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CLIC TEST FACILITYTHE PHOTOCATHODE TEST BENCHY. Baconnier, A. Pisent

1 . INTRODUCTIONThe CERN Linear collider (CLIC) idea was first presented in 1986 1,, and accepted as the CERN party line for linear collider studies in 1987 2). In 1988 a proposal was made 3,) to set up a facility in order to start up a study pro­gram on the difficult parts of the injector and to test the RF structures pro­posed for the drive linac and for the main linac. This proposal was formally accepted and funded in 1989.
One of the facilities to be built is a DC gun and the corresponding beam diagnostic line. This facility is now built and producing its first photo­electrons .The various people who either have developed or will use this ”D.C. test stand” were not familiar with the optics of electron guns and low energy beam lines. This note covers the elementary aspects of these techniques that we had to learn in order to design the equipment and will be needed in order to use it.
2. DESCRIPTION OF THE TEST BENCHThe aim of this test bench is to analyse in detail the behaviour of various photocathodes, gain experience with the use of photocathodes in conditions as close as possible to operational conditions and to compare actual beam optics with existing simulation programs. In a first stage no momentum analysis has been installed. The general layout is given in Fig. 1. A laser beam strikes a photocathode and produces electrons by the photoelectric effect. These electrons are accelerated by a DC high voltage and extracted from the gun through the anode. Their properties are then measured in an appropriate beam line.2.1 The gun (Fig. 2)The gun consists of a round photocathode of 8 mm diameter submitted to an electrostatic field of about 80 kV/cm on a gap of 1 cm (8 MV∕m). The poto- cathode is prepared in a preparation chamber which will be the object of a separate note. It is then transferred under vacuum in the DC gun. The anode has a hole in order to let the electrons go through, it is isolated in order to measure the number of electrons lost on the anode.
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Figure 2: The electron gun
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2.2 The beam line (Fig. 1)Two tanks are foreseen for illumination. One will be used for the in­troduction of the laser beam. The other tank can be used for direct obser­vation of the photocathode area, for illumination from different light sources, for pumping or for instrumentation. One tank houses the lumines­cent screens and finally the charge will be measured by a wall current monitor or a Faraday cup.A set of solenoids is installed in order to contain the beam or to adjust its size at the screen or at the Faraday cup. The first solenoid has been shielded in order not to reduce the field at the photocathode surface. The other solenoids have also been equipped with shields in order to reduce their focal length. The longitudinal position of the solenoids can be adjusted. A list of parameters together with their notation is given in Table I.2.3 The SolenoidsThe first device (that we shall call solenoid of the first kind) has an asymmetric shielding, with an aperture of 65 mm on the cathode side, and 120 mm on the other side. The second and third solenoids are equal (2nd kind); they are symmetric with apertures of 184 mm.

The solenoids fields are well below iron saturation fields, so that we can consider B to be proportional to the current I circulating in the coils. A first idea of the optical propriety of these solenoïds is given by the focal length, calculated as in equation (6).
In Table I are listed the parameters relevant for the dynamics of the beam, at our design energy of 80 kV.
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Table IParameters of the gun and of the beam lineGun parametersGap g 1 cmGap voltage ψ9 80 kVCathode radius r0 4 mm

Solenoid parametersFirst coil
Bmax∕I /I' BR 2 dz

135.3
5.803

Gauss/A 
cmMAXf I2 (at 80 kV) .369 m .A2Second and third coil

bmax7I 74.53 Gauss/A
I  BDMAX 2 dz 9.729 cm. ≡
f I2 (at 80 kV) .728 m .A2

3. BEAM OPTICS WITHOUT SPACE CHARGEThe motion of particles in fields with rotational symmetry is described by the well known paraxial equation.The study of the paraxial equation is a prerequisite in electron gun optics. It is described in various test books 4) 5) but the full demonstration requires some effort. Appendix I details the various steps to obtain the different forms of the equation.3.1 The gun opticsThe optics of the gun can be computed using the paraxial equation (Eq.A.13, Appendix A). In the absence of space charge and without magnetic field it reduces to Eq. (1) where we have used the notations of Lawson 5).



