OPERATION DU PS - EXPERIENCES DE PHYSIQUE

I. OPERATION DU PS No. 106 - Période P1 du 16.02 au 31.03.1983

Ont participé é la réunion du 29 mars 1983 :

- A. Ball/EF, B. Bleus, B. Boileau, J. Boillot, J. Boucheron, M. Bouthéon,
- A. Burlet, G. Daems, L. Decurninge, D. Dumollard, J. Gruber, J. Guillet,
- L. Henny, P. Heymans, F. Hoffmann, Ch. Hill, P. Lazeyras, J.M. Maugain/EF,
- S. Maury, J.P. Potier, J.P. Riunaud, G. Rosset, G. Roux, H. Schönauer,
- D. Simon, Ch. Steinbach, F. Völker J. Jamsek a envoyé des notes.

1. Résumé des faits marquants de la période

Ce premier run de l'année a vu tout d'abord un excellent démarrage après un grand arrêt annuel. Le bulletin hebdomadaire (No.9/83) a déjà résumé cette performance, mais rappelons encore quelques facteurs essentiels de ce succès : la qualité des interventions au cours de l'arrêt, l'importance des tests préliminaires et l'intérêt d'un démarrage étagé :Linac, PSB, PS. Parmi les succès également, mentionnons le faisceau dit "Neutrino" qui, bien que nouveau, a permis de commencer une expérience de physique, dès le vendredi du démarrage (grâce aussi à la bonne volonté des ISR qui avaient retardé leur propre démarrage de 48 heures pour laisser le setting-up de cette nouvelle expérience s'effectuer dès que possible et sans interruption).

Plus de 1.1×10^{19} protons ont été amenés sur la cible \vee à 19.2 GeV/c, résultat correspondant largement aux prévisions qui avaient été faites pour la période P1. Il est à noter que, pour la première fois, un débit moyen de protons de 10^{13} /seconde a été produit au PS pendant des périodes longues.

Les ISR ont reçu leurs habituels remplissages (2/semaine) et quelques (rares) remplissages supplémentaires ; des tests ont également été faits au cours de la dernière semaine du run avec un faisceau éjecté à 3.5 GeV/c.

Que ce soit en séances de mesures propres (MD) ou en utilisant tous les cycles disponibles pour des études en paralléle avec la physique (pendant les remplissages ISR en particulier), l'ensemble des faisceaux que

le complexe PS sait produire a été ajusté, amélioré et utilisé! Ceci a permis au SPS de démarrer en cible fixe d'abord, puis de réaliser (la dernière semaine du run) un essai en vraie grandeur du fonctionnement du complexe en collisionneur pp. Entre temps, bien sûr, la machine AA avait démarré le PS, lui ayant fourni 3 types de faisceaux nécessaires : à 3.5 GeV/c par la boucle et direct, à 26 GeV/c sur la cible de producduction des p. A noter que l'intensité maximale du faisceau de production de l'année 1982 a été de nouveau atteinte (1.33x10¹³ppp en 5 bunches). Par ailleurs, une programmation nouvelle des courants de PFW, basée sur l'utilisation dans les GFA du train B, a été mise au point et devrait permettre d'obtenir des caractéristiques transversales meilleures à haute énergie. Ceci sera à mettre en opération durant la période 2.

Comme on le voit, ce run a été fertile. Le taux de pannes de 7.8% moyen est tout à fait bon pour un run de démarrage. Les incidents (en petit nombre de toute façon) les plus notables ont concerné le faisceau Neutrino où il est apparu que tout n'était pas encore terminé au démarrage : interlocks/protections, par exemple. Mais les chiffres sont là pour montrer qu'il était indispensable de démarrer le plus tôt possible. Il faut rappeler que ce faisceau a été construit en un temps record et avec un matériel disparate récupéré dans les divisions PS, EF, SPS et ISR ; ce qui a rendu la tâche difficile à tous ceux qui ont amené à la phase opérationelle cette nouvelle facilité (voir Beam-Transport).

