
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

cern/mps-dl/70-10
CERN/ISR-TH/70-53

LAMPING OF TRANSVERSE COHERENT OSCILLATIONS

BY AN ELECTRODE STRUCTURE

by

L. Mδhl and P. Strolin

Geneva, 3Oth October 1970



- 1 -

1. INTRODUCTION

The Novosibirsk Storage Ring Group has investigated a 
method of passive damping of coherent transverse bunch oscilla- 
tions1,2,3) The principle is to put an electrode structure (plat 

into the vacuum chamber, which together with the chamber walls acts 
as a transmission line. This electrode extends over part of the ma
chine circumference. It is terminated by its characteristic impedance 

 at either end. The original analysis of this device1,2)  as well as 
the experimental results obtained on VEPP-2 apply to the situation 
of a beam consisting of one short bunch or equivalently many short 
bunches oscillating independently of each other. From a more recent 

  paper3) it appears that the same damping method can be applied to a 
coasting beam as well.

The present note presents a different analysis of this de
vice. For simplicity we only regard the limiting cases of "very long” 
and ’’very short” plates. This analysis seems to reveal that the ter
minated line method is ineffective in damping coherent betatron oscil
lations of an unbunched beam. One might still think of using this 
method to damp coherent betatron oscillations after injection into 
the ISR, when the beam is still bunched. However, we find that the 
damping times obtainable are too long compared to the coherence time 
of betatron oscillations to avoid emittance increase. Similar results 
hold for single bunch modes in the PS.

2. COASTING BEAM

2.1 Method of calculation

In the commonly accepted notation coherent stability may 
be discussed in terms of the quantities U and V , as defined in 
Ref. 4), except that we use U instead of U + V for the real part 
of the frequency depression.

The ’’fast damping method” discussed in Ref. 3) may be des
cribed as the introduction of a V-term of appropriate sign and large 
enough to produce stability of otherwise unstable modes. In the 
following subsections we will give two independent derivations which
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both seem to reveal that the terminated plates are ineffective for 
fast damping of coasting beam instabilities.

The first approach starts with the self-field of a point 
charge oscillating transversely between the electrodes of an infi
nite transmission line. The field of a coasting beam is obtained by 
integration over the corresponding sources. We find that the termi
nated plates do not change the V-term, at least for wavelengths long 
compared to the transverse dimensions of the plate.

The situation is different for a short bunch. Here the
plates may introduce a large change of the V-term because the bunch 
spectrum contains wave numbers k ≈ ko, where iko is the propagation constant 
of the line (ko = ω/c for an unloaded line).

The second approach which yields the same principal result,
is an extension of Laslettts transmission line method5).For simpli- 
city, in this second approach calculations are only performed for 
the limiting case, where the wavelength is short compared both with 
the longitudinal and with the transverse extent of the plates.

2.2 The point charge method

This subsection closely follows the derivation given in
Ref. 2) for bunched beams. The calculations are performed in a co
ordinate system moving with the particle velocity βpc. They are valid 
for the geometry sketched below. Different beam and electrode geome
tries can be accounted for by introducing a geometry factor which is 
frequency independent in the long wavelength limit and does not alter 
the principal results. W-----*

plates

beam

y

x z
h

e



- 3 -

Consider a point charge q at azimuthal position z = zo which 
oscillates vertically with xo = ξ e-iwt. In addition to the pure 

image fields a wave is emitted along the line. In the long wavelength 
limit this wave (TEM wave) can be described by a potential difference 
u between the plates. Following Ref. 2) we define the potential to 
be u on the top plate, and 0 on the bottom plate; Zo is the impe
dance between top and bottom plate. In subsection 2.3 we follow 
Laslett’s convention and put V = ± u on the top and bottom plate re
spectively and take Zo for the impedance between either of the 
plates and ground (v = o).
From ref. (2) we conclude that

u(z,t) = (1)1 r, . r7 xo -i k I z - z I , 
=2qiωzo"h^e 0 °

where Z0 is wave impedance of the line and ik0 is the line propaga- 
tion constant. The minus sign in (l) and the factor e-i ko|z-z0| 
are justified by energy conservation (we assume x α e-iωt) and by 

symmetry considerations.

Now we consider a coasting beam oscillating transversely.
For simplicity we assume its diameter d « h. Let us approximate the 
physical situation by assuming an infinite beam between plates ex
tending from z = -∞ to z = ∞ . This model (beam and plates from 
z = -∞ to z = +∞) is a good model for plates which have very low losses and 
cover the whole circumference of the machine without any break and 
without any termination.

