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This note provides closed form expressions (in the thin lens approximation) for
the quadrupole strengths required to tune the R,, parameter of the isochronous
module based on three identical dipoles (2) and lists the eight sets of possible
ranges for the three lengths of the drift spaces separating the mangetic
components. Thus it permits the design of an insertion satisfying precise
geometric constraints as in the future CLIC test facility CTF3 and which is able
to compress or stretch longitudinally the beam according to the settings of the
quadrupoles. An application to a CTF3 transfer line is also shown.
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1 Introduction

Among the many parameters which are essential in the CLIC study, the length
of the bunch is very critical. It should be 30 um inside the main linac and
carefully controlled in the bends of the injector complex. The isochronous rings
and transfer lines of the RF power source also require that the bunch length of
the drive beam be modified, either by stretching, in order to limit the coherent
synchrotron radiation effects, or by compression, in order to optimise the power
transfer to the main beam. In the first order approximation the bunch length is
proportional to the Rs¢ parameter which is defined by the following integral :
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where D is the horizontal dispersion, p(s) the radius of curvature, and sy,s2
are the longitudinal coordinates of the beginning and end of the beamline con-
sidered. The Rs¢ parameter is positive if high momentum particles of the bunch
travel longer paths. Of course the values of the Rsg parameter of the various
insertions can be fixed at the design stage, but the operation of both the accel-
erator and the decelerator are much easier if some flexibility is given to modify
it in a given range. This flexibility becomes a feature in a test facility such as
CTF3 [1], whose purpose is to validate most of the RF Power Source design
and at the same time to study the behaviour of coherent synchrotron radiation
for which the theory and the simulations remain to be confronted with experi-
mental data. Thus a study was started to find an ensemble of several magnetic
components (dipoles and quadrupoles) called an “insertion”, which would be
able to generate both a negative or a positive Rs¢ parameter by only modify-
ing the strength of the quadrupoles. Quite naturally the isochronous insertion
developed five years ago [2] was chosen as a promising candidate. It turned out
that it was possible to obtain the expression for the absolute values of the focal
lengths as a function of the Rsg parameter in the thin lens approximation. This
will be shown in the next section. It demanded much more algebra to derive
the conditions on the minimum and maximum values of the Rs¢ parameter and
on the lengths of the drift spaces, such that the absolute values of the focal
lengths remain positive. Actually eight different sets of conditions can be found
to cover all the physically valid configurations. They are derived in appendix
A. Tt is impossible to decide analytically which one is best to optimise a given
design. This depends upon the geometry and the constraints imposed on the
Twiss parameters at the entrance and exit of the insertion. A simple interactive
Excel program guides the user towards the best choice. The last section shows
an application to the transfer line between the Delay Loop and the Isochronous
Ring of CTF3.



2 Quasi-isochronous module based on three iden-
tical dipoles ( Rz # 0 )

Let us consider a module consisting of three bending magnets geometrically
and magnetically symmetric around the median plane of the second magnet.
To simplify the algebra, these magnets are treated as sector magnets of the
same length l,, but of different deflection angles ¢; and ¢ for the first and
second dipole respectively. The space between the first two magnets is filled by
a space drift of length L, by a focalising quadrupole of length [, and normalised
gradient k;, by a second space drift of length L, by a defocalising quadrupole
of length [, and normalised gradient k; and finally by a third space drift of
length L3. On the assumption that the quadrupoles are perfectly centered,
the parameter Rsg is given by (1). Assuming also that the dispersion and its
derivative are zero at the entrance of the first dipole, the contributions of the
first dipole and of half the second dipole to this integral are, respectively [2] :

p1 (41 —singr)
Djsin (¢2/2) — paDj [cos (¢2/2) — 1] + p2 [$2/2 — sin (¢2/2)]
where p; and py are the curvature radii of the first and of the second dipole

respectively and D; and D) are the dispersion and its derivative at the entrance
of the second dipole. Thus the following equation is obtained :

R256 = p1(¢1 —sing1) + Djsin (¢2/2) —
pa D [cos ($2/2) — 1] + p2 [$2/2 —sin (¢2/2)]  (2)

In order to obtain a nondispersive module, the derivative of the dispersion at
the point of symmetry should be zero providing a second equation :
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p D; + D;- cos (¢2/2) +sin (¢2/2) =0 (3)

From these two equations it is easy to obtain :
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The first expression can be written more compactly
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It is possible to obtain in the same way as in reference [2] the expressions of the
lengths of the first two drift spaces as functions of k;,ke and of Ls :
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Cy = cos (lq \/E) S; = sin (lq\/a) (10)
Cy = cosh (lq \/la> Sy = sinh (lq \/k_Q) (11)

