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Abstract

We present the first lattice calculation of the B-meson binding energy Λ and of the

kinetic energy −λ1/2mQ of the heavy-quark inside the pseudoscalar B-meson. This cal-

culation has required the non-perturbative subtraction of the power divergences present

in matrix elements of the Lagrangian operator h̄D4h and of the kinetic energy operator

h̄ ~D2h. The non-perturbative renormalisation of the relevant operators has been imple-

mented by imposing suitable renormalisation conditions on quark matrix elements, in the

Landau gauge. Our numerical results have been obtained from several independent nu-

merical simulations at β = 6.0 and 6.2, and using, for the meson correlators, the results

obtained by the APE group at the same values of β. Our best estimate, obtained by com-

bining results at different values of β, is Λ = 190
+50

−30
MeV. For the MS running mass,

we obtain mb(mb) = 4.17± 0.06 GeV, in reasonable agreement with previous determina-

tions. From a subset of 36 configurations, we were only able to establish a loose upper

bound on the b-quark kinetic energy in a B-meson, λ1 = 〈B|h̄ ~D2h|B〉/(2MB) < 1 GeV2.

This shows that a much larger statistical sample is needed to determine this important

parameter.

∗ On leave of absence from Dip. di Fisica, Università degli Studi “La Sapienza”, Rome, Italy.



1 Introduction

The Heavy Quark Effective Theory (HQET) [1]–[6] has proven to be an extraordinary tool

for studying heavy flavour physics. In this approach, physical quantities are expanded

as series in inverse powers of the heavy quark masses. The spin-flavour symmetries,

appearing in the infinite mass limit, are then used to relate different hadron masses or weak

amplitudes which control heavy meson and baryon decays [6]. For example, in the infinite

mass limit, the set of six hadronic form factors, which parameterize the matrix elements

of the flavour changing vector and axial vector current in B → D,D∗ semileptonic decays,

can be reduced to a single universal one: the so called the Isgur-Wise function [3]. Spin-

flavour symmetries, however, are not sufficient to predict all the properties of the weak

form factors and of other important quantities such as the meson decay constants and

the velocity dependence of the Isgur-Wise function. Among the quantities that cannot be

predicted on the basis of the HQET only, there are several parameters which characterize

the dynamics of strong interactions, such as the heavy quark binding energy, relevant for

higher order corrections to the semileptonic form factors, and the heavy quark kinetic

energy, which enters in the predictions of many inclusive decay rates [6, 7].

The lattice formulation of the HQET offers the possibility of a numerical, non-per-

turbative determination of these quantities from first principles and without free param-

eters [8, 9]. For example, the most important achievement of lattice simulations of the

HQET has been the computation of the B-meson decay constant in the static limit,

fstatB . In this work, we present the first lattice calculation of the B-meson binding en-

ergy, Λ, and of the kinetic energy of the heavy quark in the B-meson −λ1/(2mQ), where

λ1 = 〈B|h̄ ~D2h|B〉/(2MB).

The parameter Λ denotes the asymptotic value of the difference between the hadron

and the heavy quark “pole” mass mQ

Λ = lim
mQ→∞

(MH − mQ) . (1)

It has been recently shown that the pole mass is ambigous due to the presence of infrared

renormalon singularities [10, 11]. At lowest order in 1/mQ, the infrared renormalon am-

biguity appearing in the definition of the pole mass is closely related to the ultra-violet

renormalon singularity present in the matrix elements of the operator h̄D4h. This singu-
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larity is due to the linear power divergence of h̄D4h, induced by its mixing with the lower

dimensional operator h̄h. In perturbation theory, using dimensional regularization, the

power divergence is hidden by the absence of an intrinsic scale in the computation. On

the lattice, because of the hard cut-off, renormalon poles are absent [11]. In this case, the

linear divergence manifests itself as a power divergence in the inverse lattice spacing 1/a,

which appears in the mixing coefficient of the operator h̄h. In ref. [12] it was stressed

that these divergences must be subtracted non-perturbatively since factors such as

1

a
exp

(
−
∫ g0(a) dg′

β(g′)

)
∼ ΛQCD, (2)

which do not appear in perturbation theory, give non-vanishing contributions as a → 0

(see also refs. [13, 14]). In this sense, power divergences in theories with a hard cut-off and

renormalon poles in dimensional regularization are closely related. For a more detailed

discussion see ref. [15]. The intrinsic ambiguity ofO(ΛQCD), present in the renormalisation

of h̄D4h, implies an ambiguity in the definition of a finite Λ and hence of mQ.

Falk, Neubert and Luke [16] have proposed a different definition of Λ,

Λ =
−〈0| h̄ΓD4 q |MH〉

〈0| h̄Γq |MH〉
(3)

where h (q) is the effective heavy-quark (light-quark) field, Γ is a Dirac matrix and MH

a meson annihilated (created) by the operator JΓ = h̄Γq (J†Γ = q̄Γh). This definition

contains the same renormalon ambiguities as that in eq. (1).

In the lattice HQET, the “binding energy” computed in numerical simulations corre-

sponds to the definition given in eq. (3). Consider the two-point function

C(t) =
∑
~x

〈0| JΓ(~x, t)J†Γ(~0, 0) |0〉=
∑
~x

〈0| h̄(~x, t)Γq(~x, t) q̄(~0, 0)Γh(~0, 0) |0〉 (4)

For sufficiently large Euclidean time t,

C(t)→ Z2 exp(−Et) (5)

where Z is a constant. The definition (3) implies that Λ = E : indeed E can be interpreted

as the difference MH − mQ where MH is the mass of the lightest meson which can be

created by the operator J†Γ. It is clear, however, that E cannot be a “physical” quantity

because it diverges linearly as a→ 0. This can be checked in one-loop perturbation theory

and is a consequence of the mixing of the operator h̄D4h with h̄h, as mentioned above.
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It has been argued that it is possible to subtract the divergent term by computing the

coefficient of h̄h in perturbation theory [17]. Although it is true that with a hard (i.e.

dimensional) ultraviolet cut-off, such as the lattice spacing or the Pauli-Villars regulator,

the matrix elements of the bare operators have no renormalon ambiguities, the subtraction

of the power divergences using perturbation theory reintroduces renormalons [18]. In other

words, the perturbation series for the power-divergent counterterms contain renormalon

ambiguities, which, as always, manifest themselves as terms which are exponentially small

in the coupling constant eq. (2). Thus the subtraction of power divergences has to

be performed non-perturbatively if the resulting matrix elements, such as Λ, are to be

unambiguous.

The matrix elements of the kinetic energy operator, λ1, also contain power divergent

contributions. In this case, the origin of the divergences is the mixing of h̄ ~D2h with the

operator h̄D4h, with a coefficient that diverges linearly, and with the scalar density h̄h,

with a quadratically divergent coefficient [12]. λ1 determines the 1/mQ corrections to the

heavy quark mass and hence enters many theoretical expressions of weak decay factors.