Transverse oscillation modes are described by a beam dis
placement: 

(2)x (z,t) = 0
i(kZ -ωt) 

ξ e 

where k is related to the mode number n of the instability: 
k = n/R4)

As we are working in a system moving with the particles, 
the plates are moving with velocity-βpc in the z-direction. However, 
for an infinite line free of losses, the beam does not notice this 
movement.
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We obtain the self-field of the coasting beam by replacing 
q -→ λdz0 in (1), introducing x0 (z0,t) from (2) and integrating over 
the sources:

u(z,t) = λ . ξ -ιωt- — ιωz ÷ e2 on

∞
Γ -i(k Iz-z I -kz )I e o 1 ol odz. -∞ o (3)

This integral is meaningful if we assume that the plates 
are long enough, and have small losses(k0 complex) so that
-ik   

e    oℓ → 0 for ℓ→ ∞. Further we assume that k ≠ k. For an un- 
loaded line the latter of these assumptions is equivalent to 
requiring Q/n ≠ ± (l±l/βp ), because in the lab system k0 1ab = 
β n  

± —ω-α and k1ab n/R With these assumptions the integration (3)
H c  
yieIds:

u(z,t) =
7 ξ i(k -ωt) ko 

λωΖο n z ~2'~2 
k -k0

(4)

i . e .

(5)u(z,t) =
k. 7 x oλωZ τ- —--- ~ .on 1 d 1 2 k -ko

Ir the coordinate system moving with the beam, the 
transverse component of the Lorentz force is

(6)-r. e u(xt)eE =- ---?-- l =x n
θλω   -
. 2 o n

k____ o _ x
2 2k -ko

We have thus found that the self-force is in phase with the beam 
displacement x. Such force components only cause a real frequency 
shift, but do not change the V-term. This property is unchanged, 
when we transform to the lab-system.

Let us now consider the case of a short δ-function bunch, to 
elucidate the different behaviour of bunched beams. We may of course 
immediately use the result (1) and find that the self-force
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eE x
zi ο2 9 ω — x 
η

-iωtis imaginary and reduces the growtn rate of modes with x α e 
("fast damping"). However, to see the difference from the 
coasting beam case it is instructive to expand the bunch spectrum 
into modes of type (2). This is readily done by Fourier trans
formation of the δ-function. In analogy to (2) we write

λ.x(zθ,t) _ -iωt c∕ ∖ = q ξe δ(zθ)
-⅛-∞_ -iωt 1 Γ ikz ,ι= qξe —— ! e o dkς> 2‰ -∞ (2a)

Then using the same procedure as above (eqs. 3 - 5 ) we obtain:

(la)u(z,t ) = ξ - ιω t qωZ ÷ e on
k f,+∞ ikz0 Γ e___  ,12π J -∞ 2 ,2 d 

k -k0

This expression is of course fully equivalent to (1). However, from 
(la) we conclude that mainly the pole (k = k ) contributes to make 
u(z,t) imaginary.

In other words, the fact that the bunch spectrum (2a) contains 
components with a wave number k close to the modulus k of the line o 
propagation constant ( i k ) introduces fast damping. The con
dition k = k0 is a necessary but not a sufficient condition for 
fast damping. In Appendix 1 we find that plates with k = k0  
tend to increase the growth rates of the unstable coasting 
beam modes.

Following ref. 2) 3) we have assumed an infinite struc
ture rather than a circular machine in this subsection.

The strong damping effect resulting from the pole of the 
integrand in (la) is in general different in a circular structure 
where the integral in (3) has to be replaced by a sum (see 
Appendix 1).

dk

=
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For infinite structures(1) or equivalently (la) may be 
used as "Greens functions” of an oscillating charge. However, 
(la) is more difficult to use (pole in the integrand)· To summa- 
rize: the infinite line is a weak model as it neglects end 
effects, as well as the periodicity of the circular machine.
But even from this model we do not find fast damping of coasting 
beam modes if we use (1) rather than (la) as Greens function.

2.3 The Transmission line Method

The transmission line method permits one to take into 
account the effect of the end of the plates. In the case of 

 plates having a single termination(*) , the transmission line 
method(5)(7) suggests that:

(i) In the "long wave length limit” (i.e. when the wave
lengths both of the perturbation and of the TEM wave which 
propagates on the plate are infinitely long compared to 
the longitudinal extent of the plate (kℓ = k0ℓ ≡ 0) the 
response of the plate to transverse oscillations of a 
coasting beam is purely inductive, namely U > 0 and
V = 0. Moreover, this response is independent of the 

 position and of the impedance of the termination(*).