The lengths Ly and Ly depend on the parameter Rsg through the quantities D,
and Dj. The aim of the study is to achieve Rsg tuning that is to be able to vary
this parameter between a minimum value (negative) Rsg min and a maximum
value (positive) Rsg maz Without of course displacing the quadrupoles. Thus L,
and Lo are fixed and the normalized strengths k; and kg should be expressed
as functions of Rsg which implies to invert the system of the two equations
(7). Unfortunately these are trascendental equations and no close form may be
obtained for k; and ke. However it can be shown that this is possible in the
thin lens approximation that is for such a small /; that the assumptions :

Ci=Cy=1
Sy =l,Vkr
Sy =l,v/ka

hold to a very good accuracy. Then the absolute values of the focal lengths
f1 = lgk1 and fo = ljka replace q; and gp respectively and the system (7)

becomes :
D
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which can also be expanded in the form :

a+1 D; Li+1
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a+ i ; ;
, fife + (La——'i> fi— <L3—D—Z+L2> fa—Le (La—-D—Z_) =0
Substracting the two equations, fo can be obtained :
D;
aLg L3 - ﬁ
f2= 1 I (14)
L1+l—a<L2+L3——f)
Dj
Replacing this value in the first equation, fi is given by :
Ly (Ly+1
fl _ 2( 1 ) 5 (15)
Ly+Li+l-a (Lg— —f)
Dj
. . ) D;
By using the expressions (4),(5) and (9) the quantity agr becomes :
J
D; 1
aD—3 = e [ cot (¢2/2) + pa2] (16)

Using this expression and the definition of a, the absolute values of the focal
lengths can be written in the following compact form :

_ p2La (L1 +1)sing
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where :
Eg = L3 — p2 cot, (¢)2/2) (18)

In order to design a Rse tunable module it is necessary to find the intervals
of L1, Ly, L3 such that f; and f, remain positive when Rsg varies in the interval
RSG,mi'n < R56 < R56,maz with R56,min <0 and RSG,maz > 0.

Let Zynin and Tmae be defined by :

Rs6.min 3  sin
i = 18 _zm<__il><o
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The valid ranges of the lengths L, Lo and L3 can be determined by eight sets of
conditions. The algebra to obtain them is tedious and can be found in appendix
A. Hereafter are summarised the results :

First set
51 t 2 3
sin ¢ | fan ($2/2) <3
5} ) 2
Tmazr < —pP2 tan (¢2/2)
03
Ls < + p2 cot (¢2/2)
dps sin
—L3 — pi - ¢1<L2<~£3
man (L2 + L
L1 < —d— I—‘———( _2 3)
p2sing;

Second set
i t 2 3
sin ¢, N an (¢2/ )< 3

#1 ) 2
Tinar < —P2 tan (¢2/2)
P}
L3 < + pa cot (¢2/2)
mazxr
Lg > —£,3
ma L + [:
Ll < —d— T z( .2 3)
p2 sin ¢1
Third set

Tmaz < P2 sin ¢1
2
P2 4 pycot (62/2) < Ls < pacot (¢2/2)

min

L2 < —LS
mazxr L +£
L1 > —d— ———‘I ( .2 3)
P2 sin ¢

Fourth set

Tmaz > P2 8i0 é1
2
! + pacot (¢2/2) < Lg < pacot ($2/2)

mn

Tmaz — Tmin

Ly < —L3—F——
p2 sin ¢l — Tmin
Tmazx
Ly>-d— Ly~ L3——F
p2sin @y



fifth set

Tmaz < P2 sin ¢1
2

P2
— + p2 cot (¢2/2) < L3 < p2 cot (¢2/2)

min

L2 > —E3
Ly > —d — (Lg + L3) —in
! 2T pysin gy
sixth set
Tmazx > P2 sin (,‘151
p3

+ pa cot (¢2/2) < L3 < pgcot (¢2/2)

min
Tmaz — Tmin

Ly>-L3—i—r
p28in 1 — Trmin

Tmin
Ly >—-d—(Le+ L3) ————
' (L2 3)P2SIH¢1

seventh set
Tynar < 0
L3 > pacot (¢2/2)
(L2 + L3) Zmin

Ly >—-d- -
' pz sin 1
eigth set
Tmaz > 0
03
p2 cot ((}52/2) < L3 < + pg cot (¢2/2)
mazx
Lo+ L3)zx i
L1>—d—(2 ‘3) min
p2sin ¢



