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Abstract

The tomographic reconstruction of longitudinal phase 
space density is a hybrid measurement technique which 
incorporates particle tracking. Hitherto, a very simple 
tracking algorithm has been employed because only a 
brief span of measured bunch profile data is required to 
build a snapshot of phase space. This is one of the 
strengths of the method, as tracking for relatively few 
turns relaxes the precision to which input machine 
parameters need to be known. The recent addition of 
longitudinal space charge considerations as an optional 
refinement of the code is now described. Simplicity 
suggested an approach based on the derivative of bunch 
shape with the properties of the vacuum chamber 
parametrized by a single value of distributed reactive 
impedance and by a geometrical coupling coefficient. 
This is sufficient to model the dominant collective 
effects in machines of low to moderate energy. In 
contrast to simulation codes, binning is not an issue 
since the profiles to be differentiated are measured ones. 
Results obtained with and without the inclusion of space 
charge are presented and compared for a proton beam 
case in the CERN PS Booster (PSB).

1 INTRODUCTION
Longitudinal phase space tomography[ 1,2,3] takes 

into account the non-linearities of synchrotron motion by 
tracking test particles in order to build maps which 
describe the evolution of phase space. The maps are 
used to reconstruct iteratively a distribution whose 
projections converge towards the measured bunch 
profiles. The tracking can be made arbitrarily complex. 
In particular, collective effects due to the interaction of 
the beam with a wideband reactive impedance are 
readily included since the wakefield may be modelled in 
terms of the derivative of bunch shape and this is known 
from the measured data. The test particles that are 
tracked are not binned to obtain bunch profiles.

2 TRACKING
Particles are tracked turn by turn by iterating standard 

difference equations[4]. To a good approximation, the 
relative rf phase of the ith particle as it crosses the cavity 
gap to complete the mth turn is

Δϕi,m+l = Δϕi,m -2πh
η0,m AEi,m

β 2
0,m E0,m

(1)

and relativistic speed of the synchronous particle.
Assuming negligible modification of the synchronous 

phase due to self-fields, the corresponding energy 
increment at the end of the mth turn yields

where ΔEi is its energy with respect to that, EO , of the
synchronous particle, h is the harmonic number of the rf,
and where ηO ’ βO are, respectively, the phase slip factor

and self-field voltage functions, respectively. The latter 
may be written[5] in terms of the line charge density, qλ, 
along the bunch

AE i,m+1 = AEi,m + Q[Vrf ,m+l (ϕO,m+1 + Aφi,m+l )-
V

where q is the charge carried by the particle, φO is the
(2)rf ,m+l (ϕO,m+1 )+vself ,m+↑ (ϕO,m+1 + Δϕi,m+l )]

synchronous phase, and where Vrf' Vself are the applied rf

Vself,m (ϕ) = Qh2
2ω0,m

gZvacuum Zwall

n dφ
dλ m (ϕ)

2β0,m y2,20,m

where hωo is the rf frequency and is the relativisticyO

energy of the synchronous particle. The factor in square 
brackets is the effective impedance seen by the beam 
and comprises a direct space charge term (which is 
expressed in terms of a geometrical coupling coefficient,vacuum-

wall

g, and the impedance of free space, Zv ) and the
distributed impedance of the vacuum chamber, 
(divided by the mode number, n).

Z׀

Equations (1) and (2) together constitute the tum-by- 
tum tracking used in the code. However, since the line 
charge density is not necessarily known at every turn, 
the self-field voltage is evaluated from the mean of the 
nearest two bunch profile measurements. Smoothing 
and differentiation are achieved using a Savitzky-Golay 
filter[6] of order 4.

3 DISCUSSION
The action of a phase loop is not included in the 

tracking. Typically, closed-loop conditions do not affect 
the bunch during a measurement span, unless its dipole 
motion or the filamentation of a badly matched 
distribution would otherwise have shifted the barycentre 
of the observed profiles.

