session
$B8 BERR info placed on stack by bus or address error$FA user's SR
$FC user's PC

$100 registers DO..D7,AO..A7 save
$140 Exception monitor parameters
$160 Begin of TST (task's segments table)

SMACC programming user's manual.
RMS68K usefull internal tables

116

2) Asynchronous event queue

$00
$06
$0E
$16
$1E
$26 EVCNT EVCNT number of events currently in queue

! A S Q ASQ status
ASR entry address reserved
USP when enter ASR current service addr
queue begin addr queue end addr
Get pointer Put pointer

ASQ status:
1 5 1 1 1 0 9 8

unused Max event length
* ASQ enabled
* message receipt enabled
* ASR enabled
*♦ do not save registers
≠ qevent routine called by non-interrupt routine

3) Periodic activation table
Header :
$00 ! P A T 1st free entry
$08 1st in task Iist 1st in exec Iist
$10 table length
PAT entry definition:
$00 Ptr to next entry TCB addr of task
$08 Time of next activ activ interval
$10 ASR address options see RQSTPA options
$16 activ request ID count IT level IT level only for RMS

SMACC programming user's manual.
RMS68K usefull internal tables 117

4) User semaphore table
Header :
$00
$08
$10

! U S T next table Iink
NSEG NPAGE MENT CENT
1rst entry addr

NSEG number of segments in table
NPAGE number of pages - this segment
MENT max number of entries
CENT current number of entries

UST entry definition:
$00
$08
$10

—
originator's task i
—
iame and session

i semaphor^ name UCNT xcnt type
semaphore or ptr 1:o sem.

UCNT
XCNT
TYPE

users of semaphore or
-1 if pointer entry

semaphore count
semaphore type (1,2 or 3)

118 SMACC programming user's manual.

SMACC programming user's manual. 119

A P P E N D I X K

RMS68K SYSGEN PARAMETERS

120 SMACC programming user's manual.

SMACC programming user's manual.
RMS68K SYSGEN PARAMETERS

121

The system initializer task contains a data area, which receives SYSGEN
parameters.

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 G 5 4 3 2 1 0

ASN = 4 : Number of address spaces
GST = 1 : Global segment table length (14 entries/page)
UST = 4 : User semaphore table length (11 entries/page)
UDR = 1 : User directive table length (25 entries/page)
PAT = 2 : Periodic activation table length (8 entries/page)
IOV = 6 : I/O vector table length (12 entries/page)
TRACE = 16 : Trace table length (20 entries/page)
TRCFLAG =$0040 : System trace flag <i> .

→ trace SYSFAIL interrupt.
→ trace simulated interrupts
→ trace return from LOADMMU
→ trace user claimed interrupts
→ trace dispatches
→ trace exceptions
→ trace user traps #2-#15
→ trace timer interrupts
→ trace interrupts
→ trace TRAP #1

TIMINTV =100 the time interval (in milliseconds) between timer
interrupts <ii> .

TIMSLIC = 2 : The number of timer interrupts allowed before a task is
forced to relinquish the processor.

BUGTRAC = 0 : The address of the trace routine in the firmware debugger.
TCBLST = 0 : maximum number of TCB
TCBRDY = 0 : maximum number of TCB in the "ready" state.

The memory Partitionning is the following :
- type = RAM addresses : $00000-$07000 clear addresses : $01000-$07000
- type = RAM addresses : $O7OOO-$5OOOO clear addresses : $XXXXX-$50000

<i>
<ii> The user must be able to change this value.

This value should be 10 or 20ms.

B

SMACC programming user's manual.
RMS68K SYSGEN PARAMETERS

122

- type = RAM addresses : $80000-$C0000 clear addresses : none

SMACC programming user’s manual. 123

A P P E N D I X L

REFERENCES

124 SMACC programming user's manual.

SMACC programming user's manual.
REFERENCES

125

1) MC68000 16-Bit Microprocessor User's Manual
3rd Editionl MC68OOOUM(AD3), Motorola Inc, 1982.

2) M68OOO 16/32 bit microprocessor Programmer's reference manual.
(MOTOROLA).
This manual describes the general hardware and software environnement
due to the fact the central processor is a MC68000 microprocessor.

3) User's Manual of the SMACC - A MC68000 Based Autonomous Crate
Controller.
W.Heinze. (CERN/PS/CO/Note 84-24 - 22.1.1985).
This note is a complete description of the hardware of the SMACC and
serves as basic document for maintenance as well for systems and
applications programmers.

