
cξrn∕mps∕lin 69-15 
20.7.1969

NON-LINEAR SPACE CHARGE EEFECTS IN BEAM DYNAMICS

C.S. Taylor, A.J. Davies , P. Tanguy

European Organisation for Nuclear Research 
Geneva, Switzerland

INTRODUCTION

It has been customary in the design of transport and acceleration 
systems for positive ion or electron beams either to neglect the space charge 
effects or to assume them to be linear (VladimirskiJ and Kapchinskij, 1959). 
In a beam of circular cross-section this assumption of linearity imposes a 
constant charge density over the beam radius. Experimental results, however, 
indicate that this is not the case (Taylor, 1963) a typical distribution being 
bell—shaped with a maximum on the axis. For this, non-uniform distribution, 
non-linear space charge forces are present and these can have an important 
influence on the dynamical behaviour of the beam.

Taylor (l969) has pointed out that there are two main consequences 
of the field variation across a non-uniform beam. The first, due to the varia
tion of the horizontal field Eχ with x will cause an initially elliptic emittance 
diagram in the phase plane (x,x) to be become distorted (Fig. 1 a), while the 
second, produced by the variation of Eχ with y, will introduce a coupling between 
the transverse motions. This coupling has the effect of producing a continuous 
spreading in the phase plane of the projected beam distribution. Equi-density 
contours in the projection will no longer enclose a constant area (as would be 
the case for a uniform beam) and this manifests itself as an apparent increase 
in the emittance in the projection. This is illustrated in Fig. 1 b which shows
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that the fraction of the beam current lying inside a given area of the phase 
plane is diminishing with time. Alternatively we can say that the phase plane 
area enclosing a given current is increasing.

The present paper describes the work that has been carried out in the 
PS-Linac G-roup at CERN on non-linear space charge effects and summarises the 
preliminary results that have been obtained.

THEORETICAL CONSIDERATIONS

In the study of the dynamics of charged particle beams the fundamental 
transport equation is the Boltzmann equation : 

where F x1 X2
x3

,5i V1 ,V2 ,V3 , t dx1 dx2 dx3 dv1 dv2 dv3

DF
Dt O

is the number of particles
in the phase space volume dχ1 dx2 dx3 dv1 dv2 dv3 The f. are the components
of the so-called "field forces" acting on a particle of mass m and charge e.

In the Vlasov approach to the study of beam dynamics the effect of the 
space charge field is included in the F1, that is it is considered as a macro
scopic field derivable from a potential. The term on the right hand side of (l) 
represents the change in F due to binary collisions, including ionisation and 
similar effects. At the densities normally encountered in a proton beam this 
collision term is negligible (Lapostolle et al, 1968) so that the right hand 
side of (1) is zero. It is then interesting to note that the left hand side 
may be written :

where D denotes differentiation in a frame of reference following the element 
of phase space under consideration. Thus (l) has the same form as Liouville s 
equation and the phase density F remains constant if we follow the motion of an 
element in phase space.

A common method of studying beam dynamics is the so-called Eulerian 
approach in which it is assumed that the beam is monoenergetic, that is at any 
point in space the beam can be described by a single density ρ and a single

SF
St + Σ

spatial 
co-ordinates

Vi
SF
Sxi + Σ 

velocity 
co-ordinates

fi
m

SF
Svi

= SF
St collisions

(1)



- 3-

velocity fieli u. The basic equations to be satisfied are the continuity equation

div u ρ =

-
ϑp
ϑt

and the momentum equation

(2)

(3)m Du
Dt

=

e E

where E is the sum of the external field and the space charge field of the 
beam. Again D /Dt denotes a differentiation in a frame of reference following 
the motion of the element of the beam under consideration. All magnetic effects 
are assumed to be negligible and the motion is taken to be non-relativistic.