Equation (1) takes the ratio of synchronous revolution 
periods on consecutive turns to be unity, which is a good 
approximation except at very low energies. 
Furthermore, the orbit expansion is only made to first 
order in fractional energy offset, so that reconstructing 
near transition should be avoided. This is anyway true 
since the lack of phase space motion near transition 
precludes tomography.



Figure 1: (i) Bunch shape oscillations of 6.5×10l2 protons measured every 16 turns after an abrupt reduction in the 
second-harmonic component of a stationary dual-harmonic bucket at 100 MeV in the PSB. (ii) Corresponding self
field voltage functions obtained from the mean derivative of the first two (solid line) and last two (dashed line) 
profiles.
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Figure 2: Phase space reconstructions (i) with and (ii) without space charge. Note the different density scales.
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Figure 3: (i) Convergence for the two cases of Fig. 2; the solid line is with space charge included. 
(ii) Discrepancy (after 50 iterations) versus geometrical coupling.
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this implies only a small error with respect to the true 
centre of individual particle motion and the method is 
known to be very tolerant of such errors. No resistive 
(in-phase) component of the self-field voltage is 
considered.

For a circular beam of radius a in a circular pipe of 
radius b, the coupling coefficient of the particle 
ensemble may be estimated[7] as g = 0.5 + 2 ln(b/α). In 
the absence of cylindrical symmetry, the situation is 
more complicated, but the direct space charge 
component can still be expressed in terms of this single 
input parameter.

the larger value of g was adopted. This corresponds to a 
space charge impedance of more than 700 Ω. Since the 
inductive wall impendance of the PSB is considerably 
less than this, it was simply taken to be zero.

The deliberately mismatched bunch generates a 
varying self-field voltage (see Fig. l(ii)) which can 
therefore be distinguished from a mere calibration error 
of the rf voltages. When space charge was included, 
discrepancy minima were obtained in good agreement 
with the measured cavity voltages on both harmonics.

Since it is not dissipative, a pure reactive impedance 
cannot alter the average energy of the bunch nor, in the 
absence of coherent motion, is there any modification of 
the synchronous phase. Equation (2) takes the self-field
voltage to be zero at φ0* This simplification guarantees
the convergence of the root-finding algorithm that is
used to evaluate φ0 and it assumes that the average
energy of the bunch is in equilibrium at E0, Typically,

4 DISCREPANCY
Discrepancy[8] expresses in a single figure of merit 

the residual bin-by-bin differences between the 
projections of a reconstructed distribution and the 
original profiles,

/Ni
i

2
riei-ri)2/Niid =

1
M Vi3Ni >0
Σ

reconstructed contents of the ith bin and M is the number 
of terms in the summation. The weighting factor Ni is 
the number of image pixels that project into the Zth bin.

Here, e and rii are, respectively, the measured and

e

d22

χ2

However, since each

modified slightly so that
per bin. Thus,

becomes more like the mean

measurement whose variance is dominated by noise and 
is therefore the same for all i, the expression can be

constitutes an independent

where M' is the total number of bins in all profiles. It is 
this form of discrepancy that is implemented in the code 
for monitoring convergence.

5 Someresults

d' =
1 M'

e ~ri
2

M' i=I
Σ

The mountain range data of Fig. l(i) are tomographic
ally reconstructed in Fig. 2 with and without the 
inclusion of space charge. The images correspond to the 
time of the first measured profile, i.e., to a minimum of 
bunch length, but the reconstructed distribution is only 
fully upright when space charge is taken into account. 
The dashed bucket separatrix illustrates the loss of 
acceptance. The coupling coefficient was estimated as 
g=1.8 from beamscope[9] measurements of transverse 
beam size, whereas g=2.0 produced the best 
reconstructed image (see Fig. 3). Since the beamscope 
is known to overestimate the horizontal size of the beam,

6 CONCLUSIONS
A proven technique for longitudinal phase space 

tomography has been refined to include collective 
effects due to direct space charge and reactive wall 
impedance.

A poorly known parameter in the physical model of 
the hybrid algorithm may be estimated by maximizing 
the resultant image quality as a function of that 
parameter. The space charge impedance of the PSB has 
effectively been measured in this way under conditions 
contrived to induce a strong space charge effect.
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