Les statistiques pour cette période sont les suivantes 1):

DONNEES GENERALES

Temps NP + ME + MSU : 1018 h.

Taux de panne PS (79h54) : 7.8 %

Disponibilité du PS

- pour le SPS : - pour le AA : 87.2

I_p moyen (10¹² ppi) : 7.71

I_p pointe (10¹² ppi) : 18.30

¹⁾ Calculées par G. Azzoni, K. Priestnall et les équipes d'opération.

UTILISATION DU FAISCEAU

	CT+FE+D2	FE16 ISR	D2	FE16	AA	١,	EUTR	•	AP'	rst	D9	3/9	7/D2
i _p x10 ¹² No impulsions i _p moyen	595 800 183 218 3.25	114	700 699 .77		235		325	100 857 •57	115			255	800 140 •93

REPARTITION DES PANNES (HEURES)

1 1	Aimants principal et auxiliaires	4,43	1
2	Génératrice principale	-	2
3	Linac	5,28	3
4	Booster (y compris contrôles)	6,17	4
5	Injection	3,12	5
6	Accélération	6,18	6
7	Vide	0,47	7
8	Ejections - Cibles	2,22	8
9	Contrôles (IBM, Nord, CT, TT2)	19,09	9
10	Transport de faisceau	26,55	10
11	Divers PS	4,40	11
12	Divers autres divisions	0,03	12
			_L

DISTRIBUTION DES DUREES DE PANNES

(Nombre de pannes/temps total)

ANNEE 1983	0'-10'	10'-20'	20'-1h	1h-3h	3h-6h	6h	TOTAL
RUN 1	79/5h33	32/7h16	31/17h19	19/27h10	3/12h53	1/9h43	165/77h54
Aimant principal et auxiliaires	17/0h59	6/1h15	5/ 2h29	_	-	_	28/ 4h43
Générateur principal	-	_	_	-	-	-	-
Linac	9/0h46	1/0h10	1/0h48	3/3h44	_	-	14/ 5h28
Booster	3/0h12	4/0h54	1/0h36	3/4h45	_	-	11/ 6h17
Injection	9/0h23	3/0h45	2/1h01	1/1h03	-	-	15/ 3h12
Accélération	3/0h17	3/0h46	3/2h02	2/3h13	-	-	11/ 6h18
Vide	-	_	1/0h47	_	_	-	1/ 0h46
Ejection et Cibles	14/0h57	4/0h54	1/0h36	_	-	-	19/ 2h22
Contrôles	19/1h39	9/2h06	13/6h36	6/8h48	_	_	47/19h09
Transport de faisceau	4/0h22	2/0h26	4/2h24	4/5h47	2/8h13	1/9h43	17/26h55
Divers	_	_	_	-	1/4h40	-	1/ 4h40
Fautes externes	1/0h03	_	-	_	-	-	1/0h03
Arrêts sur demandes	-	-	-	-	-	-	_

2. Pannes principales

* moins de 3 heures
** de 3 à 12 heures
*** plus de 12 heures

1) Aimants principal et auxiliaires

Pas de longues pannes pour ces éléments, quelques incidents dont seule la répétition fut à noter.

<u>PFW D</u>: il s'agissait d'un amplificateur dans la chaîne de contrôle de la tension qui ne fonctionnait pas et perturbait le courant de façon aléatoire.

De nombreux déclenchements des <u>PFW</u>, également dûs au circuit de protection RMS : une électronique plus simple est préparée, qui devrait donner moins d'ennuis, mais ne sera installée qu'au prochain arrêt (mi-mai). Il faut dire aussi que les ajustement des GFA utilisant le train B ont provoqué des déclenchements thermiques nombreux : mauvais timing de rechargement GFA ?

Alimentation γ transition : un relais défectueux dans l'alimentation, qu'il a fallu changer, d'où le temps de panne.