Let us now consider a rotationally symmetric beam whose divergence is 
small so that longitudinal effects may be neglected. We assume that the axial 
beam velocity and the axial components of the external field are constant over 
the cross-section of the beam. Then, in the absence of rotational motion the 
equations describing the radial motion of the beam are from (2) and (3)

(4)

(5)

and

One may see the relation between these last two expressions and the Boltzmann 
equation by taking the first and second moments of the latter (Davies, 1969) 
when one obtains :

(6)

(7)

One sees that these last two relations are identical in form with (5) and (6), 
the difference being the use of the average velocity ur rather than the local 
particle velocity and the appearance of the "temperature" term on the right hand 
side of (6). When T=O, ur = ur and the solution of the Boltzmann equation will 
yield the same values for p and ur as the solution of the hydrodynamic equations 
(4) and ( 5) .
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We may thus conclude that for beams of small emittance (i.e. a small 
velocity spread and thus a small "temperature" so that the last term on the right 
hand side of (7) is negligible) the density function and particle velocities 
computed from (4) and (5) will be very good approximations to the mean densities 
and velocities.

In general solutions of the hydrodynamic equations have only been 
considered for the case of laminar flow when there is no "overtaking" of particle 
trajectories, that is a particle having an initial radial co-ordinate less than 
that of another particle will continue to have a smaller radial co-ordinate.

Davies (1969) has however described a method by which the crossing of 
particle trajectories may be taken into consideration. For a rotationally 
symmetric beam of zero emittance the state of the beam is completely specified 
by a "zero emittance line" in the phase plane rr, (Fig. 2). Whereas the charge 
density distribution can become discontinuous if it is taken to be a function of 
the radial co-ordinate, the distribution along the zero emittance line is always 
continuous and no overtaking can occur along this line. The basic idea of the 
method is to trace the motion of the zero emittance line and the distribution 
of charge along it. This distribution is only projected on to the r axis in 
order to compute the space charge force on any element of the beam.

Davies has also shown that a very good approximation to the motion of 
the beam envelope of a finite emittance beam can be obtained if the space charge 
force on a typical particle on the envelope is computed from the mean motion of 
the beam, that is from the charge density distribution along the zero emittance 
line.

Although this method can give a great deal of information about the 
beam dynamics and only uses a relatively small amount of computer storage and 
time it does not trace the full four-dimensional phase distribution of the beam 
which is essential if, for example, one wishes to project the distribution on 
to any one of the six phase planes.

Tanguy (1969) has developed an alternative approach to the problem in 
which he traces the four-dimensional phase space distribution by a Lagrangian 
method.



- 5 -

Again the beam is taken to be rotationally symmetric and longitudinal 
effects are assumed to be negligible. The beam is represented as approximately 
6θθθ groups of charge and the trajectories of these groups are traced, at each 
stage the space charge at a given radius being computed by determining the number 
of these groups inside that radius.

Tanguy s procedure can be summarized as follow :
a) From the equations of motion :

(8)

(9)

the unknown integrals on the right hand side are expressed in terms of the 
current l(r) flowing inside a circle of radius r by :

where v denotes the velocity of the particles.

r

∩

rP r dr r
2π V

(10)

b) In terms of the total current It carried by the beam the equations of
motion (8) become

c) Equations (lθ) are integrated for a great number of particles N, whose 
initial co-ordinates and slopes are distributed according to the desired distri
bution in the initial four-dimensional phase space. For each particle j
j=1 .N and at each step of integration the ratio I r j

I
t is given by :

(11)I rj N
It

where N. denotes the number of particles whose distance to the axis of the beam 
is equal to or less than rj.
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d) The computation has been made possible when the number N of particles 
is very large by using the following manoeuvre : let us suppose that at the 
abscissa z the N particles are arranged so that their distance to the axis of 
the beam are :

r.
j

≤ r à + 91 j 1, , N 02)

Thus the ratio is given by :

I r ..ι
It

N

N
j
N 9 j.

