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to ensure convergence. Another advantage of the analytical treatment described in this paper is 
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Abstract
It is imperative for linear colliders that the bunch length be 
adjustable. In most cases bunch compression is required, 
but recently, in the design of the Compact Linear Collider 
(CLIC) RF Power Source, it was shown that bunch stretch­
ing may also be necessary. In some situations, both modes 
may be needed, which implies the need for tunable mag­
netic insertions. This is even more essential in a test facil­
ity, to span a wide experimental range. In addition, flex­
ible tuning provides a better control of the stability of an 
isochronous insertion. To start a numerical search for a 
tunable insertion from scratch is very uncertain because 
the related phase space is very uneven. However, a start­
ing point obtained with an analytical approximation is often 
sufficient to ensure convergence. Another advantage of the 
analytical treatment described in this paper is that it sheds 
light on the shape of the entire phase space. To achieve this 
the isochronous achromat developed previously has been 
given tuning capabilities by expanding the expressions ob­
tained for its main parameters. An application to the future 
CLIC Test Facility (CTF3) is shown.

1 INTRODUCTION
Lately the CLIC study [1], [2] made two very important ad­
vances. Firstly a consistent set of parameters for the main 
linac was found, which made the relative tolerances com­
parable with those of the other proposed electron-positron 
colliders [3]. Secondly an efficient RF Power Source was 
designed [4]. Among the many parameters, the length of 
the bunch is an essential quantity. It should be 30 μm in­
side the main linac and carefully controlled in the bends of 
the injector complex. The isochronous rings and transfer 
lines of the RF power source also require that the bunch 
length of the drive beam be modified, either by stretching, 
in order to limit the coherent synchrotron radiation effects, 
or by compression, in order to optimise the power trans­
fer to the main beam. In the first order approximation the 
bunch length is proportional to the R56 parameter which is 
defined by the following integral :

fs2 Dx R56 = / ds (1)
Js1 P(s)

where Dx is the horizontal dispersion, p(s) the radius of 
curvature, and S1,S2 are the longitudinal coordinates of the 
beginning and end of the beamline considered. The R56 
parameter is positive if high momentum particles of the 
bunch travel longer paths. Of course the values of the R56 
parameter of the various insertions can be fixed at the de­
sign stage, but the operation of both the accelerator and 

the decelerator are much easier if some flexibility is given 
to modify it in a given range. This flexibility becomes 
a feature in a test facility such as CTF3 [5], whose pur­
pose is to validate most of the RF Power Source design 
and at the same time to study the behaviour of coherent 
synchrotron radiation for which the theory and the simula­
tions remain to be confronted with experimental data. Thus 
a study was started to find an ensemble of several mag­
netic components (dipoles and quadrupoles) called an “in­
sertion”, which would be able to generate both a negative 
or a positive R56 parameter by only modifying the strength 
of the quadrupoles. Quite naturally the isochronous inser­
tion developed five years ago [6] was chosen as a promising 
candidate. It turned out that it was possible to obtain the 
expression for the absolute values of the focal lengths as a 
function of the R56 parameter in the thin lens approxima­
tion. This will be shown in the next section. It demanded 
much more algebra to derive the conditions on the mini­
mum and maximum values of the R56 parameter and on 
the drift lengths, such that the absolute values of the fo­
cal lengths were positive. Actually sixteen different sets 
of conditions exist [7]. It is impossible to decide analyt­
ically which one is best. This depends on the geometry 
and on the constraints imposed on the Twiss parameters at 
the entrance and exit of the insertion. A simple interactive 
program guides the user towards the best choice. The last 
section shows an application to the transfer line between 
the Delay Loop and the Isochronous Ring of CTF3.

2 The tunable achromat

Let us consider a module consisting of three bending mag­
nets, geometrically and magnetically symmetric around the 
median plane of the second magnet [6]. To simplify the al­
gebra, these magnets are treated as sector magnets of the 
same length lm but of different deflection angles ϕ1 and ϕ2 
for the first and second dipole respectively. The space be­
tween the first two magnets is filled by a drift length L1, by 
a focusing quadrupole of length lq and normalised gradient 
k1, by a second drift length L2, by a defocusing quadrupole 
of length Iq and normalised gradient k2 and finally by a 
third drift length L3 [6]. Assuming that the dispersion and 
its derivative are zero at the entrance of the first dipole, 
the contributions of the first dipole and of half the second 
dipole to the integral (1) are [6] :

P1 (ϕ1 - Sinϕ1)

and (2)

Dj sin (ϕ2/2) - P2D'3 [cos (02/2) - 1] +

p2 [ϕ2/2 - sin (ϕ2/2)] 

ds



respectively, where p1 and p2 are the curvature radii of the first and of the second dipole respectively and Dj and D1 are the dispersion and its derivative at the entrance to the second dipole. Adding the two contributions, the ‰ pa­rameter for half the insertion is given by :
— = p1 (≠ι - sin<^ι) + L>j-sin(≠2∕2) -

p2D'j [cos (≠2∕2) - 1] + p2 [φ2∕2 - sin (⅛∕2)] (3)In order to obtain a nondispersive module, the derivative of the dispersion at the point of symmetry should be zero, providing a second equation :sin(<⅛2∕2)
---------------Dj + Dj cos (≠2∕2) + sin (≠2∕2) = 0 (4)

P2From these two equations it is easy to obtain :
, x

Dj = -
3 P2

Dj = ρ2 [1 + Dj COt (φ2∕2)]