2) Génératrice principale

RAS, et justement ce fait est à mentionner : aucun incident n'est à noter pour ce run ! Les bruits suspects du dernier run de 82 n'étaient, semble-t-il, qu'une fausse alerte, ce qui a été confirmé par les experts de la Maison Siemens et l'entretien du grand arrêt. Il est possible qu'une baisse passagère du réseau soit la cause de ce bruit dans le moteur.

3) Linac

Trois incidents à signaler :

Panne de la source (courant cathode) dû probablement à une accumulation d'air dans le système de refroidissement à circulation d'eau. C'est le système de protection qui a bien fonctionné et coupé le chauffage cathode.

Tank 2 : changement d'un tube RF nécessaire, car certainement en train de finir sa vie : instabilité depuis 3 semaines et obligation de monter la puissance continuellement. ACTION H. Haseroth

BH3: cet élément ne peut pas être ré-enclenché depuis MCR car il existe une protection vis-à-vis de certaines manoeuvres, depuis MCR, sur des paramètres Linac.

4) Booster (Voir réunion de ce groupe du même jour 29 mars)
Notes de G. Rosset

Mentionnons seulement : le système <u>BT SMV30</u> nouveau : panne de timing, semble-t-il, et quelques pannes des alimentations principales, le tout pour un taux de 0.6% vu par le PS ! Les pannes de <u>contrôle</u> ne sont plus comptabilisées avec le Booster : elles ont compté pour la moitié des pannes au Booster.

ACTION
P. Heymans

Deux sujets principaux : <u>PLS/LSB</u>, y compris des erreurs de manipulations qu'un manuel d'utilisation pourrait aider à éviter, et les <u>ACC</u> qui nécessitent souvent des ré-initialisations.

A noter aussi que les facilités HELP et PROCEDURES ne sont pas encore en œuvre.

5) Injection

Une seule rubrique : PI.SMH42 - nombreux déclenchements "défaut pression d'eau" qui inquiètent au début (en référence au bouchage de certains septa au Booster et au AA), mais il ne s'agissait que de défauts de jeunesse d'un nouveau châssis de protection.

- 6) Accélération Pour la partie puissance :
- Coarse-tuning: un court-circuit dans un banc de transistor (CT II). Quelques interventions habituelles: changement de condensateur HT(51), débitmètre défectueux (56), problème à la montée de tension H = 6/12 (96).
 - Dans la partie "beam-control" : GFA des "trous RF" pour changement de nombres harmoniques se sont enclenchés sans commandes.
- * Recombinaison harmoniques 19/21: on a constaté une dérive probablement due à l'utilisation de la P.U. 92 qui est distribuée aussi pour l'observation et dont le découplage n'est pas encore parfait. On a utilisé ensuite la P.U. 36, et obtenu un meilleur ajustement, plus stable, d'où des pertes en sd 16 plus petites.

7) Vide

Signalons un excellent vide dans le PS, malgré une intensité élevée (\bar{p} production, ν beam). Deux incidents, ayant pour cause des pertes de faisceau en début de run, ont cependant causé des pannes : en sd 37 et dans le secteur 6. Dans un cas, un joint métallique a dû être resserré après détection d'une fuite à son niveau. Dans l'autre, le vide est remonté à 10^{-2} T après que des pertes de faisceau aient eu lieu sur le septum 58.

Il a fallu un prévidage, un refroidissement des pompes ioniques, ce qui explique la durée de la panne.

Le <u>display des BLM</u> est d'une grande utilité pour la surveillance des pertes dans l'anneau, et son utilisation a permis d'éviter d'autres incidents en attendant l'installation d'interlocks sur le kicker rapide 71/79 (Voir Ejections). Il reste à ajuster le gain pour qu'on retrouve une gamme semblable a celle utilisée avant l'arrêt, ou en tout cas, que l'histogramme soit plus significatif (moins de saturation).