4) M68OOO Family : Real-time Multi-tasking Software User's Manual.
(MOTOROLA M68KRMS69K/D8)

5) P-plus version B Reference Manual and MC68000 implementation...

6) DG2 interim report.
(CERN/DD/KIK-X/R1).

7) Prototype Implementation of Datagram service.
B.Carpenter. (CERN/DD/KIK-X/W10)

8) MC68000 Cross Software.
K.Osen. (CERN/PS/C0/Note-84-09 - 12.12.1984).

9) Software support for Motorola 68000 microprocessor at CERN - M68MIL
Cross Macro Assembler.
H. von Eicken (CERN 83-12)
[also available through WYLBUR by by typing HELP WRITEUP M68MIL]

10) MC68000 Cross Macro Assembler Reference Manual
3rd Edition, M68KXASM(D3), Motorola Inc, 1979.

11) A simple SYSGEN facility for RMS68K.
T.Sharning. (CERN/PRIAM - RMS68K/M1 - 04.07.1984).

12) CUFOM The CERN universal format for object modules.
J-Montuelle. (CERN/DD/US/84 - 16.02.1982).

13) The P+ Cluster Layout in MC68000.
K.Osen. (CERN/PS/CO/WP-84-O43 - 25.06.1984).

SMACC programming user's manual.
REFERENCES

126

14) The CUFOM PROCESSORS User's Manual.
J.Montuelle. (CERN/DD/US/83 - 16.02.1982).

15) MoniCa, A Symbolic Debugging Monitor for the M68OOO
H. von Eicken (CERN/DD/???).

16) Super ACC protocol using serial CAMAC.
(CERN/PS/CO/WP-82-3O - 17.05.1985).

17) Auxiliary Controllers and their role in the PS Control System.
P.N.Clout. (CERN/PS/CO/Note-82-11 - 15.04.1982).

18) Implantation via NODAL d'un interpreteur de commandes systemes oriente
RMS.
G-Cuisinier. (CERN/PS/CO/NOTE-85-??? - 16.07.1985).

19) Logging des erreurs fatales.
G.Cuisinier. (CERN/PS/CO/WP 85-??? 15.03.1985).

20) RMS68K dans Ie SMACC : Taches en temps reel critique.
G.Cuisinier. (CERN/PS/CO/WP-85-O31 - 11.04.1985)

21) Mesures a l'oscilloscope des temps de traitement du mecanisme ISR
sous RMS.
G-Cuisinier. (CERN/PS/CO/WP-85-O42 - 14.05.1985)

22) Service datagrammes : design du protocol de bas niveau.
G-Cuisinier. (CERN/PS/CO/WP-85-O47 - 20.05.1985).

23) MTT15 EXORMACs OPERATING SYSTEMS COURSE.
(MOTOROLA - 05.1984).

24) MacIntrotte.
F.di Maio. (CERN/PS/CO/Note 85-01 - 26.02.1985)
This note describes the use of the MacNodal system on the Macintosh
computer for test or control of CAMAC equipments in the stand-alone
mode.

SMACC programming user's manual. 127

A P P E N D I X M

GLOSSARY

128 SMACC programming user's manual.

129SMACC programming user's manual.
GLOSSARY

ACC :auxiliary crate controler.
An -.Address register number n. There are eight address

registers: AO,A1,A2,A3,A4,A5,A6,A7. Each register has 32
bits.

A7 :This address register is referred to as the system stack
pointer, SP. The following instructions has implicit
references to A7: JSR, BSR, RTS, LINK and UNLK. There are
two versions of A7. One version is visible while the
processor is in the user state, and the other is visible
when the processor is in the supervisor state. Events which
change the execution state of the processor therefore also
appearently change the contents of A7. Such events include
the TRAP and RTE instructions.

Assembly :This is a symbolic program specification from which the
generated bit pattern is 100⅞ predictable (a one to one
correspondence).

Asynchronous
service queue

(ASQ) :A FIFO used for management of event messages between RMS68K
and a task. The ASQ can be used by a task to treat events
synchronously or asynchronously.

Asynchronous
service routine

(ASR) :A part of a task's program
processes event messages in the
in a software interrupt mode.

code which asynchronously
task's ASQ. The ASR operates

Autovector :MC68OOO family microprocessor interrupt caused exception
vector. There are seven autovectors, corresponding to seven
levels of interrupt priority.