As in the case of Λ, the quadratic and linear divergences of λ1 must be subtracted non-

perturbatively.

The numerical values of Λ and λ1, presented in this paper, have been obtained by

using the non-perturbative method proposed in ref. [18]. In that work, it has been shown

that a non-perturbative renormalisation prescription, which can be implemented in lattice

simulations, exists such as to avoid simultaneously both power divergences and renormalon

ambiguities, in matrix elements and coefficient functions separately. In a theory regulated

by a dimensionful cut-off, it is consistent not to perform the subtractions of the power

divergent terms at all, but to work with the bare operators and to compute the coefficient

functions (which will therefore contain powers of the cut-off) in perturbation theory [11].

In this case however, the matrix elements in the effective theory are divergent in the ultra-

violet cut-off and depend on the regularization. Therefore they cannot be interpreted as

“physical” quantities, in contrast to the approach that we adopt here.

The linear divergence in Λ is eliminated by a suitable redefinition of the operator

h̄D4h. This definition corresponds to the same normalization condition that one usually

imposes in perturbation theory. We require that the matrix element of a combination
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of h̄D4h and h̄h, h̄Ds
4h = h̄D4h + δmh̄h, is zero for given external heavy quark states,

in the Landau gauge: 〈h(p4 = 0)|hDs
4h|h(p4 = 0)〉 = 0 1. Contrary to the perturba-

tive procedure, which reintroduces the renormalon ambiguities in the matrix elements of

the subtracted operator, the non-perturbative renormalization condition is unambigous,

though prescription dependent, and independent of the regularization procedure. It is

also quite natural in the sense that it allows a “physical” definition of Λ that is finite and

independent of the ultraviolet cut-off. This procedure can be extended to the operators

appearing in higher orders of the 1/mQ expansion. Moreover it allows the matching of

the operators of the HQET to those in the full theory (QCD) to be performed, via a

combination of perturbative and non-perturbative calculations, in such a way that the

Wilson coefficient functions are free of non-perturbative ambiguities at any given order in

the 1/mQ expansion.

We show below that accurate results are obtained for the binding energy to this order.

Our best estimate is

Λ̄ = 190
+50

−30
MeV , (6)

where the error has been obtained by combining the statistical and systematic errors, as

will be discussed below. Our results show that, as expected [18], Λ̄ is indeed independent

of the ultra-violet cut-off a−1, within reasonably small statistical and systematic errors.

In order to remove the power divergences from the kinetic energy operator, we have

imposed on the relevant operator a renormalisation condition which corresponds to the

“physical” requirement 〈h(~p = 0)|h̄ ~D2
sh|h(~p = 0)〉 = 0, where h̄ ~D2

sh is the subtracted

kinetic energy operator [18]. This renormalisation condition, which will be explained in

detail in the next section, has been used to extract the values of the mixing coefficients of

the kinetic energy operator with the lower dimensional ones with a small statistical error.

Unfortunately, after the subtraction of the power divergences, we were unable to obtain

a precise value for λ1, because of the large cancellations between the operator matrix

element and its counterterm. We can only put a loose upper bound of 1 GeV2 on λ1.

Nevertheless, the results of this study are so encouraging that we are implementing this

procedure on the APE100 computer to perform a high statistics lattice calculation of both

1This requires certain assumptions on the infrared behaviour of the heavy quark propagator that will be

discussed below, see also [18].
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Λ and λ1, whose results will be published elsewhere. We believe that the present results

demonstrate the feasibility of the method proposed in ref. [18] to compute quantities

relevant in heavy flavour phenomenology. In this way, it will still be possible to use the

HQET and the notion of a “pole” mass, now defined non-perturbatively, which seemed

to be ruined by the presence of the renormalons. Preliminary results of the present study

can be found in ref. [19].

The plan of the paper is the following. In sec. 2 we introduce the relevant formulae

which define the non-perturbative procedure for renormalising the operators h̄D4h and

h̄ ~D2h [18]; in sec. 3 we describe the numerical calculation of Λ and λ1 and discuss the main

results of this study; in the conclusion we present the outlook for future developments

and applications of the method discussed in this paper.

2 Non-perturbative definition of Λ and λ1

In this section we define the renormalisation prescription which we will use to calculate

“physical” values of Λ and λ1. The prescription involves imposing appropriate renormal-

isation conditions on the quark matrix elements of the operators h̄D4h and h̄ ~D2h, such

that all their matrix elements are free of power divergences [18]. Similar methods have

been used for light quark operators in refs. [20]–[22].

In numerical simulations, quark and gluon propagators can be computed non-pertur-

batively by working in a fixed gauge, typically the Landau gauge [20]–[23]. The heavy

quark propagator, at lowest order in 1/mQ, has the form

S(~x, t) = 〈S(~x, t|~0, 0)〉 = δ(~x) θ(t) δij A(t) exp(−λt) (7)

where i, j are colour indices;

S(~x, t|~y, w) = δ(~x− ~y) θ(t−w) exp
(
i

∫ t

w
A0(t′)dt′

)
(8)

is the non-translationally invariant propagator for a given gauge field configuration, com-

puted in a given smooth gauge, typically the Landau gauge, and 〈. . .〉 represents the

average over the gauge field configurations. A(t) is an unknown function of t, and we

assume that it decreases more slowly than an exponential at large times, specifically we
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require that

lim
t→∞

1

a
ln
(A(t+ a)

A(t)

)
∼ lim

t→∞

d

dt
lnA(t) = 0. (9)

Below we will show that, within the precision of our simulations, our results for the heavy

quark propagator are consistent with the condition in eq. (9). As will also be explained

below, the condition (9) is not strictly required for the definition and determination of Λ,

since this can be done using the values of the propagator at small times t. However in

that case it no longer has a direct interpretation as a binding energy, and our preferred

definition of Λ does use the behaviour of the propagator at large t.

The constant λ in eq. (7) is linearly divergent in 1/a and would correspond, in dimen-

sional regularisation, to an ultraviolet renormalon in the effective heavy-quark propagator.