7Φ(2Φ + φ) οφ + φ ο r” + Φ,r' Φ”+ 2 Γ = 0 (1)

here, q is the charge of the electronqΦ0 is the rest energy of the electronr is the radial position of the beam envelopeqφ is the kinetic energyΦ is the potential along the gapand the prime denotes a derivation with respect to z the longitudinal coordinate.Let us consider this equation at the vicinity of the hole in the anode, and note that the longitudinal electrostatic field in the gap Ez is
∂Φ

Ez = ∂z or ΦE = —     z        g
where g is the gap and Φg the cathode voltage.We can rewrite this equation under the formΦ(2Φ0+ Φq)

Φ0 + Φα 
∆r  
∆z + Ez

∆r 
∆z

+ 1 δe- — r2 ∆z = 0

The field is Ez = Φg∕g on one side of the hole and zero on the other 
side so that

∆Ez
Φg 
g

With the approximation that the radial position does not vary during 

the traversal of the hole that is r = cte ∆r = 0 we obtain

∆r , 
r
= - 1

2g
ø0 + φg

2ø + øg
(2)

and since 1 
f

(3)

f =
ø0 +  c.  øg

2g —----- a∙
Φ + o øg

= 2g
1 + γ 

Ύ
(4)

In our case Φg = 80 kV Φo = 511 kV f = 3.72 g = 37 mm.

=

∆r, r =
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Figure 3: The Gun Optics3.2 The SolenoidsThe solenoids are magnetic lenses. We start with the paraxial equa­tion (A-10) in the case where there is no electric field (Ez = 0) so that z = βct and where the particles start with a velocity parallel to the axis in a zero field at a distance r0 from the axis so that r'0 = 0 and ψ0 = 0 (fig. 4). In this case the paraxial equation writes
r" = - 14 r' (Bρ)2 (5)

If during the traversal of the lens r stays approximately constant we have by integration (see fig. 4)∆r' 
r

14 1 (Bρ)2 ∫B2zdz = 1 f
The magnetic lens constituted by a coil is a focusing lens of focal lengthf = 4 (Bρ)2JB2dz (6)

The solenoids parameters 7), are given in Table I.

B2z

--=
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r

Figure 4: Focal length of a solenoid

f

dr
dr  = 0

r0

3.3 The beam line layoutWe have placed the two mirrors for cathode illumination at 1000 mm and 1350 mm from the cathode, the screen at 1730 mm and the faraday cup at 2100 mm (Fig. 5). The position of the solenoïds is given in Table II.We can compute the required focal length by the optics formula
1 1 11 + —    = —∙x1     x2 fThe results are tabulated in Table II.Table IIFocal length of solenoids (m)Calculated using geometrical optics

Lens x1(mm) x2(mm) f (mm) r(mm) I (80 kV) (A)Electrostatic 00 - 37 - 37 4Solenoïd 1 97 346 76 11 2.20Solenoïd 2 346 346 173 11 2.05Solenoïd 3 346 346 173 11 2.05One can also compute the beam sizes at the position of the various lenses given the radius at the cathode : r0= 4mm. These values are also listed in Table II.
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Figure 5: Beam optics in the test bench
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4. THE EFFECT OF SPACE CHARGEIn a continuous beam one can use the paraxial equation to compute the trajectories in the presence of space charge. In the general case the inte­gration has to be performed numerically, but a general solution exists in the simplified case of a drift space. This general solution helps to understand the effect of space charge in verious cases.For what concerns the longitudinal dynamics the one-dimensional problem in an accelerating gap it can be solved analytically; this is again a good indication of the performances the actual geometry can achieve.
4.1 The paraxial equation under space charge conditionsIn a continuous beam the paraxial equation can be used to compute the envelope of the beam by computing the electrostatic field and the magnetic field due to the beam and adding the result to the external fields. It is easy, using the Gauss theorem to compute the electric field Er. The effect of the magnetic field of the beam is introduced via the “relativistic com­pensation” 1-β2*. One of the conditions of validity is obviously that the linear density of particles does not vary too much in a distance of the order of the beam diameter.With these restrictions the paraxial equation (A-10) writes (7)

