
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - PS DIVISION

CERN/PS 97-62 (CO)

INTEGRATION OF A RELATIONAL DATABASE IN THE CERN PS CONTROL
SYSTEM

J.H. Cuperus, Μ. Lelaizant

The control system for the CERN 26 GEV Proton Synchrotron and its injectors is a generic system
which can be adapted to other accelerators. Most configuration data are in a relational database.
From these data we can generate object interfaces for equipment, configuration files for front-end
computers, a read-only database for accelerator control interfacing, and full dynamic
documentation on the Web. The database is also used in real time for runtime references and
archives, and for the working data of several programs.

Int. Conference on Accelerator and Large Experimental Physics Control Systems
(Icalepcs'97), November 3-7,1997, IHEP, Bejing, China

Geneva, Switzerland
17 November 1997

Integration of a Relational Database in the CERN PS Control System

J.H. Cuperus, Μ. Lelaizant,
CERN, 1211 Geneve 23, Switzerland

Abstract

The control system for the CERN 26 GEV Proton
Synchrotron and its injectors is a generic system which can
be adapted to other accelerators. Most configuration data
are in a relational database. From these data we can
generate object interfaces for equipment, configuration
files for front-end computers, a read-only database for
accelerator control interfacing, and full dynamic
documentation on the Web. The database is also used in
real time for runtime references and archives, and for the
working data of several programs.

1. Introduction
The control system for the CERN PS accelerator complex

(7 accelerators, not including SPS and LEP), is a generic
system which can be adapted to other accelerators. It must
steer the beams through the interconnected accelerators
with up to 5 particle types accelerated in cycles grouped in
a supercycle. This means that thousands of parameters
must be changed each cycle of about 1.2 seconds. Some
help from a database is required.

2. The Database

2.1 History of the database

The development started in 1980 when a file system
database made by us on a NORD computer was used to
support a data-driven alarm system. The data expanded to
cover other subsystems and, in 1986, the data were moved
to a 0racle-V5 database system on a central mainframe. In
1991 they moved again to a local server, dedicated to
accelerator control.

2.2 The database server

The relational database management system (RDBMS) is
Oracle-V7.3, running on an IBM RS/6000 server with 256
MB of memory and 3 hard disks of 2.2 GB each. Operation
is continuous with on-line backup during the night. In case
of hardware malfunction, we can quickly switch to a
backup machine without loss of data, but there has been no
need for this in 6 years of operation on two different
servers. The mean load of the database is low so that
almost all requests can be serviced quickly.

2.3 Data Structure

The hardware and software is described with about 100
core tables managed by the database section. Of these, 60
describe software classes or hardware types and the rest
stores the attributes for the instances of these types.

An example of a hardware type description is table
MODULETYPES, which lists the fixed attributes of
VME, CAMAC, G64, and other module types. Some
attributes, such as default VME base addresses and
interrupts, are only filled in when relevant.

An example of an instance description is table
MODULES which lists the location, function, addresses,
and exceptions of individual modules.

When the number of attributes is too large, or when the
list of attributes varies too much from class to class, we fall
back on a structure like: INSTVAL = {CLASS +
MEMBERNO + VARNAME + VALUE} which contains
values for all the static (read-only) attributes which are
defined in the class. These values can be of any type, even
array, but are stored as strings.

2.4 Data Input

Fig1 : An example of a data input screen

Input of static data is mainly through interactive forms
(Fig. 1), grouped in menu structures per application. The
forms are generated with the help of our templates on top
of the Oracle 4.5 Forms.

Some bulk loading from external data sources such as
data files, spreadsheets, or other databases is also done
and, occasionally, the data manager can transform the data
with SQL database language statements or with scripts.
Dynamic on-line data, such as accelerator settings,
measurements, and user actions, are mainly written to the
database by C procedures with embedded SQL.

And some of the data migrated over 17 years through 5
platform changes.

2.5

A subset of the data in the RDB can be downloaded in a
simple real-time database called DBRT, which is based on
NDBM, a commercial UNIX hash table system. This has
the following advantages :
* Each accelerator can have its own copy which makes

the system less dependent on the central database.
* Access is through procedure calls and the application

programmer does not need a SQL precompiler.
* Access time is better guaranteed.
* Complex derived objects can be constructed off-line.
* DBRT shows a consistent snapshot of the data at the

moment it was generated.

A variant of DBRT is now experimentally used for
initialising Java objects through UDP network calls. This
may later be replaced by a direct RDB connection through
JDBC (Java Database Connectivity) or through embedded
SQL in Java..