Since the linear divergence in λ is due to the mixing of the operator h̄D4h with the con-

served scalar density operator h̄h, we can remove it by adding to the Lagrangian of the

lattice HQET

Leff = h̄(x)D4 h(x) (10)

a counter-term of the form δm h̄(x) h(x). The HQET Lagrangian then becomes

L′eff =
1

1 + a δm

(
h̄(x)D4 h(x) + δm h̄(x) h(x)

)
, (11)

where the factor 1/(1 + a δm) has been introduced to ensure the correct normalization of

the heavy quark field h. With the action L′eff , the heavy-quark propagator is given by:

S ′(~x, t) = δ(~x) θ(t) δij A(t) exp

(
−

[
λ+

ln(1 + a δm)

a

]
t

)
. (12)

The mass counter-term is defined by the behaviour of S(~x, t) at large values of the time

− δm ≡
ln(1 + a δm)

a
= lim

t→∞

1

a
ln

Tr
(
S(~x, t+ a)

)
Tr
(
S(~x, t)

)
 =

lim
t→∞

[
1

a
ln

(
A(t+ a)

A(t)

)
− λ

]
= −λ , (13)

where the traces are over the colour quantum numbers, and we have assumed the validity

of the condition in eq. (9). Our numerical results, support the validity of this condition

and the use of eq. (13) is our preferred determination of δm.
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We now define the renormalised binding energy by

Λ ≡ E − δm , (14)

which corresponds to the following relation between the meson and the heavy quark mass

MH = mQ + E − δm (15)

mQ can be interpreted as a subtracted pole mass, and contains no renormalon effects. A

similar relation can be found in the case of a heavy baryon.

The definition of δm given in eq. (13) is not unique. A possible alternative definition

would be, for example,

− δm(t∗) ≡
1

a
ln

Tr
(
S(~x, t∗ + a)

)
Tr
(
S(~x, t∗)

)
 = −λ +

1

a
ln

(
A(t∗ + a)

A(t∗)

)
, (16)

where t∗ is a given time at which we perform the subtraction. The corresponding defi-

nition of Λ, see eq. (14) above, will clearly depend on the choice of t∗: t∗ parametrizes

the renormalisation prescription dependence and can be considered as the renormalisa-

tion point in coordinate space. For physical matrix elements, the residual mass appears

only through the combination mQ − δm, in such a way that different choices of δm are

compensated by different values of mQ [16]. The use of the propagator at small times,

t∗ΛQCD � 1, to define δm(t∗), and hence Λ(t∗) does not require any assumption about

the behaviour of A(t) at large times, and in section 3.2 we present the results for Λ(t∗)

obtained in this way.

In addition to the non-perturbative contribution of O(ΛQCD) to δm(t∗), there is a

perturbative one proportional to 1/t∗ [18],

−δmpert(t
∗) = −

αsCF
4π

γψ
t∗

+ O(α2
s) (17)

where γψ is the one-loop contribution to the anomalous dimension of the heavy quark

field (γψ = −6 in the Landau gauge) and CF is the quadratic Casimir operator in the

fundamental representation (CF = 4/3). Thus the definition of Λ(t∗) defined, at small

times cannot readily be identified as a physical binding energy. Nevertheless, computed

values of Λ(t∗) can be used to determine standard short-distance heavy quark masses (such

as the MS one) using perturbation theory (as will be explained in section 3.1 below). This,

together with the fact that no assumption about the infra-red behaviour of the heavy quark

propagator is necessary, is of fundamental importance.
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2.1 Non-perturbative subtractions for λ1

The renormalised kinetic operator h̄ ~D2
Sh, free of power divergences, has the form

h̄(x) ~D2
S h(x) = h̄(x) ~D2 h(x)−

c1

a

1

(1 + a δm)

(
h̄(x)D4 h(x) + δm h̄(x) h(x)

)
−

c2

a2
h̄(x) h(x), (18)

where the constants c1 and c2 are functions of the bare lattice coupling constant g0(a).

They have been computed in one loop perturbation theory in ref. [12]. Notice that we

have preferred to express h̄ ~D2
Sh in terms of the subtracted operator which explicitly

contains the residual mass δm. In this way we can use the equations of motion of the

Lagrangian L′ given in eq. (11). This will prove useful below. The constant c2 enters in

the renormalisation of the heavy quark mass. Therefore, it will contribute to the relation

between MH , mQ and Λ at order 1/mQ (see below). On the other hand, the constant

c1 contributes to the renormalisation of the heavy quark wave-function and hence to the

renormalisation of all the operators containing a heavy quark field, but not to the relation

for the quark mass.

In order to eliminate the quadratic and linear power divergences, a possible non-

perturbative renormalisation condition for h̄ ~D2
Sh is that its subtracted matrix element,

computed for a quark at rest in the Landau gauge, vanishes

〈h(~p = 0)|h̄ ~D2
Sh|h(~p = 0)〉 = 0. (19)

This is equivalent to defining the subtraction constants through the relation (in the fol-

lowing we will work in lattice units, setting a = 1)

ρ ~D2(t) = c1 + c2 t, (20)

where

ρ ~D2(t) ≡

∑
~x 〈S

a ′(~x, t|~0, 0)〉∑
~x 〈S

′(~x, t|~0, 0)〉
=

∑t
t′=0

∑
~x,~y 〈S

′(~x, t|~y, t′) ~D2
y(t
′)S ′(~y, t′|~0, 0) 〉∑

~x 〈S
′(~x, t|~0, 0)〉

(21)

By fitting the time dependence of ρ ~D2(t) to eq. (20), one obtains c1 and c2.

The heavy-quark propagator that enters in eq. (21) is the subtracted one, i.e. it is

calculated with the action (11) instead of (10). We now demonstrate that ρ ~D2(t) can be

expressed in terms of unsubtracted propagators only:

ρ ~D2(t) =

∑t
t′=0

∑
~x,~y 〈(S

′(~x, t|~y, t′) ~D2
y(t
′)S ′(~y, t′|~0, 0)〉)∑

~x 〈S
′(~x, t|~0, 0)〉

=
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∑t
t′=0

∑
~x,~y 〈(S(~x, t|~y, t′)eδm (t−t′) ~D2

y(t
′)S(~y, t′|~0, 0) eδmt′〉)∑

~x 〈S(~x, t|~0, 0) eδmt〉
=

∑t
t′=0

∑
~x,~y 〈(S(~x, t|~y, t′) ~D2

y(t
′)S(~y, t′|~0, 0)〉)∑

~x 〈S(~x, t|~0, 0)〉
(22)

Notice that this argument holds for any operator which does not contain a time derivative.

For some important applications it is only the constant c2 which is required. c2 can

also be determined directly by eliminating the sum over t′ in eq. (21):

c2 = ρ ~D2(t′, t) =

∑
~x,~y 〈(S

′(~x, t|~y, t′) ~D2
y(t
′)S ′(~y, t′|~0, 0)〉)∑

~x 〈S
′(~x, t|~0, 0)〉

(23)

for t′ 6= 0, t.