(ii) For wavelengths close to this limit (kℓ « 1 and 
k0 ℓ« 1), one has an additional V-term which has a posi
tive sign, is proportional to the frequency, to the square 
of the length of the plate and to the resistance of the 
termination and is independent of the position of the 

(*) termination    .

(*) In this paper we consider only the case where the termination
impedance has a finite value in comparison with the 
characteristic impedance of the plate. This condition 
assures that the plates are effectively terminated and 
not electrically floating.
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In this sub-section we apply the transmission line method 
to plates terminated at both ends by their characteristic impe
dance. We find:

(i) In this particular case one can confirm what point (i) 
above seems to suggest, namely that in the long wavelength 
limit the response is independent of the way of terminating 
the plate and is characterised by

V = 0 (7a)

Further on in this subsection, using simple physical 
arguments, we show that this statement has a general 
validity also for more elaborate ways of terminating 
the plate.

(ii) The V-term which arises when we depart from the 
long-wavelength limit, is qualitatively the same as in 
the case of a single termination. In the range
kℓ « 1 and kℓ «1, for ultrarelativistic particles one finds 
a V-term

(7b)V ≈   1__  N
(2π)2 γp

r λp .2(Z c) -° h® 3 ίϋ 
o y R ∖ ∏7 Q

This result does not indicate the presence of any 
fast damping mechanism.

Laslett,s equations for the scalar and vector potential 
 of the transmission line mode propagating on the plate are(5):

dvι ^ai 
c¾ t + b z - ickZ (β -β ) λo rp rw I

(8)
3vι dAi = 0 
∂ z + Ch t

Here λI = -(p∕h) exp [i(kz - ωt)] is the charge per unit length 
induced on the upper plate (the opposite sign should be taken for the 
lower plate) and p is the electric dipole per unit length introduced 
by tne transverse perturbation of the beam.(*).

(*) We take for Laslett’s coupling factor K its approximate value 
K = w/2h.

=
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Φ∙
Solutions of these equations have the form:

pZo° Γ i — (z-z ) -i—(z-z ) ∏3wVp~^w ikzΙ -iωt
—τ--- ae c lz ± be c' l-f< vv.'-t-—- θ en L 1 l-β 2 J (9)

The coefficients a and b are determined by the boundary conditions 
at the two ends of the plate (termination impedance ZT = Zo ) :

A-1 + Z I-r + V1 = 01 o I 1

Aι + Z Iτ - V = 01 o I 1

at the upstream end z = z1 

  at the downstream end z = z1+ℓ
(10)

These equations are the Kirchoff’s node equation for 
the ends of the plate. They relate the current I = A1/Zo of the 
transmission line mode which propagates on the plate to the current 
V1/ZTrp drawn by the termination impedance. One obtains

β l-β .1 rw rp ιkzπa = ~ιiβ e 1 
rw

(11)b =
^w 1 + Pp i(k+k ) 8 ikz.. ‘ 2 1 ÷^⅛ θ ° θ

We introduce (11) into (9), evaluate the n-th harmonics Vn and An 
of the potentials. We evaluate the additional transverse force per 
unit charge acting on the centre of the beam due to the presence 
of the plate. We consider the case where the plate has the same 
distance from the beam centre as the smooth vacuum chamber in the 
rest of the machine circumference.

<F> =
<V -β A >

_ __ n∕P n
h/2

    } (12)

(13)

(4)since ' z : (u+iV) =
Nr co <F>
4πQβ√Yn P

1T -LΓ

We find
(u+iV) ≡ - 

2τσ r cN__ o__ 9
β Y 2πQtιP P z0 C^2⅛) p <ω>n)
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where N is the total number of particles, ro is the classical
-2  particle radius, Ύ = (l-β2p ) and Q is the number of  betatron
P 

oscillations per revolution. The P-factor represents the electrical
response of the plates

P(ω,n) =
iβrw
2k⅛

i<1-βp√ 
bs3-" βw×

[ei(ko-k)e-1÷ (⅛fe2 !/1(k°+k)M
-(βp-βw2)2/1-β2w 

   
(14a)

In the case k«1, k 8 « 1 one obtains: 7 o

P(ω,n) ~ - β2 
rP - i⅛o 8

1 + β 2 
■ £ .
2 (14b)

It emerges from (13) and (14a,b) that in the long wavelength range 
the response is predominantly inductive (u>0) and that the V-term is as 
anticipated by (7).