(-υ)

As we are not dealing with a laminar flow the arrangement as defined in (12) 
no longer holds, but as the integration step is small the degree of this dis
arrangement is therefore small and a subroutine is able to restore the arrange
ment of (12) in a very short time. Finally let us note that the method used has 
allowed us to reduce the computation time by a factor of around 150.

In order to follow the evolution of the current r emittance function 
the output of this programme can be analysed by the method described by Warner 
(Taylor, Warner et al, 1966) which gives the equi-density contours in the emitt
ance projection and integrates the areas and currents to produce the density 
curve (Fig. 1 b).

In both the above methods the effects of linear lenses and accelera
tion in the longitudinal direction can be taken into consideration.

RESULTS

In Fig. 3 a - e are shown the results of the calculations for the case 
of a beam having an initial Gaussian distribution in principal axes (Fig. 3 a) 
drifting in a drift space with no external fields. Fig. 3 b gives the results of 
the hydrodynamic rr calculation for drifts of 1 m and 1.5 m, and for comparison 
the ringed points show the projection on to the xx plane of the y=0, y=0 
section as obtained from the Lagrangian calculation. From this figure we see 
that particle overtaking commences at about 1.3 metres. Figs 3 o and 3 d show 
the density distributions in real space obtained by both methods. Here 
we see the formation of first a hump towards the outer radius of the beam which 
finally tends to a singularity when overtaking of particle trajectories has

Non linear external forces and any kind of rotationally symmetric density 
distributions in the four-dimensional hypervolume can be treated by Tanguy’s 
procedure.
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occured. Fig. 3 θ shows the corresponding curves for the fraction of the current
I inside radius r as a function of r. r

We see from the emittance diagram corresponding to 1.5 metres drift 
in Fig. 3 b that the curve may be divided into two regions. The first, between 
the origin and about 1.6 cm, approximates to a long thin ellipse with nearly 
constant charge density. If the rest of the beam were absent we would thus 
expect to be able to focus the beam with linear lenses without introducing any 
further aberrations since the space charge forces will be nearly linear (in this 
case an ellipse will always transform into an ellipse). The outer region beyond 
16 cm display a larger amount of aberration and contains 50% of the charge in 
the beam. Thus if one introduced a diaphragm to remove this outer region one 
would also lose 50% of the beam current.

To illustrate the large aberrations that may be introduced by the non
linear space charge the computation was performed for the case of a converging 
beam with the same emittance as used previously Fig. 4 a - c. Again the emittance 
curves obtained by the two methods are practically identical.

Also shown dotted in Fig. A c is the beam envelope one would obtain on 
the assumption that the current is uniformly distributed over any cross-section. 
We see that the neglect of the non-linear effects may give a completely un
realistic picture of the beam dynamics. In particular, whereas in the case of 
a uniform distribution the charge would all be contained inside a radius of 
about 11.2 cm, in the non-linear case only 39% of the charge lies inside this 
radius.

Finally, concerning the increase in the area of a given amount of 
charge mentioned in the Introduction, the analysis of the Tanguy programme output 
shows that the inner equi-density contours increase by the order of 30-40% in 
a drift of 1.5 m whereas the total area increases by almost a factor of two. 
This effect represents a real reduction in density in the emittance projection, 
while the aberrations can lead to an effective reduction.
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CONCLUSIONS

The above examples demonstrated that one is unjustified in neglecting 
or linearising the space charge forces in a beam having a non-uniform distri
bution in the transverse direction.

The hydrodynamic or zero emittance method for studying the beam dynamics 
can give a great deal of information about the beam dynamics and because it is 
economical as regards computer storage and space is very convenient for making a 
preliminary investigation and design of a transport or accelerating system.

The Lagrangian method, although requiring considerable computing 
facilities, is able to trace the four-dimensional phase space distribution and 
can give a more detailed final analysis.

Both these methods are to be used in the study of the proposed new 
pre-injector and tank I of the CERN Linac.
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