The relation between the mass of the meson and the mass of the quark to order 1/mQ

is then given by

MH = mQ + E − δm −
(

1−
αs
4π
X ~D2

S

)(
λbare

1 − c2

2mQ

)
+ O(

1

m2
Q

), (24)

where λbare
1 = 〈B|h̄ ~D2h|B〉/(2MB). λbare

1 can be determined from a computation of two-

and three-point correlation functions in the standard way. Consider the meson three-point

correlation function (the extension of this discussion to baryons is entirely straightforward)

C ~D2(t′, t) =
∑
~x,~y

〈0|JΓ(~x, t) h̄(~y, t′) ~D2
yh(~y, t′)J†Γ(~0, 0)|0〉 (25)

For sufficiently large values of t′ and t− t′

C ~D2(t′, t) → Z2 λbare
1 exp (−(E − δm)t) . (26)

A convenient way to extract λbare
1 is to consider the ratio

R(t′, t) =
C ~D2(t′, t)

C(t)
→ λbare

1 (27)

As usual λbare
1 must be evaluated in an interval in which R(t′, t) is independent of the

times t′ and t, so that the contribution from excited states and contact terms can be

neglected.

The term proportional to X ~D2
S

in eq. (24) is absent in continuum formulations of the

HQET, and is a manifestation of the lack of reparametrisation invariance in the lattice

version. It has been calculated in ref. [12]. Notice that only the constant c2 enters the

eq. (24) because c1 is eliminated by using the equations of motions. c1 only modifies

the wave function renormalisation of the heavy quark, thus contributing to the O(1/mQ)

corrections of the hadronic matrix elements.
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simulation volume β Number of configurations

set A 163 × 32 6.0 36

set B 163 × 32 6.0 300

set C 203 × 32 6.2 50

set D 183 × 64 6.0 210

set E 183 × 64 6.2 420

Table 1: Parameters of the numerical simulations, the results of which have been used for the

present study.

3 Numerical implementation of the renormalisa-

tion procedure

As explained in the previous section, the determination of Λ and λ1 requires the compu-

tation of the quark propagator and matrix elements between quark states in a fixed gauge

(in order to obtain the subtracted operators), as well as the evaluation of matrix elements

between hadronic states. We have obtained our results using five independent numerical

simulations, whose main parameters are given in table 1.

Our best value of the subtracted binding energy, Λ̄ = E − δm, has been determined

by combining the values of δm obtained using set B and set C with the calculation of E

performed by the APE collaboration at β = 6.0, set D, and 6.2, set E [25, 26]. E had been

determined using the SW-Clover fermion action for the light quarks. The calculations were

performed at several masses of the light quark, so that extrapolations to the chiral limit

are possible. We also present the results for the subtraction constants c1 and c2 obtained

with set B and set C.

So far we have only computed λbare
1 using set A. Again, for the light quarks the im-

proved SW-Clover action [27] was used in the quenched approximation. These exploratory

calculations were performed at one value of the mass of the light quark, κ = 0.1425, for

which the mass of the corresponding “pion” is about 900MeV. The details of the simu-

lation can be found in refs. [20, 24]. Preliminary results for both Λ and λ1 for mesons,

evaluated using this dataset have been presented in ref. [19].
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All the errors have been computed with the jacknife method by decimating one con-

figuration at a time (set A and set C) or five configurations at a time (set B). The error

on E was computed with the jacknife method also and we refer the reader to refs. [25, 26]

for details.

3.1 Determination of the residual mass δm

A possible lattice expression for the forward heavy-quark propagator, to leading order in

the heavy quark mass, is given by

S(x|0) = δ(~x) θ(x4)P~x(x
4 | 0) (28)

where P~x
(
x4 | y4

)
is the lattice path ordered exponential from (~x, y4) to (~x, x4), cf. eq. (8),

usually called “P-line”,

Px(x
4 | y4) =

[
x4−y4

a

]
∏
n=1

U †(~x, x4 − na), x4 > y4

Px(x
4 | y4) = 1 x4 = y4 (29)

This propagator corresponds to the following choice for the covariant time derivative,

D4 f(t) = 1/a (f(t)− U †4(t− a)f(t− a) ).

In order to reduce the statistical noise, we have computed, in the lattice Landau gauge,

the quantity

SH(t) =
1

3V

∑
~x

〈Tr
[
P~x(x

4 = t | 0)
]
〉, (30)

where the trace is over the colour indices and V denotes the spatial volume of our lattice.

It is this averaged propagator SH(t), which has been used in the computations below.

There is a subtle point that we would like to discuss briefly. It can be demonstrated

that O(a) effects in heavy-light operator matrix elements between physical states are

cancelled by improving the light quark propagators only [28]. On the other hand, in order

to improve off-shell matrix elements, which is the case when renormalising the operators

between quark states, it is necessary to use an improved version of the heavy quark

propagator in the effective theory, for example

PIx(x4 | y4) =

[
1 −

(
1

3

)y4−x4+1
]
Px(x

4 | y4) . (31)
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Notice that the improved P-line tends very rapidly to the unimproved one as x4 − y4

increases. The propagator in eq.(31) corresponds to the following time derivativeD4f(t) =

1/a (3/2f(t)− 2U †(t− a)f(t− a) + 1/2U †(t− a)U †(t− 2a)f(t− 2a) ). It is also possible

to add a residual mass term to the heavy quark action in such a way that it modifies the

propagator (31) by an exponetial in time (up to an overall normalisation factor). Such as

mass term takes the form 3/2 (1/λ−1)h̄(t)h(t)+1/2 (λ−1)h̄(t)h(t−2a). In the following,

when discussing the improved heavy quark propagator, we will implicitly assume that the

mass term is of this form.

To determine the residual mass, we have to compute the effective mass of the propa-

gator SH(t), defined by

a δm(t) = − ln

(
SH(t+ a)

SH(t)

)
(32)

In figs. 1 (from set B) and 2 (from set C), we present the values of δm(t) for the improved

and unimproved propagators as a function of t/a. The effective mass is indistinguishable

in the two (improved and unimproved) cases, for t/a > 4–5. Thus, in order to minimize

lattice artefacts, we have only used the results obtained for t/a ≥ 5. Inspired by the

results of one-loop perturbation theory [18], we made a fit to δm(t) using the expression

a δm(t) = a δm+ γ
a

t
(33)

In order to mimic higher order effects, we have also used different expressions to fit δm(t),

e.g.

a δm(t) = a δm+ γ ′ ln
( t+ a

t

)
(34)

or

a δm(t) = a δm− γ ′′ ln
(αs[K/(t+ a)]

αs[K/t]

)
→ a δm+ γ ′′ ln

( ln[(t+ a)] + C

ln[t] + C

)
, (35)

and changed the interval of the fits in order to check the stability of the determination

of δm. In eqs. (33)–(35), δm, γ, . . . , γ ′′ and C are free parameters of the fit. The curves

shown in fig. 1 and 2 correspond to fits of the improved heavy quark propagator to eq.

(34), in the interval 5 ≤ t/a ≤ 12.