We now examine the case of plates having any number, 
impedance and position of terminations (see sketch below). We 
restrict ourselves to the long wavelength limit (as defined at the 
beginning of this section). This implies that the induced current 
I_ is uniform all along the plate and that the TEM current I1 =A1/Zo I 
and the TEM voltage V1 are uniform along sections of plate in 
between terminations or free ends. Let us set I1 and A1 in such a 
way that the boundary conditions are satisfied at one end of the 
plate say the upstream end (see the sketch below). Let us move 
towards the other end, supposing V1 ≠ 0. Since V1 is constant, 
terminations draw currents all of the same sign. To account for 
these currents in the node equation at the terminations one has 
always to decrease (or increase) I1, II being obviously constant 
all along the plate. Then at the other end of the plate one faces an 
imbalance between I1 and I1, so that it is impossible to satisfy the 
boundary conditions unless V1 = 0, independently of the way 
of terminating the plate.    This is indeed the result
which one obtains from (9) and (11) in the long-wavelength limit.
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In fact, as discussed in ref. (7), the effect of finite i.e, 
ZT/zo « l/kℓ) termination impedances is only to shunt 
the electric fields (hence V1= 0 and V = 0) between the plates 
and the wall, so that the γ-cancellation of the e.m. forces is re
moved in the region between the plate and the wall. The wall 
currents travel further away from the beam than in the smooth 
pipe case. The factor (1- β ) in the expression of these forces 
is then transformed into the factor (-β ) which appears at the 
r.h.s.of eq. (lla) and represents a purely inductive effect. On the 
other hand, it has been shown in ref.(7)that the opposite limiting 
case of an electrically floating plate (zT/zo » l/kℓ) does not 
remove the Y-cancellation of the e.m. forces, so that its response 
still contains the factor (1- β2p). We conclude that in the long- 
wavelength limit the beam does not discern how a plate is terminated, 
but only sees if it is terminated or electrically floating.

Let us now consider a plate with matched terminations at 
the two ends. One might argue that, since there are no reflections, 
the fields are the same as on an infinite waveguide 3). Using 
this approach one replaces the two terminations by two semi-infinite 
pieces of line. Then one misses the boundary conditions at the two 
ends (or "end effects”) represented by eq. (l0) and consequently one 
does not find the result V1= 0. This approach seems therefore to 
be incorrect for plates or finite length. Moreover one has to con
sider that the sources at the perturbation pass the end of the line. 
This is another reason why end effects should be included.
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3. Fast Damping of Bunched Beams in the ISR

One might think of using the fast damping method to 
eliminate coherent oscillations due to injection errors in the 
ISR. We will use the following expression for tne e-folding 

(2) time τ , to estimate possible damping rates

2 
τo 4Y

P
c⅛√ < e >

<2πR√
⅛  .

h √ ’ cgs units (15)

or 1
0

π
μ ο

tlB Λ%Λ c e >   zo
γ k i√ <2πR√ < h√

P
mks units.

ro: classical particle radius
For single bunch modes NB is the number of particles per bunch. 

Let us use as upper limit for the relevant ISR-parameters

N = 1012 number of protonsB
(ℓ/2πR) = 0.01 circumference factor of the plates

Zo = 50 ohm wave impedance of the plate-chamber
system

h = 3 cm distance between the plates

We obtain:
 ISRr ≈ 15 msec.o (16)

Typical coherence times in the ISR are 0.5 msec. ref. (9). 
Therefore the damping rate (16) is too small to prevent emittance 
dilution due to injection errors in the ISR. In conclusion the 
fast damping method seems not feasible for the ISR.

4. Fast Damping in the PS

Vertical instability is observed in the PS above transition 
energy(6). This instability seems to be a single bunch effect, the
growtn time is of tne order of 50 msec. at 1.5 x 1012p/p∙ From the

nb
=

=
;
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experimental observation it appears to be unlikely that the effect 
is a pure dipole oscillation. Therefore it is not clear whether 
the Novosibirsk method would damp these oscillations. Let us 
nevertheless use (15) for an estimate of possible damping times in 
the present PS. We insert

N B

h

= 7.5 x 10l0(protons per bunch)

= 0.07 m

 e/2πR = 1.6 x 10-3 (circumference factor for plate of ≈ lm length)

Zo = 50 Ω (wave impedance of plate chamber system)

Ύ = 6.5

with these numbers we find from (15)

PS T o ≈ 200 msec 0 -r- -,--- r8 (metres ) a* 1.4 sec.

