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Iterative numerical solution of scattering problems

Lauro Tomio and Sadhan K. Adhikari
Instituto de Fisica Teérica, Universidade Estadual Paulista,

01405-900 Sio Paulo, Sdo Paulo, Brasil

An iterative Neumann series method, employing a real auxiliary scatteting inte
gral equation, is used to caleulate scattering lengths and phase shifts for the atomic
Yukawa and exponential potentials. For these potentials the original Newmanu series
diverges. The present iterative method yields results that are far better, in conver
gence, stability and precision, than ather momentum space methods. Acenrate result
is obtained in both cases with an estimated error of about 1in 10 after some 8- 10

iterations.

PACS: 03.80.+r, 03.65.Nk, 34.40.+n
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Numerical solutions of the Lippmann-Schwinger-type scattering inlegral equation
are usually performed by reducing this equation to a matrix equation of finite dimen-
sion [1]. Such a reduction is possible as the original integral equation has a compact
kernel. However, this procedure needs a delicate treatment of a principal-value in-
tegral over a fixed point singularity in the kernel of this equation. Then remains
the task of solving the finite dimmensional malrix equation. In realistic situation the
dimension of the matrix could be quite large. A direct solution of this discrete set of
linear equation, for example, by matrix inversion, could involve large numerical effort
for obtaining high precision result, due to the accumulation of numerical errors in this
approach. Alternative variational methods deal with a small set of linear equalions
and have the advantage of yielding good results with relatively little numerical effort
[2 t6). However, the appearance of spurious singularities [10, 17 20], and nonmono-
tonic and slow convergences of these methods have put a liritation on their use for
obtaining high precision results.

lerative solution of Fredholin integral equations are known for leading to rapidly
convergent results for weak kernels [1]. The Lippmann-Schwinger equation permits
terative solution whick converges for a sufficiently weak potential or at sufliciently
high energies. Moreover. for most scaltering energies the iterative solution of a re-
alislic scaitering equation is either divergent or very slowly convergent Lo be of any
practical use.

The present Letter considers an iterative nnmerical method for scattering prob-
ferns. The method relies on solving an anxiliary nonsingilar equation whose kernel
is free of the principal-valne preseription needed in the K matrix equation, or the
te -+ U outgoing wave limit needed in the ¢ matrix equation. The kernel of this anxil-
iary equation, in contrast to that of the original ¢ or the K matrix cquations, is made
of the difference between two terms which cancels the fixed point singularity of the
momentum space Green's function. Consequently, by adjusting a free parameter, this
kernel ran be made sufficiently weak in order to yield a rapidly convergent iterative
Neumann series for a wide class of scattering problems. The I or the 1 matrix el-
crients are then obtained by performing an integral over the known solution of the

anxiliary equation. This method was first. suggested for nuelear seattering problems



1,21-25]. However, the aceuracy of the method has really never heen tested. i
nuclear scattering problems, as the potential is not accurately known. usually, one 1%
content with approximate solutions.

The situation is entirely different in atomic and molecular physics. where the
basic interaction is known and this has led people to develop complicated muodels
and perform high precision calculations. For this one needs intelligent and stable
numerical methods. The iterative method involving nonsingnlar equation is here
tested for iwo of the commonly used model potentials - the atomic exponential and
the Yukawa potentials. After some 8 iterations we obtain results with estimated ervor
of about 1 in 10'° for both these potentials. These results are more accurate than any
currently available momentum space numerical results by several orders of magnitude.
It is unlikely that the direct maltrix inversion or the use ol variational principles will
lead to results with same precision.

The present iterative methed can be applied both to single-channel and multi-
channel scattering processes [22-24]. For real hermitian potentials, the method is
formulated in terms of a real operator, called the I' matrix, which satisfies a real
nonsingular integral equation. No complex variables or principal-value prescriplions
are needed for the numerical treatment of this equation. The t or the I matrix
elements are then found out by evaluating an integral involving the I matrix. Details
of this method have appeared in the literature [21- 23] and a description is given
below.