Call by reference
:This is a parameter passing method which copies the address
of the actual parameter into the parameter list. Call by
reference must be used if the called routine shall write
into the actual parameter. It is also convenient to use call
by reference on read only variables if they are very large.

CUF :File type of CUFOM files in SINTRAN.

CUFOM :CERN Universal Format for Object Modules.

Dn :Data register n. There are eight data registers:
DO,D1,D2,D3,D4,D5,D6,D7. Each register has 32 bits.

SMACC programming user's manual.
GLOSSARY130

Dynamic Iink :The dynamic Iink of the current stack frame points to the
dynamic Iink in the stack frame belonging to the invocation
of the routine which called the currently executing routine.
The dynamic Iink is the data equivalent to the return
address.

Exception monitor
task :A task which can monitor one or more other tasks and be

notified by any excption which occur whitin those tasks.

Exception vector :A memory location from which the MC68000 family fetches
address of a routine which is to handle an exception.

the

Executive
directive :A request by a task for services of monitor.

Global variables :These variables are situated on a memory segment by
themselves. They are not placed in the working area. The
global variables must not be confused with the local
variables in the global stack frame.

Interrupt Service
Routine (ISR) :A part of a task's program code which handles interrupts.

The ISR operates in an asynchronous mode with the task.

Local variables :These variables are allocated inside a stack frame in the
working area.

MC68000 :This is a 16 bit microprocessor standardised at CERN. The
MPU has 16 multipurpose registers each 32 bits wide. The
address bus has 24 bits, allowing the access of 16777216
bytes.

Monitor task :A task which receives automatic notification upon the
termination of one or more other tasks, called sub-tasks of
the monitor task.

MSB :Most significant bit.
operand size.

The bit number of MSB depends on the

MSC :File type of Motorola S-code files in SINTRAN.

M68MIL Assembler :A DD/CERN assembler for MC68000 which generates CUFOM
output.

131SMACC programming user's manual.
GLOSSARY

Multitasking :An operation mode where more than one functionally bound
task is beeing precessed concurrently.

PC :Program counter. This special register has 32 bits. During
the execution of an instruction, PC points to the next
instruction.

Procedure :A routine without a function value.

Process :Code which can be executed by a task.

Rn :Register number n. This notation is used when any address or
data register can be used.

Routine :A routine is a common term for procedure and function.

Segment :A block of memory which can be used for data, program code,
or an ASQ. Every task can consist up to four segments.
Segments may be shared by more than one task.

Semaphore ∙.A unit representing a count of signals wich is used for
Synvhronizing task activity or controlling the use of
ressources.

Server task :A task which operates much Iike an extension of RMS68K, and
which can provide a service to any task in the system upon
request.

Session :A group of related tasks, identified by a session number.

SP :System stack pointer. This another name for address register
A7, both in user and supervisor state.

SSP -.Supervisor stack pointer. This is another name for A7 while
the computer is in the supervisor state.

Static level

Static vector

In a nested block-structured language such as Pascal, the
level of nesting of a routine in the source file. For
practical reasons, the outermost level is 2, so a doubly-
nested routine is at level 4. Static levels 3 to 31 are
valid (numbering is from 1, 2 is not necessary).

Pointer to the currently relevant stack frame for a certain
static level. 29 such pointers are stored in the global
area; when a routine on static level N is entered, it saves
the previous static vector N and replaces it with A6.

SMACC programming user's manual.
GLOSSARY

132

Variables which are neither global nor local are accessed
via the static vectors.

Supervisor
hardware state :A privileged state of MC68000 family microprocessor

execution. This state is used by the operating system, and
allows use of the privileged instructions. All exception
handling takes place in the supervisor state.

System task :A task which operates in the user hardware state of the
MC68000 family microprocessor, but is protected from user
tasks.

Task :A functionnaly bound group of one or more modules which can
operate concurrently whith other tasks.

Task Name :A means of identifying a particular task within a session :
in the PS use of RMS68K, a task name is a 4 characters name.

Task Priority :A relative level of importance given to a task. Task which
are more urgent are assigned higher priorities.

Trap vector :A particlar type of MC68OO family microprocessor exception
vector, corresponding to MC68000 TRAP instructions.

User hardware
state :Normal programs execute in the user state of the MPU. This

state forbids use of the privileged instructions.

User task : A task which operates in the user harware state of the
MC68000 family microprocessor.

user vector : A particular type of the MC68000 family microprocessor
exception vector. They may be assigned by the user.