3 Application to a CTF3 transfer line

The CTF3 transfer line between the Delay Loop and the Combiner Ring should
be able to increase or decrease the bunch length by 1.6 mm. Given the Ap/p
of the order of 1 %, the range of Rs¢ is between -0.16 m and 0.16 m. To
accomodate this transfer line in a ’S’ shape inside the available space, it is
made of two insertions, one bending the beam by 75° and the other bending it
back by —75°. The analytical approach has permitted an identification of the
ranges of possible solutions without using numerical searches which are very
unstable in this specific problem. Thus the insertion could be optimised to find
a compromise between the overall length imposed by the building dimensions,
and the optics (Twiss parameters). The most useful set of conditions in the
design of this CTF3 transfer line has been the third. The three dipoles of the
selected insertion have the same length (0.4 m) and generate the same beam
deflection (25°). The drift lengths are L; = 1.2 m, Ly = 0.6 m and L3 = 1.55
m. All the quadrupoles have the same length of 0.2 m.

The Figures 1, 2 and 3 show the optical functions of the full insertion when
the Rsg parameter of half one single insertion is -0.04 m, 0 m, 0.04 m respectively.
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Figure 1: Optical functions for Rsg = —0.04 m.
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Figure 3: Optical functions for Rsg = 0.04 m.



For a beam energy of 400 MeV, the gradients of the first and second quadrupoles
vary between 12.04 T/m and 7.81 T//m, and between 12.13 T/m and 1.29 T/m
respectively. They are shown in Figure 4.
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Figure 4: Quadrupole gradients at 400 MeV

4 Concluding remarks

The method described above is a very powerful tool to design a transfer line
which is able either to compress or stretch longitudinally the beam in a given
range. The drift lengths can be adjusted to fit a given geometry and optimised
in order to obtain the best Twiss parameters at both ends of the insertion.
Presently this optimisation is done interactively in one of the eight Excel pro-
grams corresponding to each set of conditions. In the future it is intended to
automate the processing to speed it up. The matching triplets have also to be
treated because the changes in Rsg induce changes in the Twiss parameters and
the matching should be modified accordingly, but this does not seem to be a dif-
ficult problem. The experience gathered until now has shown that the passage to
thick lenses can be handled easily by a standard accelerator program like MAD.
Here again the procedure should be automated. Finally it should be stressed
that this method is also very valuable to obtain and control isochronicity and
to avoid marginal configurations.
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A Derivation of the permitted ranges of the lengths
Ly, Ly and Lj

The aim of this appendix is to find all the valid ranges of the lengths L;, L, and
L3 for which the absolute values of the focal lengths f; and f, become positive
in a given range of Rsg.

Let us start from the expressions of f; and fy (17) :

Lo (Ly +1) pasin ¢,

hr= 2Ly — p2 + pa (L1 + Ly + [)sin ¢y
9 (20)
fo=-L i
2Ly +2Ls — p3 + p2 (L1 + ) sin g
or in a more compact form :
L, (Ll + l) P2 sin ¢y
fi=
[:3 (CL‘ — :El)
) (21)
zLy — p3
fo=-Ls 7
( 2+£3)($—$2)
where :
o Li+Ly+d
T1 = —p28in ¢1£—
3
_ i L+ d
Ty = —p2sin g Ts+ La
P2
d=1-
sin ¢

It is shown in Appendix B that d is always negative for a total deflection angle
of the insertion ¢ < 4 rad.

For the sake of simplicity ¢ is assumed to be ¢ < 7 covering most of the prac-
tical insertion designs.

Let us distinguish the two cases zL3 > p2 and zL3 < p3.

In this case the expressions (20) show that f; is always positive and that fo
is positive if the denominator of its expression is negative. This is possible only
if z < 0 implying Tmar < 0. Thus :

2

L3 < P2

'T’VTI,G.I

By definition Lz should be positive, giving :
Tmazr < —p2tan (¢2/2)
But Rs6,maz is also assumed to be positive which implies :

3 sing; B tan (¢g/2)

2 Th P
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Let us now find the conditions which ensure that the denominator of f, is neg-
ative.