This equation has been solved by numerical integration in a PC.
4.2 The effect of space charge in drift space 4 )8)In the particular case where there is no acceleration (E2=0), no mag­netic field (B2=0), no angular momentum (ψo=0) but only space charge we can rewrite the paraxial equation with z as independent variable (A-11) :

d2rdz2 F-  = 0 r (8)
* The 1-β2 coefficient can be obtained directly by calculating the electrostatic forces in the frame of the particles and effecting a Lorentz transformation to the laboratory frame (see E. Keil, CERN 77-13, p. 314 (ref. 11).
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E =

1β3∙Y3 qm0c3 I 2πε0
in our gun E/I = 6x10~4 (A-1), or more practical (MKS units):

E = 2.10-7 I(βρ)γ2β2
(9)The solution of Eq. (8) must conserve the quantity W

W = 12 (dr)2 dz - E log rsince
dW = d2r dr dz      dz2  dz 1 dr = dr -  E r dz   dz

Note that W is proportional to the transverse energy of the particle, the first term in (9) being the kinetic energy, the second the potential energy.If we choose the constant to be W = - ξ log r0, r0 is the beam size at a minimum *), and we can write the equation :
dz = 12E dr

log r
     r0

(10)
The solution can be written as : (11)× I1/2 (z) 

ro
= F(r) ro

with
and ( 12)

× =
2E

I

1 ∕ 2

F(y) = y dy
log y

A our energy X = 34.46 10-2 (A-1/2)
*) because of (9) it can be either a minimum or a maximum, but the system is defocusing and starts with a converging beam.

d2r dz2 E 1
  r

= ο-
-

1



13
One can find the non-relativistic approximation in various books 4) 8).

( 13)X = nr 3x104
φ3 ∕ 2 0

= 3.64 x 10-2 (A-1∕2) at 80 kV

(14)If we now pose x = r0∕r, Eq. (11) becomes :X I1/2 (z∕r) = x F(1∕x)where the RHS is plotted below.
1 

o.8 

o.6 

0.4 

0.2

1 2

1.0816

43
0 0 0.2 0.4 0.6 0.8

y≡x∙F(1∕x) function

1 ×

Figure 6 : Plot of the function x F (1∕x) RHS of eq. 14
We want to transmit a beam with significant space charge; if we consider (Fig. 7)a symmetric configuration and choose z = 0 in the middle point equation (14) will describe the relation between r, z and r0 for a given current I.From the behaviour of the function x F(1∕x) we see that in general we shall have two solutions for r0 at a given current: (indicated as 1 and 2 in Figure 6) . 

Fig. 7: Definition of r0, r and z



14 At the limit of zero current, those two cases correspond to the parallel transmission and to the focusing in the middle point. Increasing the current at x = .43 where x F(1∕x) = 1.0816, we will have a unique solution, and then no solution at all. This defines the maximum current :
Ima x  

1.1696 .r.2 ×2       z (15)
A way ”à la mode” to say this, is that our a dynamical system; differential equation plus the boundary we have imposed, has a bifurcation at the value Imaχ of the parameter I.From Eq. (10) and (14) one can calculate

dr dz X I1/2 log rz [x F - log x 
In particular at the maximum current, x F(1∕x) is maximum, i.e.,

d dx x f 1\x
=      1 1F(-)- - x' X 1-log χ, = 0and then dr/dz = r∕z.In other words if the optics is matched without space charge to have the focus in the middle point of the drift space, the same matching still gives a symmetrical solution for I = Imaχ.If we consider the geometry of Table I (r = 11.5 mm, z= 346 mm) we can calculate Imaχ = 1.08 A; the corresponding computer run using the program S0L0PT 9) confirms that the zero space charge matching is also valid for I = 1.08 A (Fig. 8).