In the single-channel case the partial wave matrix (in units of 7% /2m) satisfies

2o Vip, g)ilg, ki k7
tp kik?)y = V(ph) + — / q'dg _(_I»-(H‘\-f_,“-""~ ()
T Jo b2 — gt 420
where V is the potential (in units of h*/2m), k the ou-shell wave-umber and i the
reduced mass. The general scheme for the nonsingular reduction starts by introducing
a real function y{k, ¢), such that y(k, k) = 1. Then the Lippmanu-Schwinger equation

(1) can be rewritten as
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The t matrix can be expressed in terms of the I miatrix. which satishies
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The I matrix is nol time-reversal symmetric: Plg,g's k3 # Dl q; k). Thisis not a
problem in rnmerical calculation.
‘The formal manipulation needed to relate the t matrix with the I matrix becomes

{ransparent it the operator form. In operator form Egs (2) and (1) are written as

f= 1V + AL+ VGal, (5)

=V AL (6)

with Vip,q) = V(p.k). and Go(p,q) = &q - A — ¢ + 10y "ylkq). Then 1 is

expressed in terms of I' by
t= 1+ TGt (7)

with D(p,q; &%) = T(p, ki k*). Equation (7) leads to the following on-shell { mabrix
element [1,21]
. (k, k)
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Ouee the real nonsingular equation (1) is solved, the ¢ matiix can be calculated by

performing the complex integral of (8). The zeros of the denominator of Eq. (8)
correspond to bound states and this t-matrix does not have spurions poles. This
fact has been used to develop a related method for the binding energy and bound
state wave function [26]. The only principal-value prescription or the ie — 0 hmit
appears in Bq. (8), which can be handled easily. For numerical purpose Bq. (8) can
be rewritlen as
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o (k2 — q% + 10) '

i'(ﬁ:k;k” .
(9)




While arriving at Eq. (9) the integral in the denominator of Fq. (8) has been broken
up into its principal-value and imagivary delta function parts and the principal-value

integral eliminated by the following i<lf=ntity:

/ kz—p =0, (10)

where k is any real positive number and F denotes the priucipal-value preseription.
The inverse of the on-shell & matrix is also essentially given by Eq. (9) but with
the imaginary part deleted. Explicitly.
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With the present partial wave projection once has, Tor S wave al zero energy, the

scattering length a given by
a = K(0.0:0) = 1{0.0:0). (12)

At other energies the phase shifts & are defined by

‘ !
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The present method relies on the solution of the auxiliary nonsingular 1" matrix
equation (1). The real nonsingular kernel of this equation, given by Eq. (3). involves
a difference of two terms. At the on-shell point. ¢ = k, and the expression in the
square bracket of this equation vanishes, which makes the kernel A4 both nonsingntar
at the on-shell point and weak compared to that of the original nonsingular equation.
This property of the kernel A will e nsed for the iterative solution of the scattering

I' matrix equation {4), defined by
I, =V 4 AL o - 2o (N

where 'y = V.
The range of momentum integration in 3. (1) covers the whole phase space coe.
0 to oc. So one encounters an infinite integral. The Fredhelm nature of the problem

grarantees Lhat the kernel decavs rapidly to zero as the momentum variables tend to

il

infinity. It is often useful, from a practical point of view, to transforn the infinite
integral to a finite integral. Given the Causs-Legendre points between —1 < x <1,

this is achieved by the transformation

e e(122)

which maps 0 < ¢ < oo into —1 <z <1 where the images of points = = —1,0,1 are

g = 0,¢, 00, respectively. The differential dq in Eq. (4) is directly oblained from the
{ransformation. Obviously, one can have an infinite class of transformations, each one
distributing the integration points in a different fashion. In fact atl of these mappings
correspond to a maximum value of ¢ in momentum space which is efticiently controlled
by the parameter ¢. This corresponds to a ent-ofl in the infinite integral. Otherwise,
the choice of the parameter ¢ is entirely arbitrary. Generally, the parameter ¢ is
dictated by special features of the kernel and should be chosen in order to get the
most accurate numerical result with a given nmumber of mesh points.
In order to illustrate the method we consider the S wave scattering of an electron
by the following exponential and Yukawa attractive potentials
X
V(r) = ——= exp(—r/ao), (16)

2
Tag

and
e xp ~r/a(,

Vi) = -y

mad  (r/aa)

{17)

where ag is the Bohr radius of the hydrogen atom. Both these potentials have been

used in nunterons tests of various compntational methods in atomic physies [8,10 12,
g o Lo 12 . :

16.27,28]. After factorization of k /2m, the S wave momentum space matrix elements

of the above potentials are, respectively, given in atomie units (a1} by

Vipogh = =41+ ()7 4+ (= 0] (18)
El“’l
. 1 I+(p+q)
Vip.g) = —— In—rom—/—0c. 19
(p-a) 2pq ! 1+ (p—q)? (19)



In atomic units, the length is measired in units of g and the momentnspace matrix
elements ¢ and V are also given in this unit. T'he wave nuinber is in units of ag’.