If Ly + L3 < 0, x should be larger than z3 implying :

. Li+d
Trmin > —p2 8N ¢1m

which provides an upper bound for Ly :
Tmin (L2 + LS)
p28in ¢;

including the inequality L; < ~d which is required to ensure that z,,;, < 0.
By definition L; should be positive providing a lower bound for L :

L1<—-d—

dps sin
Lo > —Ls— dp2 sin 1
Tmin
Summarising, a first set of conditions is obtained :
First set
sin tan 2 3
1 + ($2/2) <>
) b2 2
Tmax < —p2tan (¢2/2)
o3
L3 < ==+ pacot (¢2/2)

Tmin
Tomin (L2 + ['3)

L1 <—d—
e pasin g1

If Ly + £3 > 0, x should be smaller than xs implying :

. L1 +d
Tmazx < —pP2 SIn ¢1m

which provides an upper bound for L; :

Tmazx (L2 + 63)
p2sin ¢y

Summarising, another set of conditions is obtained :

Li<—-d-

Second set
i t 2 3
sin ¢ N an (¢2/2) <

ol o2 2

Tmazr < —pP2 tan (¢2/2)
P}
L3 < + pa cot (¢2/2)

Lg > —L3
maz (L2 + L
Ly < —d- Tmezll2tLs)

p2sin ¢1
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In this case the expressions for f; and fo are positive if their denominators
are also positive.
Let us compute the difference x5 — z7 :
_ palasing:
L3 (L2 + L3)

Let us treat in turn the three cases depending upon the signs of £3 and Lo + L3.

2 — Iy

(d+L1+L2+53)

First case : L3<0 and Lo+ L3 < 0|

This case implies the following inequalities :

P}

Tmin

< L3<0

T <IT
T < Iy
Let us observe that :
9 < T if Liy<—-d-Ly—L
2 1 ! 1 2 3 (22)
T1 < T2 if L1>—d—L2—£3
Let us study the first inequality. It is evident that L; is positive only if :
Lo<—L3—d
which is included in the inequality Ly < —L£3. Thus Zme: < T2 implying :
Tmazx (L2 + ‘63)
p2sin ¢y

The existence of L; provides the following inequality :

Li>—-d-—

Tmazx (L2 + ‘CB)
pzsing;
and by dividing both terms by the positive quantity — Lo — L3, it gives :

< —L2 -—[:3

Tmaz < p28in ¢y

Thus another set of conditions is obtained :

Third set
Timaz < P2Sin @1
2
P2+ pycot (#2/2) < Ls < pacot (¢2/2)
L2 < —Lg
Tmazx Ly+ L
—d—i—‘—('.g—S)'<L1< —d—Ly— L4
p2sin ¢y
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Let us study the second inequality of (22). Thus T4, < z; implying :

Tmazx

L1 > —d—L2—£3—,—
pzsing;

This lower bound of L is smaller than that given by (22) if Tmaz < p2sin¢;.
Thus two new sets of conditions are obtained :

Fourth set

Tmaz < P25 @y

2
I
2+ pacot (¢2/2) < Ls < pacot (¢2/2)
min
L2 < —ﬁg
L1 > ~d — L2 — 53
Fifth set
Tmaz > P25in @1
2
p
2+ pacot (92/2) < Ls < pz cot (¢2/2)
L2 < —ﬁg
Ly > —d— Ly — L3—22=
p2sing;
Second case : L3 <0 and Lo+ L3>0
This case implies the following inequalities :
2
i < [:3 <0
r <
T > T

Thus z; must be larger than xo which is possible only if :
Ly>-Ly—L3—d (24)
The third inequality of (23) necessitates @, > 2 which ,expanded, gives :
Ly > —d— (Ly + Lg) —2min_ (25)
p2sin ¢

z9 must be negative to comply with the definition of z,,;, implying L; > —d,
which is included in the inequality (25) together with the inequality (24). The
second inequality of (23) necessitates ., < x; which ,expanded, gives :

Irnnz
Li>—-d—Ly— L3———— 26
! 2 3p2 sm ¢1 ( )
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This lower bound of L; is larger than the lower bound provided by (25) if :

T — T
—Ly < Ly < *[/3—"—"".101 = (27)
P2 sIn ¢1 — Tmin
which is possible only if 4z > po sin ¢;. Thus three new sets of conditions are
obtained :

sixth set

Tmaz < P2 sin ¢l

P}

+ pa cot (¢2/2) < L3 < pacot (¢2/2)
L2 > —£3

mn

T
Ll > —d— (Lz%—[g)—#
P2 S1n ¢1 — Tmin
seventh set
Tmaz > P2 SN P1

P}

+ pa cot (¢2/2) < L3 < pacot (¢p2/2)

mn
z — Tmi
L3 < Ly < —/:,3“‘—".10‘:r i
P2 81N d)l — Tmin
i
Li>—d— Ly — L3—222
p2sin ¢

eigth set

Tmaz > P2 sin d)l
2
P2 | pacot(¢2)2) < Ly < pz cot (¢2/2)

min
Tmazx — Tmin
Ly>~-L3————F—
p2sin
Tmin

b e S =

Third case : L3 >0 and Lo+ L3>0

This case implies the following inequalities :