Bmαx (T)= 0.000 
lbeam (A)= 1.08

0.01

0.008

0.006

0.004

0.002 lbeam (A)= 0.00

o
0 0.1 0.2 0.3 0.4 0.5 0.6 z(m)

Figure 8: Tracking of beam with I = 0 and I = Imax using SOLOPT
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4.3 Space charge limited emission (Perveance)The emission of electrons from a surface can be generated by various processes and then have different intrinsic characteristics and limita­tions. There is in all cases a limitation due to space charge that is inde­pendent from the emission details: when an electron leaves the cathode it feels a backward force due to the charge of the electrons already emitted. If we consider a cathode capable to generate an unlimited number of elec­trons (with zero kinetic energy) a condition of dynamical equilibrium will be reached when the space charge field exactly counterbalances the external accelerating field, or in other words when the E field at the cathode is null.

15

The one dimensional problem (two plates indefinitly extended) can be solved exactly 4) and gives
where Φ is the potential along the beam axis, Φg is the gap voltage and g is the gap. Observe that the gradient of Φ is zero at the cathode. The explicit relation between Φg and the maximum current Imax is r  

3/2
Imax =       K Φg (16)

In the case of our one dimensional problem K is only defined per unit area (17)4κ = 9 ε0 g2 = 2.33x10-6 1          g2The constant K is called perveance of the gun. It is only a function of the geometrical dimensions (being a local propriety in the neighbourhood of the cathode). When I < Imaχ the quantity K = I∕Φg3∕2 is used to define the perveance of the beam.Our cathode is of limited radial extension, so its behaviour is not well described by the one dimensional approximation (17). At the edge of the emitting area the longitudinal effect of space charge is lower, so that the current distribution is not homogeneous. The practical way to simulate the infinite plane solution is a reshaping of the electrodes called a Pierce type gun 5}.

φ = Φg z 4/3
g

e m2



16 4.4 The difficulty at the cathodeThe space charge produces a radial electric field Er . This field however must be null at the surface of the cathode due to the conditions at a conducting surface. Moreover, the linear density at the vicinity of the cathode varies very rapidly so that the conditions required to introduce the space charge (§ 4.2) are not fulfilled. The proper treatment of the electron motion requires a proper computation of the field using the Poisson equation.
In order to understand the behaviour of the particles at the vicinity of the cathode we can use a simplified model. The cylinder of charge emitted by the cathode and accelerated is replaced by a linear density of particles and its image in the cathode.

z

Figure 9: The simplified model of the cathode
If λ is the line density along z the field Er can be computed by a straightforward integration.

E =      λ r     2πε0 1     z r (r2+z2)1/2
that is the field due to a constant line density multiplied by a correction factor

E
Er

r

E



17k = z(r2+z2)1/2This correction factor can be applied to the space charge term of the paraxial equation to approximate the image effects at the cathode. This approximation has been introduced in our PC program.

0.7

Z

1.0

k,

Figure 10: The correction factor R5. DETAILED COMPUTATIONS5.1 The paraxial equationA simple program using a PC has been written to integrate the paraxial equation including the effect of space charge at the vicinity of the cathode and the radial field due to the hole in the anode. The aim was to understand and check the more precise techniques of computations.The beam line with 3 solenoids has been simulated with zero current in the beam and with a current of 1 A close to the maximum current acceptable in this beam line.The results are indicated in the Table IV and in Fig. 11, Fig. 12 gives a typical output of the program called PARAXIAL.

Fig. 11: The beam line with 0 and 1 A
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Fig. 12: Output of PARAXIAL

Cathode radi us (cm) = .400 Kinetic energy (eV) = .2
Charge (nC)≡ 0.00 Laser pulse (nS) = 10.0000
Rprimeθ (dr∕dz)= 0. 000 RthetaprimeO R*dtheta∕dz= 0.0

Photoemi s≡i on
Guan turn e∙f∙fi ciency = .010 Number of Electron ç. E10 0.000
Cath. Current <A>= 0.00 Current density (A∕cm2)= 0.000
Laser power (MW> = 0.000 Laser energy (MicroJoule)= 0.000

First coil
Foe. length (Foci) .065 Current ta) = 2.380
Bma× (Gauss) 322.022 Coil to cathode (cm)'= 7.000