2.6 Dynamic Documentation

Fig.2: An example of dynamic documentation on the Web

A Web page can reference a script in the server directory
cgi-bin which calls procedures in the database

programming language PL/SQL. These procedures, stored
in the Oracle database, construct dynamic pages (Fig.2)
according to the parameters with which they are called.
These pages are typically also full of links which refer to
other dynamic pages and so on. At present, 113 procedures
can generate tens of thousands of different pages in 113
formats. They cover the whole control system, including
the structure and status of the database.

3. Applications
The most important applications are described below.

Support for these applications goes from major
responsibility for the database section (2 persons) to
merely providing the database environment.

3.1 Object Oriented Equipment

Access to the accelerator equipment is with Control
Modules, which are seen by the application programmers
through a uniform object oriented interface [1].

A piece of equipment is identified by its name or,
alternatively, by its class name and member number. About
100 classes are defined in the database in a hierarchical
structure with inheritance. All instance read-only data
(constants) are also defined in the database.

Fig3: Control Module generation

When the data are filled in (and the method library
updated), a set of classes can be automatically compiled
and installed in one of the 100 front-end computers (called
Device Stub Controllers or DSC) each sitting in a VME
crate (Fig.3).

3.2 Automatic Computer Configuration

From information about VME and other crates and
modules, equipment, and programs, a file named rc.local is
generated for each DSC (Fig.4). This file contains all
information for starting up and initialising the drivers and
other programs which are specific to this DSC, in the
proper order and with the right priority and arguments. The

9 class and 2
instance descript­
ion tables

Control
Module
Frame

Initialised
Data
Structures

Data Structure and
Method Template
Generation Program

Templates
Method
Library

C-Compiler

Fully initialised Control Modules installed on
one of more than 100 front-end computers

file contains also comments which describe the
configuration of the DSC and are readable by a
maintenance program [2].

5 type description tables for computers, crates,
modules, drivers, and programs.
7 instance description tables for installation,

exceptions, and parameters.

Initialisation-file Generation Program

DSC Initialisation-file rc.local

Fig.4: Generation of rc.local initialisation files

3.3 Alarm System

Any control module (CM) class can inherit variables and
methods from the ALARMS class, on top of its normal
inheritance. This inheritance includes the generic method
ALARM which depends for its execution on control and
status word descriptions in its class and instance variables.
These values are derived from the database [3].

An active scan program acquires a list of equipment and
periodically scans the corresponding CM with the method
ALARM which responds with an alarm code (Fig.5).

The display program can display the corresponding alarm
messages and give details on request.

Real-Time
Database
DBRT

7 type
description
tables and 2
instance tables

All control
modules
implementing
alarms

Active alarm scanner and collector

Interactive alarm dispay(s)

Fig.5: Data flow in the alarm system

3.4 Equipment Archives and References

Each piece of equipment can have the values of several
attributes stored for each of 24 virtual accelerators. These
references are set to the operational values on request of
the operator, individually or for any set of them. Later, the
operator can use these values to restore normal operation
after experiments or corruption.

Any set of reference values can be stored in a named
archive. A large number of archives is allowed. These
archives are used to come back to settings which gave good
results in the past.

3.5 Generic User Interface

After the operator logs in, he is presented with a menu
interface which permits him to select the working
environment and the programs to be started.

Generic programs are available for controlling equipment
and for displaying values in the desired format, for single
pieces of equipment or for various ensembles (Fig.6). This
is aided by meta-data which specify the important
properties for each class.

All this is data-driven, with data coming from the RDB
viaDBRT [4].

512.15 Amp 30.00 Amp.

Fig.6: Knobs for setting values of accelerator parameters.

3.6 Supercycle Editor

An interactive program permits the operator to set up the
various beams and cycles which compose a supercycle. All
this is described with tables in the RDB which also
contains an archive of useful past cycles, beams and
supercycles [5].

3.7 Expert Systems

A few expert systems have been built, using the database
as a knowledge base:
• An experimental system relating beam data and

alarms [6].
• A set-up system for initialising the equipment

interface and the equipment with a specially made
inference engine [7].

• A system converting rules to SQL statements for
checking the compatibility of cycles in a
supercycle[8].

These systems work well but there is no unified
approach. We think it would be logical to put both facts
and rules in a relational database. Some means of indexing
the rules would avoid linear searches through huge rule
bases. What is missing is an inference engine integrated in
the database, perhaps based on an extension of the SQL
language. This marriage between RDBMS and expert
systems seems natural to us but database designers have
other priorities at the moment.

Control On Control On
Statu0s On Status On

CCV CCV
Ref. 512.15 Amp. Ref 30.00 Amp.
Init 512.15 Amp. Init 30.00 Amp

AQN 30:09 Amp.

