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Abstract
In the study of a high-energy linear collider like CLIC, there are domains of activities where 
analytical developments are useful guides before doing fully numerical calculations or using 
standard accelerator design programs. The purpose of this report is to illustrate the interest of 
such an approach in designing rarely used magnetic insertions, such as isochronous modules or 
tunable achromats, which are required in several locations of the CLIC complex. Algorithmic 
codes have been written in this context. They give global information or guidance among a 
variety of approximated solutions and they help the user in selecting the most promising one 
before fully numerical calculations and eventually optimisations are carried out to obtain the 
solution consistent with the physical model.
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1 Introduction
The main injector of CLIC has to be connected to the linear collider through transfer lines which have 
to be designed carefully to retain the quality of the beam. In particular, the bunch length growth 
due to the bending loops must be kept to a very low value which means that these lines should be as 
isochronous as possible, while not causing too large an emission of synchrotron radiation. Moreover, 
the driver complex which generates the RF power contains a few combiner rings and several transfer 
lines where the isochronicity or its tuning are of paramount importance. The standard lattice and 
insertion design programs, such as MAD [1], have difficulty to find stable solutions and need to be 
started from good approximations. These are usually obtained analytically by considering some or all 
the magnetic elements as thin magnetic lenses. However the analytical development generates a large 
variety of solutions, the choice between which is subject to many parameters. Thus a program based 
on this development should be able to help the designer in making the best choice by providing him 
with the needed clues, and by narrowing interactively the selection in this multi-parameter space.
The codes which had to be developed are written mainly in FORTRAN 77 for historical reasons but 
they are built in a modular fashion and run in a UNIX environment. Because they call upon large 
general purpose packages such as MAD, they also involve parts written at the script level.

2 Design of special lattices
The CLIC study [2] and the new CLIC test facility [3] involve magnetic lattices which are able to 
modify the length of the beam bunch (isochronicity tuning) or not (isochronicity) and to match them 
to each other or to a standard FODO line. The complexity of such lattices (rings or transfer lines) 
makes it very difficult to design them globally. Thus it has been proposed to build them from modules, 
each matched to the next one. This strategy (analogous to the standard breaking up of a complex 
computer program into many much simpler routines), proved to be very efficient and fast in treating 
special lattices. Three of these modules are described hereafter.

2.1 Isochronous achromat
It has been shown that the minimum number of deflecting magnets in an isochronous insertion is 
three. For reasons of simplicity the chosen insertion shown in Fig. 1 consists of three bending magnets 
geometrically and magnetically symmetric around the middle plane of the second magnet [4]. To

Figure 1: An isochronous insertion consisting of three bending magnets

simplify the algebra, these magnets are treated as sector magnets of equal length lm but of different 
deflection angles φ1 and φ2 for the first and second dipole respectively. The space between the first two 
magnets is filled by a drift space of length L1, by a focusing quadrupole of length lq and normalised 
gradient k1, by a second drift space of length L2, by a defocusing quadrupole of length lq and normalised 
gradient k2 and finally by a third drift space of length L3. On the assumption that the quadrupoles 
are perfectly centred, the parameter R56 is given by :

(1)

where Dx is the horizontal dispersion, p(s) the radius of curvature, and S1,s2 are the longitudinal 
coordinates of the beginning and end of the beamline. The R56 parameter is positive if high-momentum 
particles of the bunch travel longer paths. Assuming also that the dispersion and its derivative are zero 
at the entrance of the first dipole, the contributions of the first dipole and of half the second dipole to
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this integral are, respectively [4] :

From these two equations it is easy to obtain :

(2)

(3)