Secnd coil
Foe. length (Foc2) . 151 Current (A) = 2. 195
Bmax (Gauss) 163.597 Coil to cathode (cm)≡s 76.200

Third coil
Foe. length (Foc3) . 151 Current (A) = 2. 195
Bmax (Gauss) 163.597 Coil to cathode (cm) = 145.400

Field at the cathode = .0017

5.2 Computer SimulationsTo simulate the behaviour of the electrons in a beam line we have used two codes with different characteristics:
S0L0PT is a short home made code that tracks the beam through the trans­fer line using TRANSPORT matrices for the solenoids and non-linear kicks for space charge9). It assumes laminar motion (for space charge calculations the most external trajectory is considered to be the enve­lope) , a continuous beam and no acceleration. The code is well suited for rapidly adjusting the position and strength of solenoids.- EGUN 12) is a well known code written to study the optics of an electron continuous beam, with special attention to gun optics design. The main parts are a Poisson solver and a ray tracker, plus various routines to simulate the effect of an external magnetic field; the code calculates the E field without particles, tracks the particles in that field (con­sidering also the external B field), recalculates E and retracks the trajectories, and so on until the result converges. The iteration is done on the current, and cylindrical symmetry is assumed. This code is well suited for the study of the geometry of the cathode, but, with some effort, can be used to track the electrons along all the two meters of the structure.5.3 The cathode studied with E gunThe space charge limit of our gun geometry has been calculated in the sense explained in chapter 4.3; the limited current is 36A. The anode has been made large enough to let this current go through. (Fig. 13).



With EGUN we have done a systematic study of the conditions in which the beam leaves the cathode, in order to estimate the actual focal length of the electrostatic diverging lens described in chapter 3.1, with and without space charge. Results are listed in Table III. The defocusing lens is stronger than foreseen in thin lens approximation.
TABLE III

19

Coordinates of the most external electron at z = 30 and resulting focal length for the nominal gap of 1 cm
I K r dr/dz f electrostatic(A) mA ∙ V-3∕2 (mm) (mm)0.00 0.0000 7.1613 . 1310 34.671 .00 0.0442 7.2895 .1387 32.565.00 0.2210 7.8011 . 1609 28.4810.00 0.4419 8.4470 .1883 24.86
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5.4 The nominal geometry

The first aim of computer simulations was to fix a nominal geometry, without space charge, but with the field shape of the real solenoids. To get this result, with a satisfactory agreement between the codes used, a careful analysis of the cathode region (first two centimetres) has been necessary.For the code PARAXIAL the delicate point is the electrostatic lens: the dependence of Ez on z is far to be a step function, and the electrons are focalized also before reaching the energy qΦg.To have an accurate description of the dynamics the potential Φ(z,r= 0), calculated by the POISSON solver of EGUN has been introduced.S0L0PT instead is a transport code and the acceleration process has previously to be described by EGUN. With the chosen mesh-size of 1 mm the code of SLAC can cover in one run around 30 cm, modelizing acceleration and magnetic focusing; each point after the gap can be chosen as initial point for the S0L0PT run. In the runs presented in this paper this ’’gluing” point is located at 22 mm from the cathode (end of the anode). In such a way it is possible to separate the magnetic focusing from the electrostatic defocu­sing, calculated once for ever with a series of runs of EGUN. The dependence of (r, r,) at z = 22 mm as a function of the beam current is linear in good approximation. S0L0PT is then enough to adjust the solenoid strengths. The error introduced in this separation of electrostatic and magnetic effect, minimized with the choice of the 22 mm, can be evaluated in some percent (due mainly to the electrostatic lens).In table IV the nominal optics found with the two approaches are shown. Fig. 14 shows the beam layout and Fig. 15 the EGUN simulation of the cathode region.



