

First glance on ATLAS data with run-3

Stefano Rosati INFN Sezione di Roma 1

ICNFP 2022

Kolymbari, Crete. September 7, 2022

Introduction: LHC run plans

- Recent update (Feb 2022): run-3 and LS3 extended by 1 year
- Run3: 2 x 10³⁴ cm⁻²s⁻¹@ 13.6 TeV, integrated luminosity 450 fb-1 <μ> up to ~80
- Run4-Run5: up to 7.5 x 10^{34} cm⁻²s⁻¹@ 14 TeV, integrated luminosity 4000 fb⁻¹, reaching < μ > up to ~200

ATLAS upgrades for run 3

- New Muon detectors in the endcap innermost station
 - The New Small Wheel (NSW): two new detector technologies (MicroMegas -MM and Small Thin Gap Chambers- STGC) to replace the detectors used in run-1 and run-2
 - MM and STGC for both tracking and trigger
- Keep high tracking efficiency in run-3 and up to <µ>=200 at Hi-Lumi LHC
- Improve background rejection at L1 trigger exploiting the segment direction measurement in the innermost MS station
 - Keeping low-pT trigger signatures unprescaled is fundamental for many physics studies

New Small Wheels in ATLAS

ATLAS upgrades for run-3

- Other upgrades of the muon system
 - New 3-gaps RPC chambers to improve L1 acceptance and background rejection in the barrel/endcap transition region
- LAr upgrade:
 - New front-end and back-end electronics with increased granularity
- L1 calo trigger:
 - New boards for the feature extraction (eFEX,gFEX,jFEX)
- These upgrades will allow to keep same thresholds, rates and efficiencies, at the larger pileup of run-3 and Hi-Lumi LHC
- Upgrades in the TDAQ off-detector electronics
 - L1 hardware: new electronics for Calo, NSW, MuCTPi
 - High Level Trigger
 - New processor farm, improved algorithms, the output rate will go up to 1.5 kHz

ATLAS LAr upgrade TDR

The run-3 dataset up to now

- First collisions in June 2022, at 900 GeV center of mass energy
 - First checks on timing, calibrations, data quality and in general detector readiness
- The 13.6 TeV data taking started on July 5, 2022
 - First crucial data for the commissioning, in particular of the new detectors
- Since then, LHC increased the number of bunches to 2400 and we could collect ~10 fb-1 during the first weeks of operation
 - Peak lumi reached 1.9 x 10³⁴
- Now a ~4-weeks LHC stop, started on August 25, due to a cooling tower fault

Z→e+e- candidate at 13.6 TeV

Z→µ+µ- candidate at 13.6 TeV

The first collisions seen by the NSW

Inner detector track reconstruction

- Tracking has been re-tuned for run-3 higher pileup conditions
 - Yielding a factor ~2 speedup
 - \circ Efficiency very close to run-2, but large improvement in fake rejection at high μ
- Large d0 tracks reconstruction retuned, fake rate reduced by a factor ~10, minimal efficiency loss
 - Now available in all events -> expand run-3 search capabilities

<u>IDTR-2021-003</u> ATLAS-PHYS-PUB-2021-012

Inner detector tracking with first data

- Data/MC agreement with radiation damage modeled in the simulation
 - Raise bias voltage vs integrated lumi to compensate for efficiency losses
- Updated ID alignment, with first pass on 13.6 TeV data
- Adaptive multi vertex fitter for primary vertex finding, optimized for performance and CPU time
 - Particularly elevant for the high pileup conditions of run-3

ATLAS-PHYS-PUB-2022-033

Muon reconstruction

- Muon reconstruction is relying on the combination of all ATLAS subdetectors
 - Combined muons by back extrapolating muon tracks to the inner detector
 - Tagged muons via MS hits or calo patterns
 - Low-pT muons and acceptance optmization
 - Standalone muons up to lηl<2.7
- The new detectors from the NSW have been integrated in the ATLAS simulation and reconstruction software framework, for run-3 samples production and for the analysis of the first real data
- Efficiencies, scales and resolutions fully data-driven
 - Run 2 results: systematics at the per-mille level from tag&probe and resonances fits
 - Alignment from optical system -> impact on high-pT momentum resolution

Eur. Phys. J. C 81 (2021) 578

Relative q/p resolution

Stefano Rosati ICNFP 2022 12

NSW performance studies

 Various checks already performed with data from cosmics test-stands, and compared to modeling in the simulation

Number of MMFE8

Stefano Rosati ICNFP 2022 13

Performance of the new LAr digital trigger

- The new trigger signals are arranged in 34K Super-Cells with much larger granularity than the run1-run2 trigger towers
 - 1 TT becomes: 1 PS + 4 strips + 4 middle + 1 back
- Improve EM trigger electron and photon discrimination
- First data collected at 13.6
 TeV show a good correlation
 between the energy in the new
 supercells and the corresponding
 calo cells sum

ATLAS LAr public plots

Electrons and muons in first run-3 data

Data/MC comparison for events passing an opposite-sign eµ selection

ATLAS-COM-PHYS-2022-820

Dominated by ttbar events

Jet reconstruction

• First jets reconstructed during the June 2022 commissioning run at 900 GeV center of mass energy

16

b-tagged jets in first run-3 data

- Multiplicity of b-tagged jets for the DL1d tagger
 - Combining impact parameter information of displaced vertices and topological information of secondary and tertiary vertices in a NN discriminant
- Same flavour eµ selection, dominated by ttbar events

 Main uncertainties from integrated luminosity (10%), b- c- and light-jets efficiency, ttbar and backgrounds modeling

ATLAS-COM-PHYS-2022-820

Conclusions

- LHC Run-3 has started in July, with collisions at the unprecedented center of mass energy of 13.6 TeV
- The ATLAS experiment is collecting data with an upgraded detector
 - New Small Wheel for forward muons trigger and tracking
 - New LAr digital trigger for electrons and photons discrimination
 - More readout electronics and TDAQ system upgrades
- Already ~10 fb-1 of data have been collected, with the instantaneous luminosity reaching ~1.9 x 10³⁴ as planned for run-3
- The commissioning phase for the new detectors is ongoing, but the first performance results have been presented
- The quality of the data is already good for the first physics analyses and results at 13.6
 TeV center of mass energy
- This is only the beginning of the exciting run-3 LHC physics program with the ATLAS experiment

18