T > Ty (28)
T > T
Let us observe that :
if L —d—-Ly,— L
o < I 1 1 < 2 3 (29)

T < I if Li>—-d—-Ly— L3
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Let us study the first inequality where it is evident that L; is positive only if :
Lo < —d— L3

Then the condition zm;, > 1 must hold implying z; < 0 to comply with the
definition of ;. This is possible only if :

L1 >—d—L2

This inequality contradicts the first inequality of (29) and thus no valid range
exits for L.
Let us study the second inequality of (29). Thus zmi, > zo implying :

(La + L3) Tmin

> —d= p2sin¢;

which includes both L; > —d required because Z.,,;, must be negative and the
second inequality of (29).
The inequality z£3 < p3 generates two cases :

L3>0 for Tmaz <0

or

r3

0<L3< for Trmaz > 0

Imaz

Thus the two last sets of conditions are obtained :

ninth set
Trmaz < 0
L3 > pacot (¢2/2)
(L2 + L3) Trmin

Ly >—-d- -
! p2sin ¢
tenth set
Tmaz > 0
p3
ngOt(¢2/2) < L3< o +p200t(¢2/2)
maxr
Ly > —d— L2t Es)Tmin
p2sin ¢y

Let us observe that the third and the fourth sets of conditions can be com-
bined because they differ only by the fourth inequalities which are complemen-
tary. Similarly the fifth and the seventh sets can be combined because they
differ only by the third inequalities also complementary. Thus the number of
valid sets of conditions is reduced to eight and they are listed below :
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First set
sin t 2 3
6, tan(62/2) 3
é1 $2 2

Tmar < —pP2 tan (¢2/2)

P}

L3 < + pa cot (¢2/2)

Second set
i t 2 3
5Il¢1+ an (¢2/ )<_

o1 b2 2
Tmaez < —p2 tan (¢2/2)
2
P2
Ly < + p2 cot (¢2/2)
L2 > —£3
maz (Lo + L
Ly < —d— u2_2
p2sin ¢y
Third set
Tmaz < P2 sin ¢1
2
p
2+ pacot (¢2/2) < La < pacot (¢2/2)
L2 < —£3
maz (Lo + L
Ly > —d— ?(723)
p2 sin ¢y
Fourth set
Tmaz > p2Sing;
p3

+ pa cot (Ppa/2) < L3 < pacot (p2/2)

min

Tmax — Tmin

Lo< —L3—————
p2 81N d’l — Tmin
Tmax
Ly>—-d—Lo— L3 -
paSin 1
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fifth set

Tmaz < P2SiN ¢y
2

P
2+ pacot (¢2/2) < Ls < pa cot (¢2/2)
mn
L2 > —[,3
L1 > —d — (Lg + L3) —in
1 B _( 2 S)pgsin¢1
sixth set
Tmaz > P2 sin ¢1
3
— + pa cot (¢2/2) < L3 < pa cot (¢2/2)
min
L2 > L4 :Er.naa: — Tmin
P28iN @1 — Tinin
Tmin
L —d— (Lo + L3) ————
1> (2+ 3)p2sin¢l

seventh set
Trmazr < 0
Lg > pacot (¢2/2)
(L2 + L3) Tmin

Ly >—-d- -
. p2sin gy

eigth set

Tmaz > 0

03

pacot (#2/2) < L < ——+ py cot (¢2/2)

(L2 + L3) Trmin

—d—
Li> p2 sin ¢
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B To prove that d is negative for a total deflec-
tion angle of the insertion less than .

The expression of d can be written under the form :

d:[— .pg _ ‘pg lsin¢1_1
sing; sing P2

Thus :

[sin ¢
P2

d<0 if

<1

Recalling the definition of [, this expression becomes :

P
I si -9 sin —
SO _ g P22 90T 2 P P hy | 2
p2 é1 2 #1 2 2 )
2
lsi
An upper bound of sin ¢ is given by :
P2
lsin ¢1 ¢1
-2
s <3 (¢ —2¢1)
. P
sin —
because is always less than 1. The second-order polynomial in ¢; reaches
1
2

a maximum of ¢2/16 for ¢; = ¢/4. Thus
also for ¢ < .

< 1 for ¢ < 4 and of course

[ sin ¢,
P2
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