From the different results obtained by varying the fitting functions and the time in-

tervals, see tables 2 and 3, we quote

a δm = 0.521± 0.006± 0.010 at β = 6.0 (36)
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Figure 1: Effective mass of the heavy-quark propagator SH(t), at β = 6.0, as a function of the

time. The curve represents a fit of the numerical results (in the improved case) to the expression

given in eq. (34).
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Figure 2: Effective mass of the heavy-quark propagator SH(t), at β = 6.2, as a function of the

time. The curve represents a fit of the numerical results (in the improved case) to the expression

given in eq. (35).
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Subtraction constant aδm at β = 6.0

Fit t = 4− 12 t = 5− 12 t = 5− 14 t = 6− 14 t = 7− 14 t = 8− 14

eq. (33) 0.507(4) 0.515(6) 0.515(6) 0.52(1) 0.52(2) 0.51(3)

χ2/dof 1.50 0.56 0.86 0.84 0.96 1.05

eq. (34) 0.515(4) 0.521(6) 0.521(6) 0.53(1) 0.53(2) 0.51(3)

χ2/dof 0.97 0.46 0.81 0.85 0.98 1.05

eq. (35) 0.513(4) 0.521(6) 0.520(6) 0.51(3) 0.51(1) 0.50(2)

χ2/dof 1.20 0.56 0.93 0.97 1.10 1.28

Table 2: Numerical values of the constant aδm found by using the results of set B, at β = 6.0.

The results are from several fits in different time intervals. We also give the uncorrelated

χ2/dof in the different cases. The numbers given in this table refer to the improved heavy quark

propagator only.

Subtraction constant aδm at β = 6.2

Fit t = 4− 12 t = 5− 12 t = 5− 14 t = 6− 14 t = 7− 14 t = 8− 14

eq. (33) 0.437(5) 0.441(7) 0.440(8) 0.45(1) 0.46(2) 0.45(2)

χ2/dof 0.50 0.93 0.80 0.75 0.70 0.83

eq. (34) 0.442(5) 0.445(8) 0.445(8) 0.45(1) 0.46(2) 0.46(3)

χ2/dof 0.40 0.85 0.74 0.73 0.70 0.83

eq. (35) 0.443(6) 0.445(8) 0.445(8) 0.45(1) 0.45(5) 0.46(3)

χ2/dof 0.50 1.02 0.85 0.85 0.84 1.05

Table 3: Numerical values of the constant aδm found by using the results of set C, at β = 6.2.

The results are from several fits in different time intervals. We also give the uncorrelated

χ2/dof in the different cases. The numbers given in this table refer to the improved heavy quark

propagator only.
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a δm = 0.445± 0.008± 0.010 at β = 6.2 (37)

where in both cases the first error is statistical, and the second is an estimate of the sys-

tematic uncertainty, based on the spread of results obtained using different time intervals

and fitting functions.

The determination of the mass counter-term at fixed t = t∗, requires no fitting, and

the results obtained using set B and set C are presented in table 4 below.

3.2 Determination of Λ

We are now ready to present our prediction for Λ. In order to evaluate the subtracted Λ,

we have used the results of the high statistics calculations of E given in refs. [25, 26] (set D

and set E). We will also make use of the results obtained by using the standard Wilson

action, on a 183×64 lattice, at β = 6.0, with a statistical sample of 200 configurations [25].

In order to obtain Λ̄ we have used:

• δm from eqs. (36) and (37);

• the SW-Clover determination of E of the APE collaboration, aE = 0.61 ± 0.01 at

β = 6.0 and aE = 0.52± 0.01 at β = 6.2 [25, 26];

• a−1(β = 6.0) = 2.0± 0.2 GeV and a−1(β = 6.2) = 2.9± 0.3 GeV. The calibration of

the lattice spacing in quenched simulations typically has an uncertainty of O(10%),

depending on the physical quantity which is used to set the scale. We take these

results as a fair representation of the spread of possible values.

We then find

Λ = E − δm = 180± 35 MeV at β = 6.0 (38)

Λ = E − δm = 220± 55 MeV at β = 6.2 (39)

where the statistical errors have been combined in quadrature with those due to the

uncertainty in the lattice spacing.

Within the uncertainties, the results in eqs. (38) and (39) are compatible with the

expected independence of Λ̄ of the lattice spacing. Given the intrinsic uncertainty in the

value of the lattice spacing in quenched simulations it is difficult however, to check this

more precisely. Indeed, using different physical quantities to set the scale can increase
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or decrease the difference in the central values of Λ at β = 6.0 and 6.2. For example,

using the string tension to set the scale one finds a−1(β = 6.0) = 1.88 GeV and a−1(β =

6.2) = 2.55 GeV, giving Λ = 170 ± 30 MeV at β = 6.0 and Λ = 190 ± 40 MeV at

β=6.2, whereas using the mass of the ρ-meson to set the scale the APE collaboration

finds a−1(β = 6.0) = 1.95 ± 0.07 GeV and a−1(β = 6.2) = 3.05 ± 0.20 GeV [25, 26],

which corresponds to Λ = 176± 30 MeV at β = 6.0 and Λ = 228± 50 MeV at β = 6.2 2.

Nevertheless in both cases the results are compatible at the two values of β.

Assuming that Λ̄ is indeed constant in a, we combine the results in eqs. (38) and (39)

to obtain

Λ̄ = (190± 30) MeV . (40)

Before quoting our final result, we need to estimate the discretisation error.

From a comparison of the values of δm obtained with the improved and unimproved

heavy quark propagators, we believe that discretisation effects are negligible for this quan-

tity. Indeed discretisation errors in quantities which only depend on the gauge fields are

of O(a2 Λ2
QCD), when evaluated using the Wilson gauge action. However, in the compu-

tation of Λ (and λ1), correlation functions which contain the light quark propagator are

evaluated, and with the SW-Clover and Wilson fermion actions this introduces errors of

O(αsaΛQCD) and O(aΛQCD) respectively. Notice that these effects are formally larger

than the higher order 1/mQ corrections to Λ̄ (we work in the approximation a−1 � mQ).

To obtain an estimate of the size of the discretisation errors, we compare E obtained with

the standard Wilson action and the SW-Clover action at the same value of β, β = 6.0.

In the Wilson case, by working at four different values of the light quark mass, the bare

binding energy, extrapolated to the chiral limit in the light quark mass, was found to be

a EW = 0.608(8). In the SW-Clover case, by working at three different values of the light

quark mass, the result for the bare binding energy, extrapolated to the chiral limit in the

light quark mass, was found to be a ESW = 0.616(4) 3. The difference between the central

values obtained with the two actions ESW − EW = (0.616 − 0.608) a−1 ∼ 16 MeV. We

2Notice that, using the mass of the ρ-meson, the UKQCD collaboration found a−1(β = 6.2) ∼ 2.7(1) GeV [30],

corresponding to Λ̄ = 203± 45 MeV.
3As a check of our calculations with set A, we have verified that on these configurations, at the value of the

mass where we have computed the light quark propagator (K = 0.1425), our results for E agree with those of

refs. [25, 26].
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deduce that +20 MeV is a reasonable estimate of the discretisation error in the determi-

nation of Λ. We therefore quote as our final result for Λ

Λ̄ = 190
+50

−30
MeV . (41)

The prediction given in eq. (41) can be compared with other results that have been

presented in the literature. In perturbation theory one finds

a δmpert =
αs
3

∫
d3q

(2π)2

( 1∑3
i=1 sin2(qi/2)

)
= 2.12× αs (42)

By using values for αs which are commonly proposed in the literature for the “boosted”

coupling [29, 31], αs = 0.13–0.18 at β = 6.0, eq. (42) would give a δmpert = 0.28− 0.38.

