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ABSTRACT

With higher beam intensities the required strength of linac quadrupoles as well 
as the parameters of the matched beam differ more and more from the zero space charge 
values. A simple method of calculation is presented by which the quadrupole gradients, 
matching parameters and linac acceptances for any beam current can be obtained. The 
beam is considered as a uniformly charged ellipsoid and the whole treatment is linear.

A computer programme has been developed to determine the above parameters. It 
traces, in addition, the beam through the computed structure and displays its envelope 
on a graphical output. In this way it is possible to see how well the beam is matched.

The results obtained for ++— and +- structures are presented.

Introduction

In modern protons linacs, the beam intensities are such as to invalidate the 

treatment of space charge effects as small perturbation phenomena. In the longitudinal 

phase plane the phase oscillations are affected and their adiabatic damping is no more 
- proportional to β-3/4 (in non-relativistic approximation). In the transverse phase 

planes the quadrupole gradients have to be increased (in absolute value) in order to 

prevent too big a drop in the linac acceptances. In connection with this, the parameters 

for a matched beam undergo some modifications too.

It is the purpose of this paper to present a method of calculation of the quadru­

pole gradients and matching parameters as function of the beam current. The calculations 

are carried out with a computer program.

Computer programs treating space charge effects can generally be classified into 

two groups :

i) individual particle programs : the beam is represented by a certain number of 

particles (up to a few thousands) and the Coulomb forces among them are calculated 

by different methods;
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ii) beam programs : the beam is considered as an entity usually as a uniformly 

charged ellipsoid leading to linear space charge forces. The evolution of 

the beam envelope under the influence of external and internal forces is calcul­

ated by solving simultaneously a set of longitudinal and transveιse envelope 

equations.

The programs of the first group give a more detailed insight into beam phenomena 

but are 10 ÷ 100 times more time consuming that the others.

The program ADAPT1 presented in this paper belongs, to some extent, to the second 

group (linearised forces, beam treated as an entity), but it is more a ’’structure” 

program than a beam program. This is to say that space charge forces appear as external 

forces and are added to existing transverse and longitudinal forces of the linac struc­

ture. In this way the structure parameters under space charge conditions are calculated 

by the usual technique for periodic structures developed by Courant, Livingston and 

Snyder (CLS).

Hypothesis

In order to apply the CLS formalism several simplifications have to be made : 

i) all the forces are considered to be linear (necessary for the application of 

the linear matrix theory);

ii) the defocusing action of the accelerating gaps is the same for synchronous 

and non-synchronous particles;

iii) the acceleration in gaps is the same for particles on and off axis;

iv) stray fields, image forces and forces from adjacent bunches are neglected.

Among these approximations, the most crude one is the linearisation of the 

longitudinal focusing forces in gaps. These forces are linear for small oscillation 

amplitudes, but become highly non-linear when particle excursions approach the Separatrix. 

The calculation of the'longitudinal linac acceptance and longitudinal matching parameters 

may therefore be in some error, but the transverse planes are practically not affected.

Principles

In this chapter we explain the principles on which the calculations are based. 

It will be seen how space charge forces are progressively introduced and added to the 

existing forces in the structure. For each beam intensity a new corresponding structure 

is defined and new structure calculations carried through.

Three phases can be distinguished in the calculations :
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1. Focusing structure calculations :

Quadrupole gradients, linac acceptances and matching parameters are determined 

using the CLS formalism for periodic structures. The linac being only a quasi periodic 

structure, some special treatment is necessary in order to apply the CLS formalism.

We adopted a method2 consisting of a "cell by cell" analysis of the linac. This means 

when analysing the n-th cell, a complete structure period is formed by such cells, 

changing as necessary the sign of the quadrupole field. The results obtained apply only 

to the n-th cell and the calculation is repeated for each cell of the linac. (Another 
 

method using groups of cells was applied in the program ACCEPT3 ).

2. Beam Transfer :

A "zero charge" beam, matched in the six-dimensional phase space to the focusing 

structure is transfered through the linac by matrix calculations. The beam envelopes 

are determined at eight positions in each cell for two reasons :

i) to control how well the beam is matched all over the linac;

ii) to obtain beam dimensions necessary for space charge calculations.