Bmax (T)= 0.032
ibeam (A)= 0.00
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Solenoid kind z (mm) PARAXIALI (A) SOLOPTI (A)

1 70 2.380 2.3942 762 2.195 2.2002 1454 2.195 2.200



22 5.5 The space charge effectAnalyzing now the effect of space charge it has been shown in paragragh 4.2 that the drift spaces between the first and the second, and between the second and the third solenoid admit a maximum current of about 1 A with a symmetrical configuration; this occurs keeping the focal strength of the zero current case.Our geometry is more complicated, being the beam dimension at the first coil a function of the current; in the very simplified hypothesis of thins lenses and a linear dependence: r = r0 + α Ithe equation (15) which determines Imax becomes the quadratic:1.1696×2 Z2 ( r0 + α I)2For the parameters of the nominal optics (r0 = 12 mm, α = .1 mm∕A) the maximum current is 1.3 A. For this value the beam shape should be the same in each drift space. Using thick lenses instead the electron ray is quite asymmetric in the first coil (the maximum occurs some centimeters after the coil center) and so the behaviour is not completely regular (fig. 15).
If the 1 A limit is a good indication of the performances of the line, it is not at all the ultimate limit. In fig. 16 we show a possible layout for a beam current of 5 A : the beam is kept small at the beginning where is located the Wall Current Monitor, and in the position of the mirror of the laser. Where the chamber is large instead the beam expands to 35 mm.

5.6 The effect of the field at the cathode
In the configuration presented, with a solenoid of the first kind at 70 mm from the cathode, the field at the emission point is Bo = 0.54 Bmax, i.e. of around 18 Gauss at the nominal solenoid current. The memory of this field is kept all along the line.

I =



Mοι 4 Bmαx (T)= 0.032 
Ibeam (A)= 1.40
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Fig. 15: Beam behaviour at 1.4 A
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Bmax (T)= 0.03Ô
lbeam (A)= 5.00

Fig. 16: Beam behaviour at 5 A
In fact, if the electron is observed at a point with B = 0, Bush theorem (A-6) prescribes it to have an angular velocityr 0 r 2

that weakens the focusing of all the solenoids met along the line. Fig. 14 shows that this effect on the beam is very weak (namely r is not exactly zero at the focuses); the shielding provided at the first solenoid looks then adequate.

Θ = q B0 2 m
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Note PS/LP 89-16
Appendix I

The paraxial equation is the equation of motion of particles, equa­

ting the time derivative of momentum to the force 

d P 
dt

= → → 
q ( E + v × B ) ( A-1 )

in the particular case of systems with axial symmetry and with simplified 
field configurations and in the hypothesis of a velocity almost parallel 
to the axis z.

The system of coordinates is r1 Θ, z (fig. 1). Several textbooks 

give the development of eq. 1 in cylindrical coordinates. One can find a 

detailed derivation in Bruck 12) page 28. Using the notation of Bruck this 

is

(A-2)

This is a relativistic equation so that m = γ m0 varies in time 

due to the acceleration by Ez.

We consider a configuration of fields with axial symmetry where 

Bθ =0 and Eθ = 0 and analyze successively these 3 equations.

The 3rd equation of (A-2) describes the longitudal acceleration.

The accelerating force is provided by Ez, the longitudinal electric field 

and by two other terms linked to the magnetic field. The term r Bθ is 

null because we have assumed B =0. The second term - q r Θ Br combines the 
tangential velocity r Θ and the radial field Br.
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The radial field Br is null on the axis by symmetry and therefore 

small at the vicinity of the axis, so that this term is usually neglected 

(for example with Br = 100 Gauss at 1 cm and  ø/2 = 1 GHz the effect is 

equivalent to an electric field of 1 kV per meter, negligible with 

respect to the accelerating field Ez is usually of several MV per meter).

This third equation therefore reduces to

(A-3)d 
dt

= (m z) = q Ez

This equation is however relativistic (m ≡ *γ m0) so that it 

takes some precaution to integrate since *γ is a function of time. The 

equation can be written to express the time variation of y.

d 
m0c dt (βγ) = qEz

or using the usual relativistic formulae 13)

γ = βq Ez 
m0c

(A-4)

The second equation (A-2) provides the "Bush theorem". We 

can rewrite it under the integral form

(A-5)mr2Θ = g
2π

2 πr (zBr - rBz) dt

The quantity 2 πr (zBr - rBz)dt 

can be written

2 πr (Brdz - Bzdr).