This damping time is much longer than the observed growth rate. In 
fact to have a damping time less than 50 msec. one would need about 
30 metres of plate (assuming the above parameters, especially 
Zθ = 50 Ω). It is concluded that rather long plates would be re
quired for damping of single bunch modes in the PS.

The situation is different for coherent bunch modes. Damping 
times may be shorter by a factor 1/20. However, it appears that
part of these modes would be excited rather than damped by the plates.
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APPENDIX 1

Circular Machine vs. nfinite Structure

Section 2.2 does not include the case k = k . We want o
to include this case for a coasting beam. We work in the lab system.
We consider a circular machine rather than an infinite structure.

In the lab system any coasting beam oscillation may be 
represented by a Fourier expansion

(Al) x(z,t)
Γ e i I ⅞ z - (Q+n)ω t )

- ∖ F e κ ∙ft o √L· ⅛
n=∞

which is a super position of normal modes. The frequency of 
mode n seen by an observer in the lab system may be written as

(A2) ωn = (Q ± ∣n∣ ωo Cr i ∣kQ β°

The - sign is due to the fact that (Al) includes negative n and

We include loss assuming in the usual way a series re
sistance R’ and a shunt resistance 1/g ' per unit length of the line. 
We have to replace in (4)

Z k → Z k (l+i -^τ) 
00 00 ωL,

(A3) k o
→ k 2 

o
,, . R, . Gl X(1 + 1 —v, + 1 — , ; ωL, ωC'

where L', C, are the capacitance and inductance per unit length of 
. μ< ∕ T tthe line and k = ω √LC = — . Z = √ —. We find instead of (4) o v o C ’e

=

therefore also negative k k=n/R It is verified that the result (4)
of section (2) is valid for a circular machine where lossless 
plates cover the whole circumference (no termination, no break).



- 16 -

(A4) U(z,t)
, ξ i(kz-ωt) = λ(∣) ÷ e v

p   p G ’ O
Z k (k -k )+i[R,kzo2  k Ί o o '___ o, L______   ro q j

(k2-ko2)2 ÷ k04( ⅛⅛ ÷2F2)2
0 0 o

The electric field is EX  ≈-u/n ,the magnetic field may be obtained • x  
from - B = curl E which yields in the present case By = - :---u.y n ω
Therefore the imaginary part of the Lorentz force
f x = e(E + v .B ) is (A5) x z y

1 (f) m

2 2λ R’k + G’k eλωx ___________o_
. 2 ∕1 2 1 2x2 1 4n (k -k ) + k

<-∣n + ≡∆⅞ ∣^x (1+β Ç ⅛ )
∖kZ k ,√ ' r v κ 'co e o

For"forward waves" (n > 0 in [A1]) ω, k, ko are positive and 
the force (A3) yields damping. For "backward waves" (n < 0) 
(A5) may be positive or negative (stable or unstable), however, 
for the"slow waves" (n < - Q) (A5) is always negative and will 
lead to anti-damping. Note that this result remains true for 
the special case k = k. o

We have thus found that the line will always anti-damp 
"slow wave" modes. However, these are just the unstable coasting 
beam modes which one would like to damp.

As pointed out, the above analysis is valid for continuous 
plates. It neglects the effect of the terminations, a weakness 
that it shares with the models used in ref. (2) and (5)∙

However, we have inserted the periodicity of the machine. 
This has the consequence that (1) or (la) are no longer the 
"Green’s function2 of the system but rather

(A6) u(z,t)

, ∞ . ηk τ-, ei — ζr7 χ ο V R
-æ o h 2πR Δ --—

n=-≈(-) - k02
=
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Note that (A6) is the same as (la), section 2.2, except 
that the Fourier integral is replaced by a sum.

This will, in general, remove the pole in (la) which is 
responsible for the fast damping of a single bunch in an infinite 
structure.

Therefore, the treatment of ref. (2) and (3) is 
questionable as it neglects the periodicity of the machine. In 
addition for plates of finite length end effects are important 
and it seems incorrect to replace finite plates by infinite ones 
weighted with a circumference factor.


