
PS/CO-Note 92-20

J.Cuperus, G.Daems, F.Di Maio, Cl.H.Sicard
30 September 1992

The Reference for Operational Values

Historical Overview

Introduction

A control system can be seen as composed of a framework which is fairly fixed and opera
tional data which can be changed at any time by the operators. When something is corrupted,
the fixed part can be reconstructed from source files but this is not true of the operational
data. When the operator changes a value, this change is done in the data table (DT) of an
equipment module (EM). This is in volatile memory and, when something goes wrong, or
when you stop the system, these data are lost unless they have been saved on a more perma
nent medium. Also, if the operator changes a value, he cannot come back to a previous
value, or even know what it was.

Several strategies were invented over the last 14 years to make the operational data recover
able without reaching that goal entirely and now, when we want to invent still a new system,
it is important to make a review of what worked or not in the past. We will examine the 4
main strategies: save and back, data table block-save , selective data-table save, and archives.

Save and Back

For each control store (CCV) there are associated REF and BUF stores. There are also prop
erties for transferring a value from one store to another and back. This enables e.g. to save a
set of values, do some experimenting with CCV values and then to come back to the original
values. This works well if the operator saves all values before he changes them and nobody
else saves them while he is away. In practice, the operator is never sure what will happen if
he does the ’back’ operation and this facility is rarely used, if at all.

Data-Table Block-Save

The whole ACC DT is saved on a disk at night. This is used after an EM reload or crash to
recover with fairly recent data (refs. [2], [4], [5]).

Selective Data-Table Save

The DSC DT is saved every 10 minutes on a local disc together with structure information,
so that it can be used when an EM is reloaded with the DT structure changed (e.g. a member
or a column added). In addition, the DT is saved each night on a central disk to be able to
recover from corruptions which have already propagated to the local copy.

1

Some EMs have also a couple of Nodal files which save the operational parameters to a file
and restore them on demand (ref. [7]).

Archives

An interesting setting of a sub-system of the accelerator is saved to an archive file. The idea
is to be able later to re-set the accelerator in the same way by re-loading the archive (refs. [1]
and [3]). There are some difficulties when the configuration of the system has changed in the
meantime (e.g. new parameters added) but this can be overcome. A more serious difficulty is
the cross-coupling between different users of the accelerator which share settings for a sub
system (more about this later). Also, the operator does not really know what is in the archive
and what will happen when he loads it and, when he loads a whole group of data, he is not
sure whether everything has been correctly transmitted to the hardware. These difficulties
and some proposed remedies (none of them entirely satisfactory) are discussed in refs. [6]
and [8].. [13].

Virtual Accelerators and Beam Synthesizers

A supercycle is a sequence of cycles and each cycle is associated with a PLS telegram. This
telegram has groups, with, in each group a number of lines of which one and only one is
active in any given cycle. Many pieces of equipment can change values each cycle (Pulse to
Pulse Modulation or PPM). If the equipment is linked to a particular group, then there is a
value of the parameter for each line of the group and one of the values (the one correspond
ing to the active line in the group) is used to set the hardware for that cycle.

In the PLS telegram there is a user group (UG), identifying the nature of the operation going
on in the cycle, and several elementary groups (EG), identifying the possible settings for a
sub-system of the accelerator.

One possibility is to link all equipment to the UG. This gives maximum flexibility because
each user has the impression to control a virtual accelerator independently of any other user.
Also, with 24 possible users in the new telegram, we do not have to re-use the same line for
different users as is the case at present for only 8 possible users. The price you have to pay
for this is a lot of duplicate information. Suppose, for instance, that there are only two differ
ent settings for an ejection: HIGH and LOW and we have optimized the LOW operation for
one user. We must now copy these setting to all users which can profit from this improved
setting. Instead of just 2 independent settings, you have now 24.