The lengths L1 and L2 depend on the parameter R56 through the quantities Dj and Dj. The insertion 
is isochronous if R56 = 0. The expressions (4) generate a family of insertions according to the actual 
values of k1,k2 and L3. Of course L1 and L2 must be positive and larger than a specified physical 
length δ. The algebra to find the valid ranges of kι,k2 and L3 is tedious and can be found in [4]. The 
results are given in Table 1.
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where pi and p2 are the trajectory radii in the first and of the second dipole respectively and Dj 
and D'j are the dispersion and its derivative at the entrance of the second dipole. Thus the following
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It is possible to obtain the expressions of the lengths of the first two drift spaces as functions of k1,∕k2 
and of L3 :
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with the following definitions :

An example of an isochronous arc is shown in the Fig.2 which displays the optics functions of the 
quarter part of a combiner ring in the preliminary design of the CLIC RF power source.

Table 1.
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Figure 2: 90o isochronous arc for the CLIC RF power source.

2.2 Isochronicity-tunable achromat
It has been shown in [5] that it is possible to tune R56 between a minimum value (negative) R56,min 
and a maximum value (positive) R56,max without displacing the quadrupoles of this insertion. Thus 
the lengths of the first two drift spaces L1 and L2 are fixed and the normalized strengths k1 and k2 
can be expressed as functions of R$q, which implies inverting the two equations (4). Unfortunately 
these are transcendental equations and no close-form can be obtained for k1 and k2. However it can 
be shown that it is possible in the thin lens approximation, that is for lq sufficiently small to fulfill :

Then, the absolute values of the focal lengths f1 = lqk1 and f2 = lqk2 replace q1 and q2 respectively. 
In order to design an R56 tunable module it is necessary to find the ranges of L1, L2, L3 such that f1 
and f2 remain positive when R56 varies from R56,min < 0 to R56,min > θ∙ 
Let Xmin and xmaχ be defined by :

The valid ranges of the lengths L1L2 and L3 can be determined by eight sets of conditions. The 
algebra to obtain them is tedious and can be found in [5]. Hereafter the results are summarised :
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with d being defined by :

This approach has been used to obtain a preliminary design of the transfer line between the Delay 
Loop and the Combiner Ring of the test facility to be built at CERN to validate the concept retained 
for the production of the 30 GHz RF power needed by the CLIC two beam scheme [3]. The transfer line 
should be able to increase or decrease the bunch length by 1.6 mm. Given the ∆p∕p of the order of 1 %, 
the range of R56 is then between -0.16 m and 0.16 m. To accomodate this transfer line in a ’S’ shape 
inside the available space, it is made of two insertions, one bending the beam by 75o and the other 
bending it back by —75°. A range of possible solutions has been identified without using numerical 
searches which are very unstable in this specific problem. Thus the insertion could be optimised to find 
a compromise between the overall length imposed by the building dimensions, and the optics (Twiss 
parameters). The most useful set of conditions in the design of this transfer line has been the third. 
The thick lens results have been easily obtained through the standard program MAD [1] by setting the 
quadrupole length at the nominal value of 0.2 m and by using the thin lens data as initial conditions. 
The three dipoles of the selected insertion have the same length (0.4 m) and generate the same beam 
deflection (25o). The drift lengths are L1 = 1.2 m, L2 = 0.6 m and L3 = 1.55 m.

The Figures 3, 4 and 5 show the optical functions of the full insertion when the R56 parameter of 
half one single insertion is -0.04 m, 0 m, 0.04 m respectively.
For a beam energy of 400 MeV, the gradients of the first and second quadrupoles vary between 12.04 
Т/m and 7.81 Т/m, and between 12.13 Т/m and 1.29 Т/m respectively. They are shown in Figure 6.

Figure 3: Optical functions for R56 = —0.04 m.
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Figure 4: Optical functions for R56 = 0 m.

Figure 5: Optical functions for R$q = 0.04 m.

