PS/BR Note/79-19 17 décembre 1979

BILAN DE QUATRE ANS D'UTILISATION (DEC. 1975 A NOV. 1979) DES THYRATRONS EEV-CX1159 DANS LES CINQ ALIMENTATIONS DU DISTRIBUTEUR D'INJECTION DU PS-BOOSTER

J.P. Royer

1. INTRODUCTION

Le faisceau de 50 MeV en provenance du linac est distribué aux quatre niveaux du PSB par un système de cinq aimants pulsés. L'énergie emmagasinée dans les générateurs d'impulsions (PFN) est transférée à chaque aimant correspondant au moyen d'un thyratron (Fig. 1). Le type de thyratron choisi est un thyratron au deutérium English Electric CX1159 en verre.

Cette note résume et analyse les résultats obtenus avec ces thyratrons sur l'ensemble des cinq alimentations du distributeur vertical, pendant quatre ans d'opération.

2. CONDITIONS DE FONCTIONNEMENT

2.1 Performances demandées

Les caractéristiques actuelles du faisceau dans la ligne d'injection imposent aux alimentations les performances¹⁾ suivantes:

Т	ab	1	ea	u	1
_	_	-	_	_	-

Performances demandées

Tension de charge max.	25 kV
Courant d'impulsion max.	500 A
Impédance caractéristique PFN	25 Ω
Durée du plateau	100 µs
Temps de montée du courant	80 ns
Dépassement de courant ("overshoot")	37
Variation du courant pendant le plateau	±0,5%
Taux de répétition de l'impulsion	l pps
Reproductibilité d'impulsion à impulsion	2×10^{-3}
	I

2.2 Circuits électriques et fonctionnement

Pour obtenir ces performances le thyratron CX1159 est monté dans un tube coaxial mis au potentiel de la cathode, à l'intérieur d'un module interchangeable. Le courant de grille I_{Gl} , les tensions de chauffage U_{H} et de polarisation de grille U_{C2} sont réglables depuis l'extérieur du module.

Le schéma de principe du circuit d'allumage du thyratron est montré à la figure l.

Le thyratron CX1159 est une tétrode dont la coupe est montrée à la figure 2.

Le chauffage de la cathode (température $\approx 800^{\circ}$ C à 6,6 V) permet d'obtenir une bonne émission d'électrons. La pression du gaz à l'intérieur du tube (≈ 500 Torr à 6,6 V) est maintenue par le réservoir d'hydrogène incorporé. Une zone de gaz ionisé est créée entre la grille Gl et la cathode; le potentiel négatif de la grille G2 empêche la conduction du courant entre anode et cathode. Quand une impulsion positive est appliqué à la grille G2, le tube devient conducteur.

2.3 Conditions de fonctionnement des thyratrons

Les différents angles de déflexion, la valeur de la résistance d'adaptation, le réglage de la ligne à retard imposent aux alimentations des paramètres différents de fonctionnement. Seules les conditions les plus défavorables pour le thyratron sont prises en compte. Le tableau 2 ci-dessous compare les données essentielles fournies par EEV²⁾ (en anglais pour éviter toute erreur d'interprétation) et les paramètres opérationnels pour les tubes CX1159.

Tableau 2

Comparaison entre données EEV et valeurs opérationnelles CX1159

	EEV data		CX1159-IDIS
	minimum	maximum	valeur opérationnelle
ANODE			
Peak forward anode voltage (kV)	-	33	24
Peak anode current (A)	-	1000	460
Average anode current (A)	-	1,25	0,04
Anode heating factor (V•A•pps)	-	14 × 10 ⁹	9,1 × 10 ⁶
Peak output power (MW)	-	16,5	5,5
Rate of rise of anode current (A/µs)	-	5000	5000
GRID 2			
Unloaded grid 2 drive pulse voltage (V)	200	1000	-
Rate of rise of grid 2 pulse $(kV/\mu s)$	1	-	2,5
Peak inverse grid 2 voltage (V)	-	450	400
Load grid 2 voltage (V)	-50	-150	-130
Forward impedance of grid 2 drive circuit (Ω)	50	800	160
GRID 1			
DC grid 1 unloaded priming voltage (V)	75	150	115
DC grid 1 priming current (mA)	50	100	60
CATHODE			
Heater voltage	6,3	± 5%	6,8 V
Tube heating time (min)	5	1	5
Heater current (A)	18	25	~ 25
RATING FOR SINGLE SHOT			
DC forward anode voltage (kV)		30	24
Peak anode current (A)		15000	460
Product of peak current and pulse length (A.s)		0,6	0,05
Repetition frequency		1 pp10s	1(1.6) pps

3. STATISTIQUES

Les performances demandées aux thyratrons (voir tableau 1) ont été entièrement obtenues avec les conditions de fonctionnement données dans le tableau 2.