Rse (3 sin<^ι
27 ~“ ~“ Irn I ~~ ~- ------2 ml2 φ1

(5)
It is possible to obtain, in the same way as in reference [6] the following expressions for the first two drift Iengths as functions of k1,k2 and of the third drift Iength L3 :C2Qi Z-—■ ∖

Li = a~— I L3 + Q2 1 — 1 + QiCiq2 ∖ /
b

L2 = Qi - Q2 + ~------- (6)
L3 + Q2L3 = L _^3 Djwhere

1 = pi tan (≠ι∕2)
b - — (— ÷ 91 I
“ C2 ^C2 aC1J

Ci — COS Qq yφrki^

C2 = cosh Qq √^fc2)

X 
p2 sin Φi

Ci
SιCk~l

(7)
(8)S,ι = sin Qq√¾^j

S2 = sinh Qq √⅞Q (9)(10)These drift Iengths depend on the parameter Rse through the quantities Dj and D,j. The aim of the study is to achieve Rse tuning i.e. the ability to vary this parameter between a minimum value (negative) Rse,mi∏ and a max­imum value (positive) Rse,max without of course displac­ing the quadrupoles. Thus Lι, L2 and L3 are fixed and the normalized strengths fcι and k2 should be expressed as functions of ⅛6, which implies inverting the two equations (6). Unfortunately these are trascendental equations and

no closed form may be obtained for k1 and k2. However it can be shown that it is possible in the thin Iens approx­imation, that is for such a small lq that the assumptions 
C1 — C2 = 1, S1 = lq^ki and S2 = lqypk2 hold to a very good accuracy. Then the absolute values of the focal Iengths f1 = lqk1 and ∕2 = lqk2 replace Qi and q2 respec­tively and the set of equations (6) becomes :

Li = a— ^L3 + f2] — 1 ÷ /1
J2 × 7L2 = /1 — f2 ÷

f2(f2 + fι∕a)

L3 + f2

(H)

which can also be expanded in the form :
ci 4" 1 — Li 4- 1
--------fif2 + L3fi - --- ----- f2 = Oα α (12)—-—/1/2 ÷ Lzf1 — ^L3 + L2) f2 — L2L3 = O

Subtracting the two equations, f2 can be obtained :
CiL2Lzf2 =---------------M----- Z⊂v (13)Li + 1 — α ^L2 + L3Jand by replacing this value in the first equation, f1 is also obtained : Λ = L^ + 1) (14)L2 + Li + 1 — aL3

By using the expressions (5) and (7) the quantity a
D1 
D'iwhich enters in L3, becomes :α⅞=—r~τ~[^cot(<^2∕2) + p2] (15)L>'. s1n≠1Using this expression and the definition of α, /1 and f2 can be expressed as functions of x, which is Iinearly related to the Rse parameter as shown by equation (5):

. - τ p2 ^1 + p2>
1 2xCz + P2(Ci+L2sinφi)

= - xC3 + P2
2x(L2 + C3) + p2C1where:

Ci = (L1+l)sinφi-p2 (n)L3 = L3 - p2cot(≠2∕2)In order to design a Rse tunable module, it is necessary to find the intervals of L1,L2, L3 such that the absolute val­ues of the focal Iengths remain positive when Rse varies in the interval Rse,min < Rse < Rse,max with Rse,mi∏ < θ and Rse,max > 0. The algebra is very tedious and can be found in [7]. Sixteen different sets of conditions satisfy

a = —

Qi =

Ree

a

a =

(16)
f2 = L2

b +



the imposed constraints. A simple interactive program per­
mits to choose the best one according to the geometry and 
Twiss parameter requirements. A standard program for ac­
celerator design, such as MAD can then be used to derive 
the thick lens solutions using the thin lens results as a very 
effective starting point.

3 APPLICATION TO A CTF3 TRANSFER 
LINE

The CTF3 transfer line between the Delay Loop and the 
Combiner Ring should be able to increase or decrease the 
bunch length by 1.6 mm. Given the ∆p∕p of the order of 
1 %, the range of R56 is between -0.16 m and 0.16 m. 
To accomodate this transfer line in a ’S’ shape inside the 
available space, it is made of two insertions, one bending 
the beam by 750 and the other bending it back by —75°. 
The analytical approach has permitted an identification of 
the ranges of possible solutions without using numerical 
searches which are very unstable in this specific problem. 
Thus the insertion could be optimised to find a compromise 
between the overall length imposed by the building dimen­
sions, and the optics (Twiss parameters). The most useful 
condition in the design of this CTF3 transfer line has been 
the fifteenth set [6]. The three dipoles of the selected in­
sertion have the same length (0.4 m) and generate the same 
beam deflection (250). The drift lengths are L1 = 1.2 m, 
L2 = 0.6 m and L3 = 1.55 m. All the quadrupoles have the 
same length of 0.2 m. For a beam energy of 400 MeV, the 
gradients of the first and second quadrupoles vary between 
12.04 Т/m and 7.81 Т/m, and between 12.13 Т/m and 1.29 
Т/m respectively. The Figures 1, 2 and 3 show the optical 
functions of the full insertion when the R56 parameter of 
half one single insertion is -0.04 m, 0 m, 0.04 m respec­
tively.

Figure 1: Optical functions for R56 = —0.04 m.
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Figure 2: Optical functions for R56 =0 m.
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Figure 3: Optical functions for R56 = 0.04 m.
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