ACTION 7. Agoritsas

8) Ejections-cibles

Un seul sujet préoccupant : le nombre de <u>déclenchements des modules KFA</u> qui a été anormalement élevé. Il s'agit de déclenchements spontanés, apparemment causés par le vieillissement des tubes (MAIN SWITCH), peut-être accéléré par le shutdown, d'une part, et le temps de préchauffage et de pulses à basse tension trop court, d'autre part.

4 tubes ont été changés, 2 autres le seront pendant l'arrêt de Pâques. Les choses devraient donc rentrer dans l'ordre. Rappelons aussi qu'un interlock a été élaboré qui, via le PLS, coupe le faisceau accéléré si un module s'arrête : ceci pour éviter une éjection de mauvaise qualité qui irradierait la machine PS.

<u>Une information</u>: le transformateur 103 est en cours de modification pour permettre une acquisition et un affichage de l'efficacité des éjections 16.

9) Contrôles

En dehors du manque des <u>programmes de mesure</u> (Qmètre et CODD) qui a gêné considérablement les diagnostics au cours de la première semaine du run, signalons encore :

ACC-timings: des mauvais contacts dans un rack CCR, quelques manipulations éronées, et surtout une corruption d'un mot important (Status) dans l'ACC ont provoqués des pannes relativement nombreuses.

<u>Ytransition</u>: au cours d'une initialisation (POW-INIT), les n° d'équipements, les valeurs max/min et d'autres facteurs ont été perturbés.

KFA45 : coupure du crate Camac et mauvaise ré-initialisation. A l'arrêt de Pâques : le Camac ne sera pas arrêté, ce qui devrait faciliter le démarrage.

PLS: plusieurs ennuis de ce côté-là:

- a) Un reload du PLS et du MHC fait par un technicien d'opération a été interrompu, d'où une perte de temps par erreur de diagnostic dans ces conditions.
- b) Attente de 6': due à une erreur dans un programme écrit en Nord-PL Le programme a été refait et, aprés son installation, on ne devrait plus avoir de problème.
- c) <u>LBS</u>: s'agit-il d'un problème de vieillissement du matériel ?
 où d'un programme ? L'analyse des ennuis (blocage du LBS
 après changements PLS) nécessite un shutdown.
- d) Délai d'attente avant de quitter une tâche PLS, normal : beaucoup de vérifications sont faites sur les tables des "users". Lorsque tout sera stabilisé, une recherche d'optimisation du temps sera faite.

"Link down CPS" : il y avait une double panne : computer Nord et un châssis du système TITN. Après un changement des deux : fonctionnement correct.

ACTION
P. Heymans

En dehors des pannes, quelques remarques générales ont été formulées :

- Nécessité d'un mini-manuel du PLS pour éviter des fausses manoeuvres.
- La liaison avec "Power House" via programmes PLS et la composition du supercycle depuis MCR devraient être possible au cours de la période P2.
- le sauvetage des "ACC-Table" : il a été décidé que cette action serait faite conjointement entre le PSS et G. Daems en principe une fois par semaine.

ACTION
P. Heymans

ACTION PSS G. DAEMS

10) Beam Transport - 2 sujets

- Alimentations : HB202 quelques erreurs de programmations et un mauvais réglage de la platine de commande du disjoncteur - A été ré-ajusté.

BHZ45: un court-circuit dans un transformateur. L'alimentation, remplacée par une du SPS, sera réparée avant que l'expérience avec BEBC ne redémarre.

"QF 209M": en fait, incident sur la chaîne de sécurité TT7 qui a coûté 10 h de panne. Un problème de surtension, probablement provoqué par un contact d'un pilotherm sur un élément (pompe manifold?) dont la masse était différente de celle de l'électronique de sécurité. Cette surtension a détruit des circuits d'interlocks et une alimentation qui, à son tour, a détruit d'autres circuits... Le temps de panne est expliqué par le fait q'il a fallu recâbler en urgence des circuits et aussi trouver sur les 14 éléments en série (baptisés QF 209M = comme Multiple) quel était le fautif.