3. Space Charge Calculations :

Space charge forces are calculated with the above beam dimensions and assuming 

first a small current intensity. To deal with linear space charge forces, the beam is 

represented (non self-consistently) as a Uniformlychargedellipsoid. The potential at 
   the inside of such an ellipsoid is given by 4 :

 Ui ≡ -Ax2 - By2 -Cz2 + D

The coefficients A, B and C are of the form :

A {B,C} = abc p
2ε o

OO

O
∫

du
(a2{b2,c2} + u) √(a2+u)(b2+u)(c2+u)

where a, b and c are the ellipsoid half axes in the x,y and z direction, p is the charge 

density and u the integration variable. The integral is calculated by the Gauss inte­
gration method5. By performing some appropriate scaling in the integral (the value of 

A, B and C does not change when a, b and c are scaled by the same factor), a 10 point 

approximation is sufficient to give the desired accuracy. Introducing the beam current 

I instead of p , the space charge forces can be written as :

F {F ,F } ≡X y z

3I TRF A{B,C}

8π   ε  abc    o
X {y,z}

where T is the RF period. These forces are calculated at eight positions in each cell   RF
and then added to the focusing structure forces. The structure is now changed and new 

structure calculations have to be initiated. The results will apply to a beam with the 

assumed small current intensity.
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Increasing progressively the intensity, the whole procedure described above is 

repeated until the desired current value is reached. At the end of the calculations, 

the evolution of the structure and matching parameters as function of the beam current 

is known.

Calculations : Criterion and Procedure

Criterion :

The focusing structure design can be based on different criteria. The one we 

adòpted is an imposed phase advance μ per structure period. This phase advance is kept 

equal for low and high intensity beams in order to compare better the results. The μ 
 itself varies along the linac ocβ-½  (this law of μ variation is the one originally chosen 

for the CERN Linac) which corresponds to an ιcnrease  in the mean beam envelopocβ-¼ .

Computational procedure in the program ADAPT :

The organisation of the program, in its main lines, is shown on Fig. 1. The 

geometrical and electrical properties of the linac have to be supplied as data. The 

program begins with a zero space charge calculation, but the transfer matrices are 

already prepared for the inclusion of space charge terms. Structure calculations are 

performed on periods which have symmetries at mid F and mid D points (α = 0) also in 

the presence of space charge. This is convenient for the determination of quadrupole 

gradients. "Ideal" beam envelopes correspond to these symmetries.

In the beam transfer calculations, the beam is matched to the linac input or to 

a structure symmetry point and then transferred through the linac. The envelopes thus 

obtained are "true" ones and do not have symmetries at mid F or mid D points.

Space charge calculations were usually carried through with a progressive 

current increase of ~ 20 mA per step. Same results were obtained with a bigger current 

increase (50 - 100 mA), provided the calculation for a particular current was repeated 

2-3 times.

Results

The geometrical and electrical data applied in the program ADAPT correspond to 

the CERN 3 MeV experimental linac. Two focusing structures were analysed, FFDD and FD 

for beam currents up to 200 mA.

For convenience, the results are presented in form of diagrams.

Fig. 2 shows the quadrupole gradients for beam currents of 0, 100 and 200 mA.
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Fig. 3 gives the exponential law G ■ Gθ β -n (β = relativistic factor) of the 

gradient decrease along the linac.

Fig. 4 shows the evolution of the linac acceptances as function of the beam 

current. Note that the vertical and the horizontal acceptances are not equal (the 

vertical one is bigger due to the fact that the vertical amplitude function βV has its 

first maximum farther down in the linac structure, where the drift tube bore radius is 

increased). In the calculations, the beam emittances filled up the acceptances.

Figs. 5 and 6 present the parameters of a matched beam at the input to the 

CERN 3 MeV Linac.

Figs. 7, 8, 9 and 10 show how well the beam is matched to the focusing structure; 

the crosses on the drawings indicate the calculated transverse envelopes while the 

sine-like full lines present the real envelopes obtained by transferring a matched beam 

through the linac. A 200 mA beam (Figs. 9, 10) is as well matched as a "zero current" 

one (Figs. 7,8).

It is worth mentioning that the overall matching along the linac depended on the 

"matching point" chosen. In fact, best results (those presented) were obtained by 

matching the beam to a β-minimum point (β = amplitude factor) rather than to the linac 

input.

Conclusion

The described computational method was found very useful in the analysis of the 
linac "front end"6.  The main interest of the method lies in its capability to determine 

a functional relation between linac parameters and beam current intensity. The results 

can be introduced, as optimised data, into individual partical programs. The program 

ADAPT uses about 10 seconds of central processor time of the CDC 6600 for the complete 

analysis of a focusing structure (from 0.5 to 3 MeV) comprising the calculation of 

quadrupole gradients, linac acceptances, matching parameters and beam transfer with 

envelopes determination, all for 10 values of beam current in the region from 0 to 200 mA.
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Fig. 1

CALCULATION SEQUENCE IN ADAPT

I = O
Space-charge forces = 0

1) Focusing structure 
calculations 
(in three phase 
planes)

Quadrupole gradients and 
matching parameters for each cell 

in presence of space charge.

Linac acceptances

Ideal beam envelopes

2) Beam transfer
Determination of actual beam envelopes 

at eight points per cell

3) Space-charge forces

I = I + ΔI

Calculation of space-charge forces 
at eight points per cell.
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