Les informations concernant la durée de vie des thyratrons pendant quatre ans d'opération (de décembre 1975 à nov. 1979) sont reportées dans le tableau 3.

- 3 -

- 4	4	-
-----	---	---

<u>Tableau 3</u> Statistiques des thyratrons CX1159

Niveau	Numéro du thyratron	Année de fabric no de série	UH.	Nombre d'impulsions	Nombre d'heures de fonct.	Raison du changement
DIS4	250 392	76-08	6,3	7 800 000	3 600	Gl ct ct avec cathode
DIS1	226 596	74-15	6,3	11 280 000	5 760	G2 ct ct avec cathode
DIS2	250 090	76-08	6,3	7 800 000	3 600	G2 ct ct avec cathode
DIS3	218 633	73-38	6,3	9 960 000	4 320	G2 ct ct avec cathode
	250 896	76-08	6,3	0	0	Défaut de fabrication
DISO	251 812	76-13	6,3	996 000	432	Pas de décharge HT
DIS1	218 644	73-38	6,3	10 120 000	5 040	U _{G1} ct ct avec cathode
DISO	250 827	76-10	6,3	3 000 000	1 200	U _{G1} > 30 V métall. du verre
DIS1	250 265	76-08	6.6	8 555 000	3 800	$U_{C1} > 30 V $ métall. du
						verre
DIS3	250 264	76-08	6,6	8 900 000	3 779	G2 ct ct avec cathode
DISO	251 623	76-13	6,6	8 900 000	4 000	Pas de charge HT
DIS3	259 031	76-50	6,6	1 433 000	892	G2 ct ct avec cathode
DIS4	251 251	76-12	6,8	5 369 454	2 664	Ne tient plus la charge
DIS2	249 832	76-08	6,8	15 000 000	7 134	Ne tient plus la charge
DISO	256 538	76-46	6,8	5 567 633	3 027	Ne tient plus la charge
DIS4	258 954	76-47	6,8	3 156 536	1 841	G2 ct ct avec cathode
DISO	259 295	76-50	6,8	6 506 097	2 415	G2 ct ct avec cathode
DIS2	258 870	76-50	6,8	10 168 212	4 312	G2 ct ct avec cathode
DIS1	251 620	76-13	6,8	20 070 000	9 556	Pas de décharge HT
DIS3	259 267	76-50	6,8	10 494 000	4 448	G2 ct ct avec cathode
DIS2	259 200	76-50	6,8	6 288 882	3 263	G2 ct ct avec cathode
DIS4	258 966	76-50	6,8	13 680 000	6 284	G2 ct ct avec cathode
DIS4	261 903	77–09	6,8	106 078	57	G2 ct ct avec cathode
DISO	258 998	76-50	6,8	11 743 784	5 858	G2 ct ct avec cathode
DIS3	261 976	77-10	6,8	9 065 622	4 481	G2 ct ct avec cathode
DIS4'	262 174	77-16	6,8	2 124 809	961	G2 ct ct avec cathode
DIS2	262 072	77-10	6,8	5 283 501	2 536	G2 ct ct avec cathode
DIS1	258 965	76-50	6,8	13 333 472	6 714	G2 ct ct avec cathode
DIS2	262 085	77-16	6,8	6 360 453	3 129	G2 ct ct avec cathode
DIS2	250 262	76-08	7	10 803 061	5 322	G2 ct ct avec cathode

Note: ct ct avec cathode = court-circuit avec la cathode.

4.1 Analyse des statistiques

Les statistiques, extraites du tableau 3, sont analysées de plusieurs manières différentes.

4.1.1 <u>Par la moyenne arithmétique</u> du nombre total d'heures ou d'impulsions en fonction du nombre total de thyratrons (tableau 4).

Tableau 4

Moyenne arithmétique de la durée de vie

Nombre de thyratrons utilisés: 30 *)
Durée de vie moyenne d'un thyratron (∑ heures/∑ tubes): 3 630 heures
Nombre moyen d'impulsions par thyratron (∑ impulsions/∑ tubes): 7,8 × 10⁶

*) Deux thyratrons, dont la durée de vie a été pour l'un de 57 h et pour l'autre de 0 h, n'ont pas été pris en compte pour l'établissement de ce tableau.