Thus, even in the most favourable case, δmpert is about 280 MeV smaller (i.e. Λ̄pert is

about 280 MeV larger) than our non-perturbative determination.

In ref. [31], the bare binding energy E has been determined, using the Wilson action

for light quarks, on a variety of lattice volumes and at several values of β, β = 5.7, 5.9, 6.1

and 6.3. The results are consistent with a linear dependence

a E(a) = E0 + aΛFNAL (43)

where E0 and ΛFNAL are parameters of the fit, E0 = 0.351(14) and ΛFNAL = 0.481(25) GeV.

The value of E0 is consistent with a δmpert computed using an “effective” αs = 0.166 (this

value may be considered as an average of the values of the strong coupling constant on

the points in β where E has been computed). On the other hand, the value of the “fi-

nite” binding energy ΛFNAL is about 300 MeV larger than ours 4. Our interpretation is

that, up to possible O(a) effects, the two determinations differ because of the finite non-

perturbative contribution of O(ΛQCD) that has been subtracted only in our case. Using

the definition of ref. [31] however, it is not clear how to match the full and the effective

theories, since their definition includes non-perturbative, uncalculable effects.

A further demonstration of the existence of the non-perturbative effects is provided by

the comparison of aδm and a−1 at β = 6.0 and 6.2. In the absence of non-perturbative

terms ofO(ΛQCD), i.e. if δm is given only by the linearly divergent contribution, we should

find Rm ≡ aδm(β = 6.0)/aδm(β = 6.2) ' Rαs = αs(β = 6.0)/αs(β = 6.2). Numerically

4Given the presence of terms of O(a) the stability of the results with respect to a quadratic fit of the form

a E(a) = E0 + ΛFNALa + E2a2, where E2 is a constant, remains to be checked.
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β t∗/a aδm(t∗) π/t∗ (GeV) Λ̄(t∗) (MeV)

6.0 3 0.3670(6) 2.1± 0.2 490± 20± 50

4 0.3980(8) 1.6± 0.2 420± 20± 40

5 0.4177(9) 1.3± 0.1 390± 20± 40

6 0.4328(13) 1.0± 0.1 350± 20± 40

6.2 4 0.3484(13) 2.3± 0.2 500± 30± 50

5 0.3663(16) 1.8± 0.2 450± 30± 50

6 0.3773(20) 1.5± 0.2 410± 30± 40

7 0.3842(27) 1.3± 0.1 390± 30± 40

Table 4: Results for Λ̄(t∗) = E − δm(t∗) for different normalization times t∗, using the results

from set B–set E. The first error on Λ̄(t∗) is obtained by combining the errors on E and δm(t∗)

in quadrature; the second error (and the error on π/t∗) comes from the calibration of the lattice

spacing.

we find Rm = 1.16(4) to be compared with Rαs = 1.03−1.06: 1.03 is simply 6.2/6.0; 1.06

has been estimated from Rαeff
s

, where αeff
s = αlatt

s /〈2〉 with αlatt
s = (6/β)/(4π) and 〈2〉 is

the expectation value of the plaquette.

We now present the results for Λ defined at a fixed value of t∗ (Λ(t∗)). In order to

be able to use perturbation theory to determine values corresponding to standard short

distance definitions of the heavy quark mass, t∗ must be chosen to be sufficiently small.

In table 4 we present the results for the mass counterterm δm(t∗) at both β = 6.0 and

6.2, obtained using the configurations of set B and set C respectively, for small values

of t∗. We then combine the results for δm(t∗) with those for E obtained by the APE

collaboration (set D and set E) to obtain Λ(t∗). These results for Λ(t∗) will be used in

section 3.3 to determine the MS mass.

We end this subsection with an obvious but important remark. Λ̄ can be defined in

many different ways, which correspond to different renormalization prescriptions for the

renormalized h̄D4h operators. The presentation of results or bounds for Λ̄ must therefore

be accompanied by the definition of the prescription to which they correspond.
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3.3 The MS mass of the b-quark

We now give the relevant formulae necessary to match the subtracted mass of the quark

mS
Q to the running mass mQ, computed in the MS scheme at the scale µ = mQ. We

introduce the following quantities

mS
Q(t∗) = MH − Λ̄(t∗) = MH − E + δm(t∗) , (44)

Cm(t∗) = 1−
4αs(mQ)

3π
−

1

mQ

(
δm(t∗)− αs(a)

X

a

)
. (45)

It is straightforward to show, that, at order αs, the relation between mQ and mS
Q(t∗) is

given by

mQ = mS
Q(t∗)×Cm(t∗) . (46)

Equation (46) holds also for t∗ →∞, provided at the same time δm(t∗)→ δm.

At this order in αs we can write

mQ =
(
MH − E + αs(a)

X

a

)(
1−

4αs(mQ)

3π

)
(47)

which is equivalent to the procedure where the linearly divergent term is subtracted in

perturbation theory. Now both factors in eq. (47) contain renormalon singularities. We

can also rewrite eq. (47) in the form corresponding to the procedure where we use the

unsubtracted, linearly divergent “pole” mass MH − E ,

mQ =
(
MH − E

)(
1−

4αs(mQ)

3π
+ αs(a)

X

amQ

)
, (48)

where the divergent dependence on a in the pole mass is compensated by that in the

coefficient function. In this case no renormalon singularities arise in higher orders, but

the unsubtracted pole mass and the coefficient function both contain power divergences.

As required, the relation (48) is independent of the subtraction constant δm(t∗).