I order to performn a munerical caleulation one has to decide on the number of
integration mesh points, the constant ¢ in transformation (15}, and a choice for the
function y(k,q). [t would be better if the infinite integral in the I' matrix equation
can be truncated for a relatively small value of momentum. Motivated by this we

consider
k4 ol 2
yik.q) = ‘-T *,S_q] , (20)

for the exponential potential, and
k24 of i
Yk g) = [;;(—}7] (21
for the Yukawa potential, where o is a constant which should be varied to obtain
a rapid convergence of the Serative solution of Fq. (4). With these choices of the
function 7, the leading asvmptotic hehavior, for p,g — oo, of the two terms i the
kernel A, given by Eq. (3), cancels. In addition, we performed numerical calculation
for y(k, g) = 1. With this latter choice the integral equation (4) for the I matrix has

convergent iterative solution for any local potential [29].

To start with we performed calenlations for the choices (20} and (21) for y(A,q).
In order to find a result precise to four or five significant figures a small valne of
the constant ¢ {~ 1) and a relatively small pumber of Gauss-Legendre mesh points
N (~ 20 — 30) is needed. The constant ¢ determines how far the integral extends
in momentum space.  But for obtaining accurate results, hoth ¢ and N are to be
increased. Tt is well known that the Yukawa potential is rapidly varsing for snall 1
compared to the smoothly varying exponential potential. In the momentin space

the Yukawa polential extends far heyond the exponential potential as is clear froin

their asymptotic behaviors:

lim Vip.g) ~ 0M, {22)
pasces
where M = i for the Yukawa potential and M = 2 for the exponential potential.

Jonsequently, in order to achieve the same degree of precision one needs a much

larger N and ¢ for the Yukawa potential compared to the exponential potential.

T

Numerical calealations were perforined in double precision maintaming 16 signif-
icant digits. We fonnd that ¢ =20 and N =128 yielded results accurate to 1 in 1to
for the exponential potential. In order to ubtain the same accoracy for the Yukawa
potential one needs ¢ = 100 and N = 400. These results were found to be stable
when the number of mesh points N is increased. The use of almost any nonzero a
i y(k, g} of Bqs. (20) and (21) for these ¢ and N leads to the same stable converged
result from the fterative series solution of the [ matrix equation. However, the initial
convergence depends on the value of o Aftera small amount of experimentation we
used o = 3.0 for the exponential potential and o = 3.5 for the Yukawa potential;
these choices improve the lower order terms of the iterative solution.

The iterative series converged rapidly at all energies for both potentials. The
iterative Nenmann series based on the original Lippmann-Schwinger equation diverges
in hoth cases. In the present study we report results for & = 0, .15 a.n., and 0.55
ati At zero cuergy the results are for the scattering length in atomic units and at
other energies they are for the tangents of the phase shifts. The resnlts are exhibited
in Table L. The entries in the table are the ratio of the resull, for a specific iteration
1 and the converged result. The converged results have been obtained by performing
calenlations with 1000 integration mesh points. T all cases the convergence is rapid
and smooth, There are no oscillations aronud the converged value as the nunber of
iferations is increased.

In the present method there is some arbitrariness in choosing the most desirable
2(k.q). This arbitrariness is tnrned to good advantage — the hunetion ~(k.q) has
been chosen to obtain a rapid convergence of the iterative solution. However, the
final converged result is independent of the specifie choice of y(k.q). For the simplest
choice, 7 (k, q) = 1. the converged result is obtained after some 2 to 3 more iteralions
{han in Table 1. This has been illustrated for the scattering length in Table 2 for
the two potentials, In Table 2 we again show the ratio of the calenlated results and
the converged results. The n =1 result in this case yielded accidentally very small
{large} numbers for the Yukawa (exponential) potential. This means that in Eq. (8)
the numerator or the denominator almost vanishes, respectively. for Yitkawa or the

exponential potentials. This is not of concern for results obtained with large n. The




vanishing of the denominator of Eq. {8) corresponds to true bound states [1], and
this does not happen in the scattering region for a converged I'. Also, for a converged
T’ the numerator of Eq. (8) can not have spurious zero.

The entries 1.0 in Tables 1 and 2 denotes that the result has converged to the
desired precision. The small deviation from 1.0 in some of the converged results in
Tables 1 and 2 does not indicate a defect of the iterative scheme but simply meaus
that the munber and/or distribution of mesh points cmployed is not enongh to abtain
the desired accuracy. Also. compared to the mumerical solutions obtained by the
variational methods for the same potentials [10 1201527, 981, the present method
vields vastly superior results.