4.1.2 <u>Par la représentation graphique</u> des fréquences relatives (Figs. 4 et 5) et des fréquences relatives cumulatives (Figs. 6 et 7) en fonction du nombre d'heures ou d'impulsions.

a) La fréquence relative f est le quotient du nombre de thyratrons n_1 ou n_2 , correspondant respectivement à la tranche d'heures ou d'impulsions considérée, par le nombre total de thyratrons n (= 30):

$$f(h) = \frac{n_1}{n}$$
, $f(i) = \frac{n_2}{n}$.

 b) La fréquence relative cumulative F est la somme de toutes les fréquences relatives de zéro jusqu'au nombre d'heures ou d'impulsions considéré:

$$F(h) = \sum_{0}^{h} f(h), \quad F(i) = \sum_{0}^{i} f(i).$$

Ces valeurs sont reportées dans les tableaux 5 et 6.

Tableau 5

Tableau d	des	fréquences	relatives	en	fonction	de	1a	durée	de	vie	
-----------	-----	------------	-----------	----	----------	----	-----------	-------	----	-----	--

Durée de vie (h)	Nombre de thyratrons (n ₁)	Fréquence relative	Fréquence cumulative	Fréquence relative cumulative
0-1 000	5	0,166	5	0,17
1 000- 2 000	2	0,066	7	0,23
2 000- 3 000	3	0,100	10	0,33
3 000- 4 000	7	0,233	17	0,56
4 000- 5 000	5	0,166	22	0,73
5 000- 6 000	4	0,133	26	0,86
6 000- 7 000	2	0,066	28	0,93
7 000- 8 000	1	0,033	29	0,96
8 000 - 9 000	0	0,000	29	0,96
9 000-10 000	1	0,033	30	1

Tableau 6

Tableau des fréquences relatives en fonction du nombre d'impulsions

Nombre d'impulsions (i) : 10 ⁶	Nombre de thyratrons (n ₂)	Fréquence relative	Fréquence cumulative	Fréquence relative cumulative
0- 2	4	0,133	4	0,13
2-4	3	0,100	7	0,23
4- 6	3	0,100	10	0,33
6- 8	5	0,166	15	0,50
8-10	5	0,166	20	0,66
10-12	6	0,200	26	0,86
12-14	2	0,066	28	0,93
14-16	1	0,033	29	0,96
16-18	0	0,000	29	0,96
18-20	0	0,000	29	0,96
20-22	1	0,033	30	1

4.1.3 Par la durée de vie moyenne (moyenne arithmétique) en fonction de la <u>tension de chauffage</u> (tableau 7)

Tension de chauffage (V)	6,3	6,6	6,8	7,0
Nombre de thyratrons utilisés	8	4	18	1
Durée de vie moyenne (h)	2 994	3 117	4 111	5 322
Nombre moyen d'impulsions	6,4×10 ⁶	6,9×10 ⁶	8,6×10 ⁶	10,8×10 ⁶

 Tableau 7

 Tableau récapitulatif en fonction de la tension de chauffage

4.2 Signes de défaillances

Dans $\simeq 807$ des cas le thyratron est défectueux par court-circuit entre grilles et cathode; il apparaît toujours une métallisation sur le verre. Le court-circuit semble provenir de particules métalliques qui sont arrachées à la cathode, notamment autour des isolateurs (Fig. 3), et viennent se déposer sur les isolateurs de céramique. Ces mêmes symptômes ont été constatés dans d'autres alimentations au PS, où l'on utilise aussi des thyratrons CX1159, qui ont une \int idt comparable à celle des thyratrons du distributeur.

Parfois plusieurs auto-allumages de plus en plus rapprochés dans le temps précèdent le mauvais fonctionnement du tube.

4.3 Temps d'arrêt machine dû aux changements de thyratrons

Le temps d'arrêt machine dû au vieillissement et au changement d'un thyratron peut varier d'un quart d'heure à plusieurs heures selon le moment de la panne (heure de travail, heure de nuit, week-end, période de vacances). Pendant les deux dernières années, 1978 et 1979, le temps total d'arrêt machine dû au vieillissement et au changement des thyratrons sur le distributeur a été de 11 h 30.

Moyenne annuelle d'arrêt machine dû aux thyratrons: $\simeq 6$ h.