Tous ces circuits d'interlocks seront révisés à l'arrêt de juillet. Le manque de personnel dans la section Sécurité se fait durement ressentir et nous espérons que cette situation s'améliorera.

* *

- <u>Ligne de faisceau TT7</u> - <u>Deux incidents vide</u> dans cette ligne ont été provoqués par des pertes de faisceau après la coupure de l'aimant BVT30. Pour l'un de ces incidents, un joint en aluminium a été changé au couplage de la pompe ionique vers BVT30, pour l'autre, un resserrage a suffi.

Ces incidents ont amené à l'introduction <u>d'interlocks supplémentaires</u> basés sur le on/off des alimentations de cette ligne et sur le calcul d'une moyenne de l'efficacité mesurée sur un transformateur vers la cible v (coup par coup < 90% et moyenne sur 10 coups < 75%).

Ces interlocks annulent la demande d'éjection et faisceau via le PLS; de plus, une alarme a été installée provisoirement en MCR. Toutes ces améliorations ont servi dans la dernière quinzaine du run.

ACTION
J. Robert
J.M. Maugain

En outre, un interlock a été ajouté sur le système de ventilation de la zone cible ; il agit aussi, provisoirement, sur le PLS. Il est demandé que cet interlock soit introduit dans la chaine de sécurité TT7 puisqu'il s'agit d'une protection "radiations".

ACTION Equipes MCR - Encore une remarque: Il est demandé aux équipes d'opération MCR de prévenir le technicien de service du Générateur Est quand une panne, concernant ce service mais dont l'initiative est passée à un autre, est terminée.

11) Divers

Formules de la réunion d'opération : le suivi des pannes d'un run et des incidents rencontrés est un élément important de la qualité de l'exploitation de nos machines. Cependant, il est apparu nécessaire de renouveler la formule de cette réunion de fin de run.

Une proposition sera faite d'ici quelques jours. Elle sera basée sur la désignation d'une ou deux personnes, dans chaque groupe lié à l'exploitation des machines, chargées de fournir les informations sur les actions entreprises, à partir de la liste des pannes élaborée par les techniciens du groupe OP et les PSS. De cette manière, la réunion de fin de run devrait être plus efficace et dédiée à des sujets précis ainsi qu'à des problèmes d'opérationnalité en propre.

M. Bouthéon

PSS: J. Boillot
J.P. Potier
L. Henny
J.P. Riunaud

II. PHYSICS EXPERIMENTS (V) - K. Kilian

The PS and the new "neutrino" beam line TT7 were put into operation very fast at the beginning of period 1. The two neutrino oscillation experiments PS 169 and PS 181 came into operation also very smoothly with a 19.2 GeV/c beam and 1,2 s cycle and a burst of regularly 1,25.10¹³ ppp a very successful experimental run could be performed.

Distribution

Liste PS/11 Personnes mentionnées

1. AIMANT PRINCIPAL ET AUXILIAIRES

									,			· · · · · · · · · · · · · · · · · · ·		
Description - Remèdes apportés	Lecterellement pa "overcumt de partimente pa tody. P. H.	Ch. Impossible de demarca à	rage out	Temarrage par computer apris	Rosel Computer		1							
Discuté Réunion Opération														
Elément en panne	WAKS	G7 F 1001,	WIKI	8673	W	GTF1000		PFW	Pr. WAKA	11	1,	PP.DAKATR	PP. WA164	
Durée de la panne	/oma	1419'	131	23.	3)	40,	•	25-	10110	-23	12,12	13,	14,44,5	
Partie de la machine en panne	8.3	P.S	ST	ÇĨ	2	SJ	,	17	50	5	11	50	50	
Date / Houre	1/2 juns	8/3.2205	9/3 21"20	10/300420	16/3 2354	17/2 12h00	1	=3,20 2 hJ	312 0252	512 07to	7 3 00 E/t	912 16,52	1913	