USP :User stack pointer. This is another name for A7 while the
computer is in the user state.

SMACC programming user's manual. 133Index

Index
ABORT...4-6, 8, 10, 23,38, 45, 46, 64, 65.AKRQST... 20, 74.ASQ..3, 4, 11, 12,14, 17-21, 24, 31, 45, 72, 108, 111, 129, 131.ASR..11-13, 17, 18,24, 72-74, 129.ATSEM...14-16, 71.ATTSEG...9, 10, 67.CISR... 24, 45, 77.cluster...31, 125.CRSEM...14-16, 71.CRTCB... 4-6, 19, 34, 63.CUFLINK... 49, 54.CUFMERG...49.CUFOM... 49, 52, 125,126, 129, 130.datagram... 23, 30, 37, 39,40, 42, 44, 125.DCLSHR...9, 10, 68.DEASQ...12, 72.delay...4, 17, 18, 35,57, 73.DELAYW...4, 17, 18, 73.DELIVERY... 42, 54.DERQST... 20, 74.DESEG...9, 10, 69.DESEM...14, 16, 71.DESEMA...14, 16, 71.DEXMON...21, 77.dormant...4-6, 8-10, 21.DSERVE... 20, 75.event...4, 11-14, 17-21,24, 45, 72-74, 108, 111, 112, 116, 129.existent...4.EXMMSK...21, 75.EXMON...21, 75.EXPVCT... 23, 77.GETBL...41.GTASQ... 12, 45, 72.GTDTIM...17, 73.GTSEG... 9, 30, 66.IMAGE... 41, 49, 50, 52,56, 57.ISR.. 24, 25, 34, 45,56, 77, 95, 105, 107, 108, 111, 126, 130. LAM..45.LDACC...31, 40, 41.

134 SMACC programming user's manual.
Index

M68MIL ...
monitor ...

MOVELL ...
MOVEPL ...
NODAL ...

periodic activation

PPL..
PPLUS ...
PREPUSH ...
PSTATE ...
PUSHER ...
PUTBL ...
QEVNT ...
RCVSA ...
RDEVNT ...
ready ...
RELINQ ...
reset ...
RESUME ...
REXMON ...
RPC..
RQSTPA ...
RSTATE ...
RTEVNT ...
running ...

semaphore ...

SERVER ...

SETASQ ...SETPRI ...
SGSEM ...
SHRSEG ...
SINT...
SNAPTRAC ...
STACC ...
START ...

48-5Ol 125, 130.
2, 19, 21, 22,
34, 46, 51, 56,
63, 64, 75-77,
112, 126, 130.
26, 78.
26, 78.
1, 2, 27, 30,
33-39, 41, 44,
46-48, 51, 56,
58, 59, 79,
81-88, 100, 101,
103, 105, 107,
108, 126.
4, 17, 18, 57,
73, 115, 116,
121.
50.
39, 49, 61,
63-78, 125.
49.
22, 75, 76.
49, 53.
41.
12, 72.
9, 10, 70.
12, 72.
4-7, 16, 34,
121.
5, 7, 64.
30, 32, 33, 51.
4, 5, 7, 18, 65.
22, 77.
43, 44.
17, 18, 73, 111.
22, 76.
13,
3-5, 26, 28, 29,
31, 35, 37, 47,
56, 58-60, 63.
4, 14-16, 41,
57, 71, 81, 115,
117, 121, 131.
12, 19, 20, 23,
44, 74, 75, 112,
131 .
12, 72.
5, 7, 65.
14, 16, 71.
9, 10, 68.
25, 78.
26.
40.
5, 6, 19, 34,
38, 44, 51, 56,
59, 60, 64, 100.

SMACC programming user's manual. 135Index

STDTIM...∏, 73.
sτop...4, 5, 8, 31, 56,58, 64. SUSPND...4, 5f 7f 64.TCB.. 3, 6, 8, 26, 59,76, 115, 121.TERM...4-6, W, 64,131.TERMT...4, 5f 8, 10, 64.TRACC...41.TRPVCT... 23, 77.TRSEG...9, 10, 69.TSK..21, 50.TSKATTR... 26, 75.TSKINFO... 26, 76.wait...4, 5, 7, 16, 18,34, 37, 56, 64.for...4, 12, 16, 17,21, 42, 45, 57, 72, 73, 108.on...14-16, 71.wakeup...4, 5, 7, 18, 24,65. pending..7, 18.WTEVNT...12, 18, 72.WTSEM...14-16, 71.