In the numerical evaluation of mQ from eqs. (46) and (47), we used MB = 5.278;

E from the APE results, see subsection 3.2; a δm(t∗) from eqs. (36) and (37) and table

4; αs(a) was taken in the range 0.13 and 0.18. To obtain a distribution of values, we

varied E , ΛQCD and a δm(t∗) according to a gaussian distribution; a−1 was varied with

flat distribution within its error, while αs(a) was written in terms of the leading quenched

expression of the running coupling constant, evaluated at the scale π/a, with ΛQCD dis-

tributed according to a flat distribution of width σ and such that αs = 0.13 for ΛQCD−σ
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Figure 3: The ditribution of values of the MS b-quark mass mb, for t∗ → ∞, at β = 6.0 and

β = 6.2. Similar distributions are obtained for mb using t∗ = 3–7.

and αs = 0.18 for ΛQCD +σ. The resulting distribution is a pseudo-gaussian, as can been

seen from fig. 3 where two histograms of values of mb, corresponding at β = 6.0 and 6.2,

are shown. From the width of the distribution we estimate the average value and error

on mb. Using eq. (46), we obtain at β = 6.0,

mb = 4.18± 0.07 GeV for t∗ →∞ (49)

and

mb = 4.21± 0.07 GeV for t∗ = 3− 6 . (50)

The corresponding numbers at β = 6.2 are

mb = 4.11± 0.09 GeV for t∗ →∞ (51)

and

mb = 4.13± 0.09 GeV for t∗ = 4− 7 . (52)
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Using eq. (47), we obtain instead

mb = 4.22± 0.07 GeV at β = 6.0 ,

mb = 4.15± 0.08 GeV at β = 6.2 (53)

The difference between the results of eqs. (49)–(52) and (53) can be interpreted as due

to higher order corrections in αs. By combining the above results together we estimate

mb = 4.17± 0.05± 0.03 GeV (54)

where the second error is the systematic error coming from the different methods used to

extract mb at this order in αs.

3.4 Determination of c1 and c2

We have computed the ratio ρ ~D2(t), defined in eq. (21), using unsubtracted heavy-quark

propagators, as explained in section 2.2. In order to do this calculation, we need the

expression of the heavy-quark propagator with the insertion of h̄ ~D2h

Sa(x|y) =
x4∑

w4=y4

S (x, |w) ~D2
w(w4)S (w | y) , (55)

where the lattice heavy quark propagator S (x|w) has been defined in eq. (28), and in

the improved case, we have used the definition of the P-line given in eq. (31). For the

discretised version of ~D2 we have taken

[
~D2
x

]
αβ

=
1

a2

3∑
k=1

(
Ukαβ(x) δx,x+ a k̂ + Uk †αβ(x − a k̂) δx,x−a k̂ − 2 δαβ δx,x

)
, (56)

In fig. 4, we plot ρ ~D2(t), as defined in eq. (21), as a function of the time t, at β = 6.0

from set B. In the same figure, we also give the result of a linear fit of ρ ~D2(t) to eq. (20)

in the interval 6 ≤ t/a ≤ 12. Similar results were obtained at β = 6.2 using the data of

set C. The dependence of ρ ~D2(t) on t is in remarkable agreement with the predicted linear

behaviour 5. In order to monitor the stability of the results, we have fitted ρ ~D2(t) using

different time intervals and in table 5 we show our results for c1 and c2, in the improved

5As expected, we found that the results for c2 in the improved and unimproved case are completely compat-

ible. The latter are not reported here.
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β time interval c1 c2 χ2/dof

6.0 4–12 0.06(2) -0.759(6) 1.24

6.0 5–12 0.01(5) -0.748(10) 0.98

6.0 5–14 0.01(5) -0.748(10) 1.09

6.0 6–14 -0.16(13) -0.724(22) 0.80

6.2 4–12 0.10(4) -0.698(9) 1.01

6.2 5–12 0.16(9) -0.708(18) 0.98

6.2 5–14 0.17(9) -0.710(17) 0.95

6.2 6–14 0.37(18) -0.739(29) 0.62

Table 5: Results for the improved renormalisation constants of the operator h̄ ~D2h obtained by

a linear fit to ρ ~D2(t). The time interval of the fit is also given.

Figure 4: The ratio ρ ~D2(t) (improved case) as a function of the time, at β = 6.0 from set B. A

linear fit of ρ ~D2(t) to the expression in eq. (20) in the interval 6 ≤ t/a ≤ 12, is also given.
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Figure 5: The ratio ρ ~D2(t′, t) defined in eq. (23), in the improved case, at β = 6.0 from set B,

as a function of t′, at several values of t, t = 6–10.

case, at β = 6.0 and 6.2. At β = 6.0, we observe a shift of the value of c2 towards

smaller values as we increase the minimum t-distance (tmin = 4, 5, 6) at which the fit is

performed. Since at β = 6.2, we find the opposite behaviour, i.e. the value of c2 is shifted

towards larger values as tmin is increased, we believe that the shift is a statistical effect

rather than a systematic one. From table 5, we also observe that it is very difficult to

determine the value of c1, which, for the improved propagator, seems to be small, with a

large relative error, and is very unstable with respect to a change of the fitting interval.

We expect that this instability, which is correlated to the shift of the value of c2 with

tmin, will be reduced with more accurate data for ρ ~D2(t). Notice that c1, unlike E and c2

which are long-distance quantities, depends on the lattice regularization, i.e. is different

for the unimproved or the improved heavy quark propagator.

We also present the results for c2 = ρ ~D2(t′, t), at β = 6.0, obtained by using eq. (23).
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β t t′ c2 χ2/dof

6.0 6 3–5 -0.748(3) 17.00

6.0 7 3–5 -0.735(6) 0.76

6.0 8 3–5 -0.727(9) 0.14

6.0 9 3–6 -0.713(15) 0.11

6.0 10 3–7 -0.698(27) 0.16

6.2 6 3–5 -0.674(4) 2.2

6.2 7 3–5 -0.670(8) 0.03

6.2 8 3–5 -0.680(12) 0.02

6.2 9 3–6 -0.693(18) 0.40

6.2 10 3–7 -0.723(29) 0.22

Table 6: Results for the renormalisation constant c2 computed from a weighted average of

ρ ~D2(t′, t) in t′, at fixed t.

In fig. 5, we show ρ ~D2(t′, t), as a function of 0 ≤ t′ ≤ t, at several fixed values of t,

t = 6–10. Up to contact terms, we expect ρ ~D2(t′, t) to be a constant in t′, at fixed t,

and also to be independent of t. If the contact terms were entirely due to the mixing

of the kinetic energy operator with the inverse propagator, eq. (18), we should find two

spikes, at t′ = 0 and t′ = t, and a constant value of ρ ~D2(t′, t) for t′ 6= 0, t. The presence

of operators of higher dimension, due to discretisation errors, introduces terms which

behaves as derivatives of δ-functions (in time), giving rise to the bell-shape behaviour of

ρ ~D2(t′, t) shown in fig. 5. Thus in order to obtain c2, we have to look for a plateau in

the central region in t′, at large values of t. From the figure, we see that it is possible to

recognize a plateau in t′ for t = 8–10. At values of t smaller than t = 8, the contact terms

are visible at all values of t′; at values of t larger than t = 10 the statistical error become

quite large. There is a slight shift towards larger values of c2 as t is increased. As discussed

above, since the effect is opposite at β = 6.2, we do not believe that this is a systematic

effect. In table 6 we present the values of c2, computed from a weighted average of values

of ρ ~D2(t′, t) for different t′, at fixed t. The average has been performed only in the central

region, where there appears to be a plateau. For the sake of comparison, we present the
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results for several values of t, including small ones.