There is an alternative: we can see the accelerator as a succession of sub-systems: injection,
acceleration, transition, ejection,... Each of these sub-systems has only a few useful different
settings, each linked to a line in an EG. The number of independent parameters has now been
reduced drastically and we can now see the accelerator as a beam synthesizer. Setting up a
beam for a new user can now be as simple as combining a new set of couplings between the
lines of the UG and those of the EG of the different subsystems (setting up a new user ma
trix). The price to pay for this is coupling between different users which share a line in an
EG. This can be especially disturbing in case we want to try out a new mode of operation
without disturbing other users.

Experience, and interminable discussions, have shown that the operators are attracted to the
idea of virtual accelerators but do not want to give up the advantages of beam synthesizers.
The new PLS telegram with more lines per group enables us to make better compromises:

2

• More elementary lines so that we can make finer distinctions between operations.
• A few user lines dedicated to machine development (e.g. MDl . . MD4). The user matrix

would couple these users to reserved lines in each EG (e.g. EJl . . EJ4 for ejection). The
operator would be able to copy whole sets of parameters from one elementary line to an
other, first to have a set of initial values for the development session, and afterwards to
transfer useful new settings to a specific elementary line.

Operational Requirements

What the operators want is summarized in [14]. This is reproduced literally below:

• For the values of CCV and AQN there must be the possibility to save references indi
vidually (by element), by working set and globally for a given Cycle (Cycle in the sense
of USER per machine). These references are unique per Cycle. It is necessary to have
an indication of the last update of the references. It is not necessary to have this time
indication individually but only for the entire set of references of one machine/Cycle.

• The reloading of references must as well be possible individually, by working set and
globally.

• It is necessary to be able to reload the references after a crash (i.e. they should be non
volatile).

• It is necessary to have tolerances (absolute or relative) for the CCV and AQN associated
individually to each element in order to create a varilog which is based on the above
mentioned references (i.e. two varilogs: one for the CCV and one for the AQN values).

Additional Requirements

The operational requirements listed above are minimum requirements for implementing the
individual references for a simple machine like the lead linac. We would like to propose,
from the beginning, a system which can be implemented on all our machines and which is
well integrated with the rest of our system. This leads to the following additional require
ments:
• The system should be able to handle PPM parameters, both for user groups and for ele

mentary groups. This may be implied in the operational requirements but is not explicitly
stated.

• The set of parameters saved should be complete: not only the analog values but also the
complete state of the equipment must be saved. It must be possible to restore the data
table to a functional state after a reload of the EM.

• The system should be integrated with the rest of our control system such as knobs and
working set displays.

Implementation of the Requirements

We want the storage of the reference values to remain valid when equipment is added or re
moved and when the list of parameters to be saved changes. We can distinguish between dif
ferent categories of information:

3

1. A list of what parameters to store for each EM and the attributes of these parameters.
A similar list exists already for the knob and working set display facilities (ref.[17]) and
this information should be moved to Oracle and slightly extended to cover our new re
quirements. For details, see Appendix 1: Property Tables.

2. A list of the pieces of equipment for which the parameters must be stored and their at
tributes. Most of this information exists already in Oracle tables EQUIPMENT and
INSTVAL. For details see Appendix 2: Equipment List.

3. A way of grouping the equipment in sets: individual, per DSC, per working set... This
is either covered by the working set mechanism or by selection criteria applied to Oracle
table EQUIPMENT.

4. The relation between user lines and elementary lines in the PLS telegram. When you
want to save reference data, you must first read the actual values from the EM interface.
You do this for a user line. For equipment not connected to the user group but to an ele
mentary group, we must find the name of the corresponding elementary line because the
values are stored that way in the reference . Note that lines and groups have names in the
reference store while they have numbers in the EM call. Translation between names and
numbers and between user lines and elementary lines is done with the tgm package (see
man tgm for documentation).

5. The values of parameters and the environment in which they were stored. It is certainly
possible to store the values in a spreadsheet, and this would be the simplest solution if
only a rather short and fixed list of parameters had to be stored. For a large and flexible
system, however, the facilities of a spreadsheet are no match for those of a modem rela
tional database and, to make the whole system work smoothly together, it is only logical
to store the reference values also also in Oracle, in tables described in the next section.

All this information should not be of direct concern to the operator. He should have access to
the reference values through user friendly application programs which we will discuss later
in this note.