3.8 Data extraction from Drawings

A lot of information about the control system is contained
in drawings made with the help of Computer Aided
Drawing systems. It would be useful to be able to extract
the geographical location of a component or the number of
a cable between two connectors. There are however no
accepted data format standards and little provision is made
for extracting information beyond part lists. Some way to
query the data with at least a subset of SQL is desirable.

We tried automatic information extraction from lists that
could be generated but this was not implemented because
the efforts were out of proportion to the benefits.

3.9 Other Applications

Independently developed applications may use the core
tables and add tables of their own, integrated with the core
data by agreeing on common identifiers. Examples are:
• ABS [9] which describes beam paths, magnets, and

monitors in order to calculate operational settings to
steer the beam.

• NAOS [10] which controls a system for acquiring and
digitising signals for display and reference.

4. Why a Relational Database ?
We make considerable efforts to reconstruct software

objects from data in the database, so you may ask why we
do not use an object oriented database. The advantages of a
relational database for accelerator controls are:
• The data are in a safe environment, well protected

from unintentional changes by faulty programs.
• Data access is with the standard SQL language and is

not restricted to a set of closely related programs.
• The rules for modelling complex structures in a

relational database are well known and rather easy to
apply with some experience.

• The resulting tables are well adapted for filling-in the
data through forms.

• Strong data relations are grouped in tables while
weaker relations can be left implicit, which keeps the
structure simple and versatile.

• Object views adapted to particular applications can be
derived with SQL statements. This may be inefficient
but it is straightforward and fast enough for the
applications which are of interest here.

• Most large and complex control systems will grow,
have frequent modifications, and often whole new
subsystems have to be integrated without disturbing
existing applications. All this is rather easy with a
relational database.

Version 8 of Oracle, now becoming available, has many
new object-oriented features, implemented on top of the
RDBMS. It is not yet clear how we can use these features
and whether they will make things simpler.

Of more immediate interest is support for storage,
display, and querying, of complex datatypes like text,

images, video, and sound. Especially important for us is
support for collections such as arrays and lists. These
developments fit perfectly in the relational model.

5. Conclusion
We have demonstrated that it is quite possible to store

almost all configuration data and many operational data in
a relational database. These data can be used to generate
interface modules, install programs, and provide programs
with data. The database is especially useful if the whole
system is integrated and not just a number of unrelated
subsystems. This requires close collaboration between the
database section, responsible for the structure of the core
tables, and the application programmers. An important side
effect of a central data store is the availability of the
information on the Web, for local use and external
documentation.

6. References
[1] L-Casalegno, J.Cuperus, C.H.Sicard, Process

equipment data organisation in CERN PS controls,
ICALEPCS-89, Nucl. Instr. & Meth. A293 (1990)
412-415.

[2] J.Cuperus,A.Gagnaire, Automatic Generation of
configuration files for a distributed control system,
ICALEPCS-95, Nucl. Instr. & Meth. A352 (1996)
148-153.

[3] J-M. Bouche, J.Cuperus, Μ.LeIaizant, The data driven
alarm system for CERN PS accelerators, ICALEPCS-
93, Nucl. Instr. & Meth. A352 (1994) 196-198.

[4] J.Cuperus, F.Di Maio, C.H.Sicard, The operator
interface to the equipment of the CERN PS
accelerators, ICALEPCS-93, Nucl. Instr, and Meth.
A352(1994) 346-349.

[5] J.Lewis, V.Sikolenko, The new CERN PS timing
system, ICALEPCS-93, Nucl. Instr. & Meth. A352
(1994)91-93.

[6] P.Skarek, L.Varga, Multi-agent cooperation for
particle accelerator control, Expert Systems with
applications Vol. 11 No.4 (1996)481-487 (Pergamon
I Elsevier Science Ltd).

[7] G.Daems, V.Filimonov, V1Homutnikov, F.Perriollat,
Yu.Riabov, P.Skarek, A knowledge based control
method, ICALEPCS-93, NucI. Instr. & Meth, A352
(1994)325-328.

[8] J.Lewis, P.Skarek, L.Varga, A rule-based consultant
for accelerator beam scheduling used in the CERN PS
complex, ICALEPCS-95, Nucl. Instr. & Meth. A352
(1996) 703-706.

[9] B.Autin, F.di Maio, Μ.Gourber-Pace, Μ.Lindroos,
J.Schinzel, Database for accelerator optics, this
conference.

[10] B.Dupuy, P.Fernier, B.Frammery, S-Pasinelli, A VXl
system for observation of distributed analog signals.
RT93, Eight Conference on Real-Time Computer
Applications, June 8-11, 1993, Vancouver, Canada.