Though we have illustrated the present method here for two simple potentials,
it is applicable in more complex sitnations, for example, in solving nnlt channel
prablems. Also, it can he used for the calentation of the off-shell A (or the 1) matrix
elements K (p, q; k%) where p # F # q. We have indeed calenlated these elements and
found that they converge equally rapidly. Essentially, the same method ean be nsed
for the calenlation of the binding cnergy and the hound state wave fund tion {26]. The
present. iterative method, which involves only several matrix vector multiplications,
is also numerically much more economic than a direct solution by matris invertion,
specially when the dimension of the mat rix is large. The I matrix is real for cach
order of iteration and the solution for each iteration obeys the constraints of noptarity.

The multi-channel version of the present method[22 24] has been nsed in solving

electron-hydrogen{36] and position alkali atom3T senttoving vsivg the b onpline
approach. However, in these applivations the T omatric eqnation was sobved ety
inversion and not, by iteration. Preliminary model caleulations in nuelear physics
produced good convergence for the iterative solntion of the multi-channel neutron
deuteron scattering I matrix equations 123]. In view of the rapid convergenee obtained
in the present iterative study, it will be interesting to try an iterative solntion of the
I" matrix equation in multi-chanuel problems.

The work has been supported in part by the Consetho Nacional de Desenvolvi
mento Cientifico e Teenologico, Fundagao de Amparo A Pesauiza do Fatado de Sao

Panlo. and Financiadora de Fstudos ¢ Projetos of Brazil.
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TABLE 1. Scattering lengths and phase shifts obtained from the iterative
of the T matrix equation [or the

solntion

exponential and the Yikawa potentials for A=t

0.15 2.u.. and 0.55 a.., with y(k.q) given by Eqs. (20} and (21}, The ratios of the

calenlated result for a particular iteration un to the converged exact result are

shown in

each case. At k = 0 the exact scattering lengths are 8.693254332 an. {exponential)
and 7.911380206 a.u. (Yukawa), The exact results at k= 015 au. are tané =
—1.744939321 (exponential), — 1386339121 {Yukawa); and at A=0.55 a0 are fan &
= 2200382707 {exponential). 5797211392 {Yukawa).

n

,
| i

Y o wao o ae w o o— ol
|

[==)

Yukawa

(k =10}

(k=) N

0.4550407017
1.0628835422
1.0009806100
1.0000400237
1.06000019050
1.0000000823
1.0000000013
0.9999999996
1.0000000000
1.0000000000

0.5889624075
1.1094969597
1.0013279806
0.9999635234
0.9999946001
0.9999997030
0.9999999926
1.0000000002
1.0000060000
10000000000
1.0000000000

wl‘f‘,x;on(-nﬁalﬁg

Yukawa

(k= 0.15)

Exponential

(k=0.15)

24070888958
0.9508377182
0.0991722408
0.9999916475
1.0000023971
1.0000004774
1.0000000709
1.0000000098
10000000014
1.0000000003
1.0000000001

1.9537093230
0.8898(128226
0.9972672993
1.0000133976
1.0000067319
1.0000004479
1.0000000150
1.0000000000
1.0000000001
1.0000000002
1.0000000002

Yukawa
(k= 0.55)
~0.5% 1089599
0.8505145555
0.9953429156
1.99945246R87
0.999932845%
0.999991627R
0.9999989473
0.9999998667
(1.9999999826
0.9999999973

| 1.0000000000

| 9999999999»1 )

Exponential

(k = 0.55)
0.6875213342
0.0543748521
1.0035508106
1.0001518592
10000019555
0.9999997597
0.9999999776
0.99999999R9
0.9999999999
0.9999999999

0:%)99999999

TABLE 2. Scattering leugths obtained from the iterative solution of the " matrix

equation for the exponential and the Yukawa potentials for y(k.g) = L. For other

L oX ~ o e W N — O

L}l()

details see Table 1.

Yukawa

(k=10

Exponential

(k=0)

| 0.2528003898
0.00600060000
0.71 11651786
1.0595716354
0.9957968559
1.0002435433
0.9999891830
1.0000003827
0.9999999890
10000000003
1.0000000000

0.4601268808
99999999.002
0.9394257325
1.00515%1219
0.9997361315
1.0000100510
0.9999997065
1.0000000068
0.9999999999
1.0000000000
1.0000000000