Reference Value Tables

In table REFVAL, a record is foreseen for each parameter. It contains the identifier and
value of the parameter and the conditions under which the parameter was acquired:

Table REFVAL= {

CPID + integer, identifying class+property
MBNO + the member number in the class
PLSLINE + the relevant elementary or user PLS line (or null)

FIXFLAG + 'Y' when control value is protected (see below)
UPDATED + the date when VALUE was last changed
VALUE parameter value or ARRID identifier in case of array

}
Only a single value is foreseen per parameter. If we want to store arrays of values then we
must store them in a second table:

4

Table REFARR = {
ARRID + integer, identifying the array
SEQNO + number for ordering the array (array index)

VALUE value of the parameter

Notes:

• Meaningless identifiers such as CPID and ARRID are automatically supplied by the sys
tem and are usually not seen by the users.

• CPID is a number which refers to a description of the parameter which contains the EM
class, the property for acquiring the value and some information about the nature of the
parameter and the way of displaying it. These details can be found in Appendix 1.

• Arrays of values are needed for GFAs and for the acquisitions of beam monitoring data
or digitized scope signals.

• The time of last update of each parameter is not required by the operators. On the other
hand, indicating only when any change took place at all in the whole reference store is
not very informative. We may indicate the update per accelerator and per PLS line but
for this we need still another table. The disk space needed for storing UPDATE for each
parameter is reasonable and this is very easy to implement, so we propose this solution.

• When FIXFLAG='Y', the parameter value cannot be changed by downloading the actual
value from the EM, but only with an Oracle Form. This is useful for parameters which
are rarely, if ever, changed.

• In the remainder of this note, when we mention table REFVAL, we mean the combina
tion of this table and table REFARR.

Access to Reference Values

With Oracle Forms we can search, read, update, and compare the reference values but we
need also a more conventional access method for application programs. This can be done
with a normal EM single or array call. This is done for a PROPERTY which is in fact a sym
bol with a value between 1 and 999 (e.g. AQN is a property symbol with symbolic value
257). We introduce now two new symbols:

#defme VREF 10000;

#defme VDAT 20000;

An EM call with property AQN + VREF will not return the actual value in the DSC but the
corresponding reference value in the database. For NODAL this will not work and a pseudo
property with syntax AQN_VREF will be implemented. Property AQN is used here as an
example but this is valid for any property in REFVAL.
An EM call with property AQN + VDAT will return the date in a long integer (in POSIX
format) when the corresponding reference value was last updated. In NODAL this will be:
AQN_VDAT.
When the call is made in a workstation, these calls are intercepted by the dispatcher and sent
to the database instead of to the DSC. To the user this looks like a normal EM call, except

5

that the error returns may be different in case of malfunctions. The reference values can not
be accessed when the call is made in the DSC itself

Application Programs

The updating of all Oracle tables, except table REFVAL, can be done with a set of
SQL*Forms, conveniently grouped in menus.

Storing parameters in REFVAL and writing them back to the EM can be integrated in the
knob and working-set user interfaces. It should be possible to view the reference values and
select some of them before sending them to the EM. Facilities should exist for copying val
ues between PLS lines.

Browsing through the reference store, or updating it manually (if this is desired), is easily
done with an Oracle Form.

Various reports can easily be produced with the report facilities of Oracle.

Backups of REFVAL

Like all data, the reference store can get corrupted by writing bad data to it. Then we must
either correct it manually or get an old copy back from a database export on previous Friday
evening. It would be more practical to have these backups in the database itself. The size of
REFVAL, for 5000 pieces of equipment, 1 pair of PPM parameters per equipment, and 8
PLS lines, is about 2 Mbyte. Storing GFAs and some instrumentation readings will double
this and indexing the tables will double this again to, say, 8 Mbyte. Given the present price
of disk space, we can afford to have several backups, e.g. for:

day 1, day2, day3, weekl, week2, week3,

month 1, month2, mont3, end-of previous-run ...

With Oracle Forms, we can then compare the backups with REFVAL and, if necessary, re
store subsets of the data. This should be seen as a maintenance tool and not as an operational
facility.