5. ANALYSE DES RESULTATS, AMELIORATIONS, ESSAIS PREVUS

5.1 <u>Résultats</u>

La durée de vie moyenne arithmétique de 3 600 heures correspond à la tranche d'heures (3 000 à 4 000) qui a la plus forte fréquence relative: 23%. De même le nombre d'impulsions en fonctionnement, dans les deux analyses, est similaire $(7,8 \times 10^6$ en moyenne arithmétique et \simeq tranche de 8×10^6 à 10×10^6 dans le cas de la fréquence relative). A noter que le nombre d'impulsions dépend du taux de répétition selon le type de supercycle du PSB.

ł		
	Durée de vie moyenne d'un thyratron	3 600 h (5 mois)
	Nombre moyen d'impulsions par thyratron	7,8 × 10 ⁶
	Moyenne annuelle d'arrêt dû aux thyratrons	6 h
	Consommation moyenne actuelle en thyratrons	7 par an [soit 11,5 kFS *)]
	Consommation prévisible avec maintenance préventive après 3 600 h	12 par an [soit 20 kFS *)]

<u>Tableau 8</u> Résumé des résultats

*) Prix 1979.

5.2 Améliorations envisageables et essais prévus

Un circuit électronique a été introduit dans les alimentations pour permettre de détecter les auto-allumages; ce circuit évite le déclenchement de l'alimentation sur le premier auto-allumage pendant un temps donné.

Mais pour obtenir une plus grande durée de vie et de fiabilité des thyratrons, des améliorations sont à apporter au niveau de la fabrication afin d'éviter les courts-circuits entre grilles et cathode et avoir un thyratron mieux adapté aux impulsions longues (un thyratron type CX1159 modifié est à l'essai dans une alimentation du distributeur; un thyratron avec cathode plus importante, type CX1559, est à l'étude chez EEV).

D'autre part il semble qu'une amélioration intéressante de la durée de vie des thyratrons du distributeur puisse être obtenue en augmentant la tension de chauffage de la cathode. Des tubes sont à l'essai avec une tension de chauffage de 7 volts.

Dans l'avenir les tubes seront sollicités plus fortement par un taux de répétition porté à 0,65 s (projet d'augmentation de l'intensité du SPS) et peut-être plus tard avec une ligne à retard de 200 µs adaptée au faisceau du nouveau linac.

Des essais sont en cours de préparation pour déterminer les conséquences de ces nouvelles conditions de fonctionnement.

6. CONCLUSION

La fiabilité des thyratrons restera un facteur important en ce qui concerne le taux de pannes du PSB, surtout si les contraintes imposées au tube augmentent (impulsion plus longue, taux de répétition plus élevé).

Selon les statistiques, une maintenance préventive après 3 600 h de fonctionnement couvrirait environ 50% des cas de défaillance (<u>soit environ 3 heures de moins</u> <u>d'arrêt machine par an</u>), pour un supplément de prix de 9 kFS par an.

Il faut noter que cette maintenance préventive supprimerait l'observation systématique des causes de défaillance du tube, et par conséquent réduirait la possibilité d'améliorations.

Par conséquent, l'action à envisager pour améliorer le MTBF ("Mean Time Between Failures") du distributeur est plutôt le changement d'un thyratron lorsqu'un certain nombre d'auto-allumages consécutifs a été observé, sans attendre la défaillance totale.

* * *

J'aimerais mentionner, dans le cadre de ce travail concernant les thyratrons CX1159, les nombreuses discussions et échanges d'informations que j'ai eus avec MM. Völker (PS/PR), Fiander et Grier (PS/EI) et Menown et Snelling (English Electric Valve Co.).

REFERENCES

- 1) J.P. Royer et F. Völker, The pulse generator of the 50 MeV distributor and chopper for the PSB injection line, note PS/BR 74-19 (27-11-1974).
- 2) English Electric Valve Co. Ltd., Hydrogen thyratron product data (1978).

Distribution

- Booster Committee
- Equipe BR/PO
- O. Barbalat, D. Dekkers, D. Fiander, B. Frammery, D. Grier, J.F. Labeye, A. Plunser
- MM. Snelling et Menown (EEV)

Fig. l Schéma de principe d'une alimentation du distributeur du PSB avec son thyratron EEV CX1159

Fig. 2 Coupe schématique d'un thyratron EEV CX1159

Fig. 3 Photo montrant le métal arraché autour de l'isolateur de la grille Gl (isolateur du haut) tube No. 218633

Fig. 4 Fréquence relative f(h) en fonction du nombre d'heures [h]

Fig. 5 Fréquence relative cumulative F(h) en fonction du nombre d'heures [h]

Fig. 6 Fréquence relative f(i) en fonction du nombre d'impulsions [i]

Fig. 7 Fréquence relative cumulative F(i) en fonction du nombre d'impulsions [i]