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ON THE MEASUREMENT OF Q

G. Shering

This note treats some generalities concerning Q measurement, 
but is primarily an elaboration of MPS∕θO Note 69-17 on ,Q measurement 
using computer frequency analysis’.

One method of measuring Q is to record the beam position at 
a given point in the ring over a number n of sequential turns. The 
position can then be plotted on a piece of graph paper to give a picture 
something like that shown below.
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A sine wave can then be fitted to these points and Q obtained from 
the frequency of this sine wave.

It is shown here that the non-integer part of Q can be ob-
1 tained from these measurements with an accuracy — and a resolution 

y where N can be chosen arbitrarily.

Two sources of error are present: firstly the accuracy of the 
position measurement; secondly the accuracy with which one can fit the 
sine wave to the points. The inaccuracy of the measurement can be con­
sidered as a ’noise’ obscuring the real position measurement so that the 
best we can do is to determine Q from a ’best fit sine wave’.
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The beam position can be obtained either optically from 
photographs of a pick-up signal (e.g. spiralling beam at injection) 
or by computer sampling of a pick-up output. The sine wave fitting 
can be done by eye (procedure used at present for photographs) or 
by some computer algorithm. Here is considered the accuracy which 
can be expected from a limited number n of position measurements.

For the computer method some best fit algorithm must be 
adopted. A common algorithm (very powerful for separating a known 
signal from noise) is that of correlation. Consider the function

C(f) is a measure of the correlation between the
k=0 

position and a
sine wave of frequency f and 'best correlating' phase. If a graph

of C(f) against f is 
drawn a peak may be observed 
and the frequency of this 
peak f gives the non- 
integer part of Q.

The definition of C(f) above suggests a fourier trans­
formation. It is shown in the appendix how the above graph of C(f) 
against f can be approximated to any desired accuracy using current­
ly available fast discrete fourier transform techniques.

The discrete fourier transform is very closely related to 
the continuous fourier transform and for simplicity continuous time 
functions will be used for accuracy studies.

C(f) where
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We suppose the samples were from a continuous perfect
sinusoid of frequency 
fourier transform S(f)

f (below left)
Q
(below right).

which has the continuous

In practice we follow the sinusoid for only a limited time, the 
equivalent of multiplying by the rectangular window (below left) 
of fourier transform (below right).

The resultant spectrum from the product of the two time funςtions 
is the convolution of the two frequency functions giving the actual 
signal and its spectrum as below.

p(k) P(f)

w(k) W(f)

s(k) S(f)
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The modulus of the positive half of this spectrum (above 
right) gives the function C(f) defined above. Thus even if the 
position measurements are samples of a perfect sine wave, the peak 
in C(f) will have a half width of — . In the ideal case we can 
always find the peak,and hence Q, precisely. In the practical 
case with noise and distortion a reasonable measure of the accuracy 

1 might be + — , i.e. 100 turns for f + 0.01. Under good clean 
signal conditions, however, better estimates of the peak position 
can perhaps be made with a consequent reduction of the number of 
turns required.

Notes

1. The above results are fundamental - no amount of ingenuity can 
extract information which is not there.

2. The apparent conflict with the claim (G-. Schneider, MPS∕sr∕ 
69- 1θ) that Q can be measured accurately in one betatron 
period, i.e.∙ ~ 4 turns, can be resolved as follows; in 
Schneider’s method the measurement is made ¿j,t the output of 
a tuιir'd filter. The impulse response h(t) of this filter 
is a damped sinusoid. The output of the tuned filter is the

.∕jfτ) convolution of the
∖ a input p(t) and the I ∕ ∖ ∕ ∖ ∕λ ∕*∖,_ i_____________ impulse response

∞
i.e. θ(t) = y h(s) p(-t “ s) <3-s

o

If this impulse response is considered zero after time τ we have 
τ

θ(t) = J h(s) p(t - s) ds 

o
O

= Í h(-u) p(u + t) du

sponse
e

e
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which is the correlation between the input over the preceding 
time 7; and the time inverted impulse response. Thus with the 
filter method correlation with something like a sinusoid is in­
volved, as in the computer method; and a finite measuring time, 
determined by the bandwidth of the tuned filter, is taken.

5∙ Is there anything to be gained by following the beam round the 
machine? In this case the peak in C(f) would be at Qx 
rotation frequency but its width would stì.11 be determined by 
the length of record. Thus for f = 6.25 + 0.01 requires the Q
same length of record as for f = 0.25 + 0.01. The sampling Q
acts as a sort of perfect mixing which decreases the percentage 
resolution required.
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APPENDIX

The required function is

For digital calculation the function C(f) must be sampled, say at
intervals f over the range f = 0 “ 2 ∙ We can then write

C r = C(rf0) r = 0, 1 ... n/2

⅞ = 1
N

By making N large we can have f0 small to give good resolution
of C(f). This gives

C r
= √^ar2 + br2 r = 0,1 ... N/2

n-1
a r = p^ cos (2π kr∕N)

k=0
n-1

br = p^. sin (2π kr∕N)

k=0

If now we define p = 0 n-1 < k ≤ N-1 we have

C r = IA I r = 0.1 ..o N/21 r,
N-1

where Ar = p^. exp(-2τrrk∕N)

k=0

A is the discrete fourier transform of the real series p, made up r -K
of n samples of position and N - n zeros.

withC(f)

a(f) b(f)