Machine Development

We can have a few machine development references (MDVAL). These MDVAL would store
the parameters for a single user line. We can initialize MDVAL by copying portions of
REFVAL for various user lines and elementary lines. We can then edit MDVAL manually
and store it in one of the special user lines MDl .. MD4 and try it out. If we are satisfied, we
can copy MDVAL back to the REFVAL for one of the regular user lines. Here comes the
delicate part: for equipment hooked to an elementary group, the userline will be converted to
the corresponding elementary line and parameters for other users may be modified. To get a
better idea of the consequences, we may want to view first all these modifications before go
ing on. Database Forms are suitable for acquiring and displaying this information in any way
desired by the user.

Particularly interesting MD sets can be saved as archives, on disk or on tape. This comes
close to meeting the requirements for archives, discussed in ref. [18].

6

We mention this only as a possible future extension. It is not part of this proposal for imple
menting the reference values.

Comparison with Existing Mechanisms

It is useful to compare REFVAL the mechanisms in the Historical Overview:

• Save and Back comes close to REFVAL but there are essential differences: REFVAL is
on disk instead of in volatile memory and we have now the chance to view and select the
data before sending them to the EM.

• Data-Table Block-Save (for ACCs) and Selective Data-Table Save (for DSCs) are still
useful mechanism for quickly restoring data after a crash and should be kept.

• Archives are not really part of this proposal but we have shown that archives can be a
logical development of the REFVAL mechanism.

Conclusions

What we propose in this note is first of all a very general way of storing reference values
which adapts almost automatically to new equipment and new properties. Applications for
using these reference values should be easy to use and well integrated with the existing data-
driven operator interface but it is clear that this subject must be developed further. The pro
posed mechanism fills all the operational requirements and leaves room for further develop
ment.

7

References

1. Working Set and Archives; P.Heymans, M.Lelaizant, C.Serre; Sep. 1979 (a descrip
tion of the original implementation of the archives).

2. Programs for Saving and Restoring the ACC-Data Tables; P.Skarek; A.P. Appendix
A.32; Mar. 1982

3. Description du Logiciel de ΓArbre "Starting Up"; L.Merard; PS/CO/Note 83-20; Jul.
1983 (a formal description of the archives in the PS control system).

4. How Save is DAT-SEG-SAVE ?; P.Skarek; PS/CO/WP 84-020; Feb 1984 (doubts
about the safety of data-table save and restore).

5. Coherence of the Datatables and related Problems; E.Malandain, J.P.Potier; PS/CO/WP
84-025; March 1984 (guidelines for save and restore of data-tables).

6. Meeting on the Archive System; PS/CO/Min 86-094; Nov. 1986 (discusses difficulties
with the archives and first suggestion to use Oracle).

7. Selectif Restore des EM Data; PS/CO/Min 87-32; Jul. 1987 (meeting on storage of EM
data in files during the night).

8. Remarks on the Performance of the Archive System; Cl.H.Sicard; PS/CO/WP 88-014;
Jun. 1988 (proposes to improve the archives with a better data structure).

9. Towards a systematic Management of the PS Machine Parameter Data; T.Risselada;
Jun.1988 (a proposal to implement pure virtual accelerators with only user PLS lines).

10. Compte Rendu de la Reunion No 100 d’Aspects Operationels; PS/OP/Min 88-23; Jul.
1988 (discussions about the requirements of a new archive system).

11. Accelerator-Operation Archives; J.Cuperus, M.Lelaizant; Oct. 1988 (a proposal for ar
chives based on Oracle and archive files).

12. Meeting on Archive System; PS/CO/Min 88-033; Oct. 1988 (discussion of previous pa
per).

13. Archivage des Donnees Machine; PS/OP/MB AWGll; Jun. 1990 (a summary of ideas
by operation about archives).

14. Individual References; Memorandum PS/OP/jf; Apr. 1992 (short summary of operator
requirements).

15. Proposal for a Reference Value Set on Oracle; J.Cuperus; Apr. 1992 (proposal to store
sets of reference values in Oracle tables).