From the results given in tables 5 and 6, and taking into account the previous discus-

sion, we believe that the best estimate of c2 is obtained from ρ ~D2(t′, t), with t = 8 and

t′ = 3–5

c2 = −0.73± 0.01± 0.02 at β = 6.0 , (57)

c2 = −0.68± 0.01± 0.02 at β = 6.2 , (58)

where the second error comes from the variation of the values of c2 with t. These results

can be compared with perturbation theory, which gives c2 = −5.19 × αs ∼ −(0.67–

0.93) for αs = −.13–0.18. For c1 using the improved propagator, such a comparison is

impossible, due to the relatively large uncertainties in the non-perturbative determination.

3.5 Determination of the kinetic energy λ1

The results for λ1 have been obtained with limited statistics, using the data of set A. As

explained in subsection 2.1, the value of λbare
1 can be obtained from R(t′, t) as defined in

eq. (27). In principle, we should evaluate R(t′, t) using the subtracted propagators S ′.

However, the argument used in section 2.2 for ρ ~D2(t) is also valid for R(t′, t), and implies

that we can obtain R(t′, t) by using the unsubtracted heavy-quark propagators. In order

to compute R(t′, t) we have used single and double cubic smeared interpolating operators

J = h̄γ0γ5q, with smearing size Ls = 7, by using the heavy and light quark propagators

rotated into the Coulomb gauge. Ls = 7 was found to be the optimal value of Ls for

isolating the lightest meson state at β = 6.0 [25, 26].

The procedure to extract operator matrix elements is standard. It is the same as the

second method that we used in the previous subsection to determine c2. At fixed t, we

study the behaviour of the ratio R(t′, t) as a function of t′, searching for a plateau in t′.

λbare
1 is defined by the weighted average of the data points in the central plateau region,

if this exists. We will take as our best determination of λbare
1 , the value evaluated in

a time interval where the ratio R(t′, t) appears to be independent of both t and t′. In

addition, we have to require that the lightest state has been isolated. With the smeared

sources used in the present case, we know that this happens at a time distance (t− t′)/a

and t′/a ≥ 4 − 5 from the source. This implies that the total time distance t/a for
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Figure 6: The ratio R(t′, t) at t/a = 8 as a function of the time t′. We show the value of

λbare
1 =

∑
t′/a=3,5R(t′, t) (full orizontal line) and the relative band of error (dashed orizontal

lines).

R(t′, t) has to be at least 8–10. Moreover, using (t− t′)/a and t′/a ≥ 4− 5, we eliminate

the contact terms, which on the basis of the discussion in the previous subsection, cf.

fig. 5, are expected to be present up to distances of order 2–3. As an example of our

results, we show in fig. 6 the ratio R(t′, t), at t/a = 8, as a function of t′, the time

at which the kinetic operator is inserted. With the present statistical errors, it is not

easy to identify the plateau region6. If we assume that we can use the central points

(t′ = 3, 4, 5) to extract the value of the matrix element, we obtain for the unrenormalised

value a2 λbare
1 = −0.72± 0.14. This implies that there is a large numerical cancellation in

the subtracted kinetic energy, a2 λ1 = a2 λbare
1 − c2 = 0.1± 0.14, cf. eq. (24). Due to the

large statistical and systematic errors and to the difficulty in the clear identification of

6At larger time distances, t/a ≥ 10 the errors are even larger.
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the plateau, it is not possible to obtain a value for the renormalised kinetic energy from

this simulation. We can only impose the loose upper bound λ1 < 1 GeV2 . Notice that

in order to reduce the statistical error to 0.1 GeV2, we need a sample about 50–100 times

larger than our current one, corresponding to 1500–3000 gluon configurations. Moreover,

we would eventually also like to be able to extrapolate the results to the chiral limit. For

these reason, we are implementing the method described in this paper on the 24 Gigaflops

APE100 computer.

One could argue that the subtraction is not really necessary, since the effective theory

on the lattice does not have renormalons. Even though this is indeed true, the difficulty

in the determination of corrections of order 1/mQ related to the kinetic energy operator

would remain the same. The argument goes as follows. The bare kinetic energy operator

has a very large matrix element a−2×(a2λbare
1 ) ∼ 22×(−0.72) GeV2 = −2.88 GeV2, while

one expects a correction due to the kinetic energy of the heavy quark of the order of the

squared Fermi momentum p2
F ∼ Λ2

QCD ∼ 0.1 GeV2. Thus the huge contribution of the

matrix element of the bare operator has to be compensated by the corresponding term

in the coefficient function of h̄h. This require an extreme accuracy in the perturbative

calculation of the coefficient function. This remains true in the subtracted as well as in

the unsubtracted case.

4 Conclusions

In this study we have shown that the method for the non-perturbative renormalisation

of the lattice operators h̄(x)D4 h(x) and h̄(x) ~D2 h(x), proposed in ref. [18], is feasible in

current computer simulations. We have been able to obtain the subtraction constants of

the operators h̄(x) ~D2 h(x) and h̄(x)D4 h(x) with a small statistical error (in the former

case, particularly for the constant c2 which is needed for many physical applications).

The binding energy of the B-meson, Λ, has been also calculated with an error of about

15% and was found to be significantly smaller than other estimates, based on different

definitions [31, 32]. We have also computed the kinetic energy of the heavy quark in the

B-meson. With our current statistical sample we can only impose the bound on λ1 < 1

GeV2, on the matrix element of the kinetic energy operator. This is due to the large
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numerical cancellation when the counter-term is subtracted. We are planning to improve

the precision of our results by using a much larger sample of gluon configurations, and

hopefully to obtain a significant result for λ1.

Our preferred determination of Λ was based on the behaviour of the heavy quark

propagator at large times. It is important to verify the validity of the condition (9) by

extending the calculation of δm(t) to larger values of t. This requires a high-statistics

simulation on a large lattice, and we are currently undertaking such a study. The results

will be reported elsewhere.

The present study concerned some important matrix elements which appear in the

HQET. We were able to determine Λ, defined in different prescriptions, with good preci-

sion. This encourages us to extend the calculation to other matrix elements which appear

at O(1/mQ), and beyond, in the HQET. The main limitation to the matching to the full

theory is due to the fact that the relevant Wilson coefficients have only been computed

at first order in αs. We are planning to extend these calculations to higher orders. One

may also extend the present approach to matrix elements which appear at higher orders

in other important operator expansions, such as the non-leading twist operators in deep

inelastic scattering or higher dimensional condensates used in QCD sum-rules.
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