Discuté Réunion Description - Remèdes apportés Opération	(pentilies amors en maccoarie position)	Reload FEC Linge	Faux 2 et steems HelV.	von St de vavie (Charmat)	Leve / 2 Umin	G 2	Parte incohoune	Tension d'anc		Chaugement d'un Tube RF
Elément en panne Rd	Timing	Controle	16.	TANK 2.	Tanka	Touk 2		Soupee	ビュ	C Mine
Durée de la panne	Stort up Bonta	•	9h, 1+, 8+	, t+, t		L mn	3,	69,	,6	blnk
Partie de la machine en panne			Linge	CINAC	7, 110 6	LINAC	LIMAC	LINAC	п	
Date / Heure	14/2 184 22415	15/2 2450	M/3	/4/3 10ph3/	14.5.12.5	22.3 gv 16	गरा गरा	12 05 31	50 41 219	3x/2 1/47x'

4. BOOSTER

Description - Remèdes apportés	roi hog bouth		Dispilarteur							
Discuté Réunion Opération										
Elément en panne	RI, KSW.	BIKSW ,		ALITI PRINC.	h 17	DISTRIBUTEUR	ALIM. PANC.	ìò	ALIM. PRINC.	ACC. Hof.
Durée de la panne	11,	۲,	123+22	1201	13,	1430+36	74,	10,	7	014251
Partie de la machine en panne	Booglin .	Boastru	PSB	PSR	PSB	SI SIJ	11	11	1	μ.
Date / Houre	14.3. 11430	74.3.7423	30 50 2 ho	50/20 2/90	4/3 14/22	10 3 06 30	14/3 22 chr	15/2 09/16	37,20 2/37	29/3. 21hoc

;	2		
•	_	4	
į	_	<u>-</u>	
ļ	_	ļ	
	2	ź	
		•	
L	c	,	

Description - Remèdes apportés	PT. SMH 42	Pression can		relant tresion ean						
Discuté Réunion Opération								:		
Elément en panne		PI.SM42,	KF	24 HUS. IG						
Durée de la panne	16)	5,+4,+2,+	۲,	2, +44, +4, +						
Partie de la machine en panne	ps	29		p S 1/4+ 21+141+39						
Date / Heure	8/3 09/33	/ 5 2	12/2 16/21	547 TV 5/5V						

6. ACCELERATION

Durée de la panne		Elément en panne	Discuté Réunion Opération	Description - Remèdes apportés
٩	53' 6	Core to ac pulsent p	fur.	Adrende G. Roux an C (3 (GEA)
39		lovit, 56.		
215)	Cavite D6		
1-1-	0	Garse Tuning		
77	10) 11		
10		Parite 51		
2	_	n 36		
30		TRANSV. FEBBACIC		
53		Cavites 10MAZ		
~				Infauiton URFLE (tests) (Contra
2403	23			PHASE PF daugee ??
12	~	Caribé 56		problène d'eau

Date / Heure	Partie de la machine en panne	Duréa de la panne	Elément en panne	Discuté Réunion Opération	Description - Remèdes apportés
CS 10 5 SS	SZ	, th	5037		Fut de vite
(8/2 23430	Sd	10475	VIDE SECT. G		Rodrotton, poter
8. EJECTION - CIBLES	CIBLES				