16. LIN92: References individuelles pour chaque Parametre: Proposition de Realisation;
PS/CO/Min 92-21; May 1992 (some considerations towards the practical realisation of
the reference set).

17. Property Tables; F.Di Maio; Oct. 1991 (tables indicating what to display or hook to a
knob).

18. Compte rendu du N2OAS-11, PS-OP MIN 82-21, Aug 1992 (discussions about ar
chives).

8

APPENDIX 1: Property Tables
There are a lot of equipment modules and, for each EM, a lot of properties. A general pur
pose data-driven program needs some guidance to the set of EMs it has to handle and what
the interesting properties are. A general display program, for instance, needs, for each EM, a
list of interesting parameters to display and indications on how to display them. Such lists
exist already for the display and knob facilities of our new control system [17]. It was al
ready foreseen to move this information to Oracle. With some slight additions, this will also
indicate which parameters to store in a reference set, and how. The proposed structure of the
table is:
Table PROPLIST = {

CLASSNAME + name of the equipment module class

PROPERTY + name of the property

CPID + integer identifying the record

CA + 'C'=control, 'A'=acquisition

Acproperty+ corresponding acquisition or control property

PARKIND + 'S'=Main-Status, 'V'=Main-Value, 'A'=Auxiliary

INCREMENT + 'C'=Continuous, 'D'=Discrete

PARTYPE + 'I'=Integer, 'R'=Real, 'P'=pattem

ΙTΓLE + title on a display (max. 8 char)
FORMAT + C format for converting value to string

CHECKMODE + 'A'=Absolute, 'R'=Relative, 'Ε'=Equal

PATTERN + 'Y' if value can be seen as a bit pattern

PPMFLAG + 'Y' if property may be PPM

KNOBFLAG + 'Y' if parameter is controlled by knob

DISPOS+ Position, if in working-set display, else 0

LOGPOS + Position, if in varilog display, else 0

REFPOS + Position, if in REF display, else 0

TOLPROP + property for acquiring tolerance for checking

TRMPROP + property for acquiring treatment code

DIMPROP + property for acquiring dimension if compliant array

MINPROP + property for acquiring minimum value

MAXPROP + property for acquiring maximum value

UNITPROP property for acquiring units string

}
Notes:

9

• Only one pair of records per class can have PARKIND=’S’ (e.g. for properties
CCSACT and STAQ) and only one pair can be of kind ’V’ (e.g. for properties CCV and
AQN) but several (pairs of) records per class can be Auxiliary.

• DISPOS .. REFPOS are of format ’rc’ where r is the row number [1..9] in the display and
c is the column number [1..9].

• TOLPROP .. UNITPROP may be virtual properties, implemented on the level of the dis
patcher. This makes no difference for the application programs. They may be null if the
infoπnation does not apply.

For each TRMPROP that is not null in table PROPLIST, there must be one record in table
TRMCODES for each possible value of the treatment code:

Table TRMCODES = {
CPID + integer, identifying class+property

TRMCODE + treatment code

PROPFLAG + Ύ’ if property is implemented

LABELNOS list of LABELNOs, separated by commas, which are
implemented for this treatment code.

For each PARTYPE=’P’ in table PROPLIST there must be one or more records with infor
mation about the possible bitpattems:

Table BITPATTERNS = {

CPID + integer, identifying class+property
LABCAT + label category [1..n]

MASK + HEX mask to be applied to parameter bitpattem
LABVAL+ possible HEX value of the masked bitpattem

LABEL+ corresponding label string for display (max. 8 char)

COLOR color for display

Notes:

• For LABVAL=-I any acquired value is a match and VALUE Λ MASK is a real value
and not a panem.

Real-Time Database

Read access to most of this information is possible through the real-time database functions
(see /usr/local/include/rtdb.h for details). Relevant functions are:

• DbrtDispPos Return relevant properties and corresponding display positions for a
given class and system.

10

• DbrtClassProp

• DbrtTrmInfo
• DbrtBitPattem

Return CPID and other information for a given class and property.

Return treatment information for given CPID and code number.

Return meaning of bit patterns for a given CPID.