Br

Bz

dr

dz

Figure 17

If we note Ψ the flux through 

the circle of radius r (fig. 15) we see 

that the flux 2πrBrdz has escaped and 

the flux 2πrBzdr has been added, 

in other words

dΨ = 2πr (Bzdr - Brdz)

that we can insert in (A-5) to obtain

Θ = - (Ψ - Ψo)

where Ψo is the flux in the circle of radius r at a place where Θ = 0.

g 
m

__ 1
2πr2



If one adds the assumption that the field B2 is constant through 

the circle of radius r this equation takes the form

3

(A-6)Θ =
q
2m Bz -

and is called the "Bush theorem", it is used in the discussion of what 

happens in a solenoid field.

The value of Θ is half the cyclotron frequency in the field Bz if

Ψo = 0, it is therefore very high, for example if Bz = 100 gauss and with a 
θ

non relativistic electron (  | m |= 1.8 1011 C.kg-1). The frequency is 

approximately 1 GHz.

The first equation will provide the paraxial equation, that is the 

evolution of r with time. It requires however a few manipulations.

We first remark that Bθ = 0 and use Θ given by the Bush theorem to

(A-7)

write
d

dt (mr ) =

The second step is to develop the lefthand term and replace m by
Υm0

dr (mr ) 
dt = γm0r + ∙γm0r = ∙γm0

or using eq. A4.

d
— (mr ) dt = γm0

βq
Γ + Υm0c ez r

so that the A-7 equation can be written

(A-10)

that is equation 2.10 of Lawson 5), using the same notations. It is the 

paraxial equation with time as independent variable.

q2 Bz2

4 Ύ2 m02
q2 V

r - 4π2γ2m02
1 qEr
- 3----- = 0r ∙γm

- Ψn 
πr2

q Er q2 ∙ r 
4m

- -
ѱ2  
πr2

2

B2/z

r + βq
-γm0c

+Ez γ

r +
Ύ 
Ύ r
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The paraxial equation with space as independent variable can be 

deduced from (A-10). A certain number of manipulations are again required.

We use

=  dr dz =  βc r
  dz dt   

where the prime denotes derivation with respect to z and in a similar way

d
r = dt (βcr') = r"β2c2 + r'β'βc2

so that we can rewrite the two first terms of equation A-10

.. βqEz 
r + ---- rγm0c = β2c2

β Ύ
(r" + - r, +-r, 

β Ύ

Since and Ύ' - ∙γβc

that is
.. βqEz 

r + ----γm0c r = β2c2

so that A-10 can be rewritten

In the absence of space charge a simplified version of this 

equation can be derived. Since the radial field Er can be derived from 

the longitudinal field Ez through

div E = 0

that is1 in cylindrical coordinates and with Eθ = 0

or, assuming a linear variation of Er at the vicinity of the axis 
1

Er =              - 2 r Ez

that is using A-4

The new version of the paraxial equation is then

(A-11 )

(A-12)γ"
2β27 Γ +

qBz
2βrmoc

2

r - qψ0___
2πβγm0c

2
1 
r3

= 0

r = dr 
dt

ά Ύ = βqEz
Υm0c

(r, 1

β2
ύ’Ύ+

1 ∂ 
r ∂r rEr + ∂

∂z Ez = 0

Er = - 1
2 rγ"m0c2∕q

Er = - 1
2 r Ez

r " + γr 
β2Υ

+
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Finally it is possible to express this equation under a different 

form if one notes that the values of γ and β can be linked to the variation 

of potential Φ in the gap and to the rest energy of the electron expressed 

by the potential Φo

φ
Ύ = 1 + -

φo

  Φ(2Φ0÷Φ)
(Φ  + Φo)2

The equation then takes the form that we have used in the text

(A-13)

which is equation 2-16 of Lawson 5) with the same notation.

φo = - m0c2 
q

β2 =