,	T 6	,	,	 	r	······				1
Description - Remèdes apportés	mongravit le condition : EJ 62 dans ring	Almostotion declinal.	wood, 2		11 3		Module 3			20m delloque MTV020
Discuté Réunion Opération										
Elément en panne	5 H 62 S H 16	1001	FAK (KFAZA)	. 11	11	SM 16	KFA71	093	KFA71+ D1001	
Durée de la panne	トンナンナ	8, 8	- ~	192	2,	5	77.	14	,8	15'
Partie de la machine en panne	SJ	PS	5	5 d	50	52	5	Sd	50	PS
Date / Heure	03.03-1483 10447/	16/3 17"	20/2 M23	21 /2 /436	24/2 02/12	05,10 2/20	2/3 22445	712 MY 02	15/2 12 1A	29/3 17100

tests has her somel Co injeposal ACC hum. Juco WF445 HCe Rante o Took RAY GTF-GTS Description - Remèdes apportés By 4 re for Dogue our TEST GFA -VRFLE Peters incomment Warme Jost 21 Pholeber Lining Accab L1 BT. SMV 33 Probleme de Ocea Or Opération Discuté Réunion TIMING FAUX ?? LINK DAWA GFA-VRFLE Elément en panne 2 とって Hee CPS SM 16 43,20+45 Durée de la panne ころせ 77 125 -1人 ナ % % --72 78 62 7 machine en panne Partie de la Q SS 2 いり い S 5 ر در つ C 8 5 5 5 14732 YOU 50,40 0 T 5 7 7 01,10 1013 11/30 11/3 15 34 1800 15/2 11 05 15/2 16 44 15,94 5/21 2h, 50 8/hV Date / Heure 273 21/3 1/1/2 1/2 <u>6</u> 12/3 رر ~

9.= CONTROLES - SECURITE

9. CONTROLES - SECURITE

,		·			,		7	,						
Description - Remèdes apportés	Lux Busy long recember dans & 145	Lunk Down along que GTS ast	dimilialing defuis C.B.	Margue WKIR	Commonde definis ACR we get pas.	2	chaugement de ouper cyde de deux de lon	PLS (8'+4')			ACC			
Discuté Réunion Opération														
Elément en panne	A.s.	2,5	BECGDEUR GFA VRFLE.	PLS + twwwg	3 1001,	2	P25	-	PLS	PLS	717149	5 Ø 7	Alarme toute 28	LBS'
Durée de la panne	242	S1+,0F	32/	, LS	20'.	,2	18,	8 +36+4	-o1/	1,13	-09	1,24,4	29,	5+,hz
Partie de la machine en panne	Computer	Computachs	٠ ۵۶	Sd	- 5 %-	65	25	Jd	58	Sd	Sd	Sd	50	Sd
Date / Heure	2/02/83 com	10/3 00425	M/3 Mb13!	11/3	A4.3 10413.	16/3 1644	18/3/025	18/2 00°02	20/2 11 July 30	25/2 10/12	2/3 17 ou	4/3 A5401	63 1833	713

MS blogue ou como de differento, modifications Incornen daw Data Table entre Alim ceate ACC n-7 Brulae. Description - Remèdes apportés Opération Réunion Discuté Elément en panne 1200 R DLS 148 211 Durée de la panne 9. CONTRACES - SECURITE (Juste) 28 machine en panne Partie de la 25/03 14.40 25/03 14.55 Date / Heure 29/3 14.85 29/3 2100

10. TRANSPORT DE FAISCEAUX

											~		
Description - Remèdes apportés	bei que il su curvie du foureau dans	ISR hafe.	Ventication devide dans	bounnande cuponith depuis le MCR	Powbe ISR som ">"	MDX 31				Velant som. Defant Nover	TTI/TT2 deeler che + Manvain		
Discuté Réunion Opération													
Elément en panne	have de brown how	۲۲۲.	5/	HB.202.	117	411	Faune Hide	Î	t11) 5 方 7 18	80789 BB	OF LOG.		
Durée de la panne	11	59. 25.	,52	Ť,	. 62	105 yl	3445'	2011	4433	th.	145		
Partie de la machine en panne	Ps .		73	PS.	PS	Sd	PS	50	Sd	65	E	·	
Date / Heure	1504tl	191491	10/304/30	1413. oshos!	24 PA 181	20/2 15/32	10/3 11hoo	15/2 05/23	19/3 01/10	27/3 JOIB	28 (5.11.0)		