This gives no access to the reference set itself. Application programs will get this access
through a library of database access routines, so that they do not have to use a pre-compiler
for Oracle access.

11

APPENDIX 2: Equipment List

The Property-Tables described above give information common to an equipment class. Some
static parameters can be different for each piece of equipment.. The more general parameters
are in table EQUIPMENT:

Table EQUIPMENT= {

EQNAME +

CLASSNAME +

equipment name

name of the equipment class

MBNO + member number in the class

ACCELERATOR + accelerator name ['PSB '|'CPS '|'LIL '|' EPA'...]
SUBSYSTEM + relevant part of the accelerator ['RF'|'INJ'|'EJ'...]

DSCNAME + name of DSC

EQDESSCRIP +
UNITS +

short description of the purpose of the equipment

unit string for parameter with PARKIND=’V’

Plsmachine + PLS telegram name: [,PSB'|'CPS '|'LPI']

PLSGROUP + group for PPM, if any

other information, not relevant here

Static parameters which are only relevant to a subset of the EMs are in table INSTVAL:

Table INSTVAL = {

CLASSNAME + name of the equipment class

MBNO + member number in the class

VARNAME + name of the Read-Only variable

VALUE value of the RO variable

This information can be read by application programs through EM properties or through the
real-time database function DbrtEqMembInfo.

12

GROUPE PS/CONTROLE

NAME
ADORNI Valerio
ARRUAT Michel
ASSOR Jean-Luc
BENETTON Maurice
Benincasa Gianpaolo
BERLIN Fridtjof
Bressani Ginevra
BOBBIO Piero
BOUCHE Jean-Marc
CLOYE Jean Jacques
CROTEAU Pascal
CUISINIER Gérard
CUPERUS Jan Hendrik
DAEMS Gilbert
DAVIDENKO Yuri
DEHAVAY Claude
DELOOSE Yvan
DE METZ-NOBLAT Nicolas
DIMAIO Franck
GAGNAIRE Alain
GAYRAUD Christine
GIOVANNINI Fernando
GIUDICI François
HEINZE Wolfgang
IOURPALOV Vladimir
IZGARSHEV Serguei
KIRK Michael
KNOTT Gisèle
KUIPER Berend
lelaizant Monique
LEROY Christine
LEWIS Julian
LUSTIG Hans-Dieter
MERARD Lucette
MIKHEEV Mikhail
PACE Alberto
PEARSON Toby
PERRIOLLAT Fabien
PETΓERSSON Thomas
PHILIPPE Jean
POTDEVIN Philippe
RAICH Ulrich
REDARD Jacques
RISSO Alessandro
SERRE Christian
SICARD Claude-Henri
SIKOLENKO Vitaly
SKAREK Paul
TROFIMOV Nikol
ZELEPOUKINE Serguei
15.09.92

GROUPE OP

G. ADRIAN
D. ALLEN
M. ARRUAT
G. AZZONI
S. BAIRD
N. BLAZIANU
J. BOILLOT
X. BRUNEL
J.C. CENDRE
E. CHERIX
e. chevallay
j.j. CLOYE
G. CYVOCT
D. DAGAN
I. DELOOSE
B. DUPUY
J. DURAN-LOPEZ
J. M. ELYN
T. ERIKSSON
P. FERMIER
A. FINDLAY
B. FREMMERY
V. GARRIC
D. GUEUGNON
G.-H. HEMELSOET
R. HOH
G. JUBIN
J. KUCZEROWSKI
f. lenardon
g. LEO
B. L'HUILLIER
T. MALMEDAL
b. MANGEOT
d. MANGLUNKI
J.L. MARY
Q MERCER
Q METRAL
H. MULDER
A-NICOUD
J.M. NONGLATON
J. OTTAVIAN
e. ovalle
S. PASINELLI
M. PERFETTI
K. PRIESTNAL
Y. RENAUD
M. ROCHE
M. RUETTE
C. SAULNIER
J.-L SANCHEZ-ALVAREZ
Ch. STEINBACH
G. TRANQUILLE
B. VANDORPE
V. VICENTE
E WILDNER