R56[m]

Figure 6: Quadrupole gradients at 400 MeV
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2.3 Symmetrie matching triplet
The special insertions presented above are usually part of transfer lines or rings. The connection 
between them is done by matching sections. To avoid large excursions of the betatron functions, the 
easiest way is to take advantage of the insertion symmetry and to ensure that the values of the Twiss 
parameters are the same at both ends. In order to reduce the contribution of magnetic errors and 
sextupole effects to a minimum , the phase advance over a small number of insertions should be as 
close as possible to an integer multiple of π in both planes. The symmetric triplet shown in Fig. 7 is 
the insertion with the smallest number of components which provides the required degrees of freedom.

It has four free variables (the two drift lengths l1, l3 and the magnetic gradients G2, G4 respectively 
of the first, and half of the second quadrupole). It can easily be proved [6] that the diagonal elements 
of the transfer matrix for each plane are all the same. Thus the number of independent values which 
can be fixed by selecting the Twiss parameters at the entrance and at the exit of the triplet is also 
four. The number of solutions is finite and does not depend upon additional assumptions. Moreover, 
closed form solutions can be obtained in the thin lens approximation. The equality of the diagonal 
elements of the transfer matrix for each plane forces an important constraint on the betatron function 
in that plane at the entrance and at the exit of a symmetric triplet. Neglecting the special case where 
the phase advance is an odd multiple of π, we may distinguish two situations. The first one, which 
can be called a mirror-symmetry triplet, occurs when the betatron functions at both ends have equal 
values and their derivatives have opposite values, the phase advance being a free parameter. This 
is the case of interest for building up a ring with a chain of isochronous modules separated by such 
matching insertions. The second configuration occurs when the betatron function has different values 
at each end of the symmetric triplet with its derivatives being free parameters. But in this case the 
phase advance can no longer be freely chosen and is given by :
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where a1β1 and a2,β2 are the Twiss functions at the entrance and exit of the triplet (see Fig. 7) 
respectively. Thus we have the choice only between two phase advances which differ by π. The more 
general case, which will be called a matching triplet, can be used for example in matching a FODO 
line to a special transfer line containing one of the achromats presented above.
In the thin lens approximation, the transfer matrices for the horizontal and vertical planes can be 
expressed as functions of the two drift lengths l1,l3 and the quadrupole strengths g2 = k2lq,g4 = k4lq 
where lq is the quadrupole length and k2,k4 are the normalized gradients. In this case the general 
solution is characterized by [6] :
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Figure 7: Schematic of a symmetric triplet

G2
l1 l3

First
quadrupole

Second
quadrupole

Third
quadrupole

G4 G4
l3

G2
l1

l1  =



where z is a solution of the cubic equation

and a, b, c, d are defined by:

th,nm and tυ,nm being the elements of the horizontal and vertical transfer matrices, respectively. It 
is assumed bc — ad ≠ 0, and the trivial cases of c = 0 or c = ±d are neglected. Of course only real 
values of z leading to positive lengths of drift spaces are retained. The extension to thick lenses is 
easily obtained by solving for the normalized gradients k2,k4 from the two nonlinear equations [6] or 
by a standard numerical matching program such as MAD.

3 Concluding remarks
The aim of this paper is to show how important it is to develop analytical treatments not to only rely on 
numerically driven programs for insertion designs. Analytical approximations provide sure guidelines 
and a very useful insight of the main features of the problem. Moreover they give good starting 
points which not only speed up the numerical search but are often crucial for convergence, especially 
when the parameter hyper-space is not smooth in the neighbourhood of the required solution. The 
latter is frequently not unique, and the choice is based on additional constraints such as the maximum 
excursion of the Twiss parameters or geometrical conditions which are often mutually conflicting. Thus 
a compromise has to be taken which cannot be automated inside a program but necessitates the active 
intervention of the user, which requires interactive capabilities and an extensive array of tools to aid 
the designer, including graphics. Up to now, the programs available are implemented for historical 
reasons in FORTRAN 77 running in a UNIX environment. A consolidation is needed to obtain a fully 
portable product. At the same time the routines should be streamlined and standardized by moving 
to an object-oriented language.
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