Multi-boson production and diboson polarisation at ATLAS

Luka SELEM On behalf of the ATLAS Collaboration

> CIPANP 2022 01/09/2022

Introduction

Multi-boson processes as a sensitive probe of Standard Model

- → Electroweak gauge coupling sector
- → Polarisation of massive Spin 1 vector boson

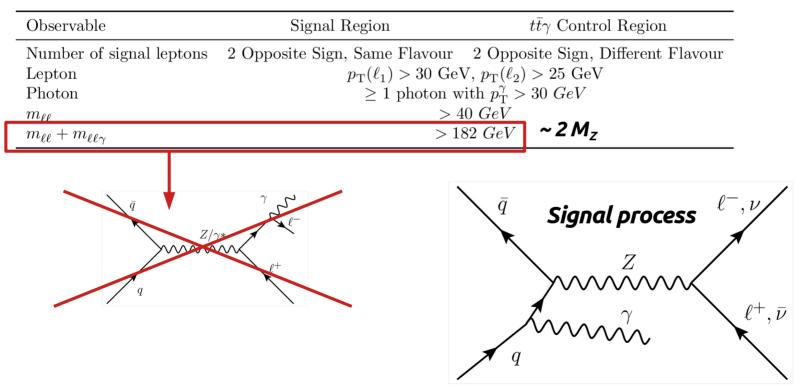
Analysis presented here: ATLAS results using Run 2 data

– Measurements of Z γ + jets differential cross sections in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector [ATLAS-CONF-2022-047]

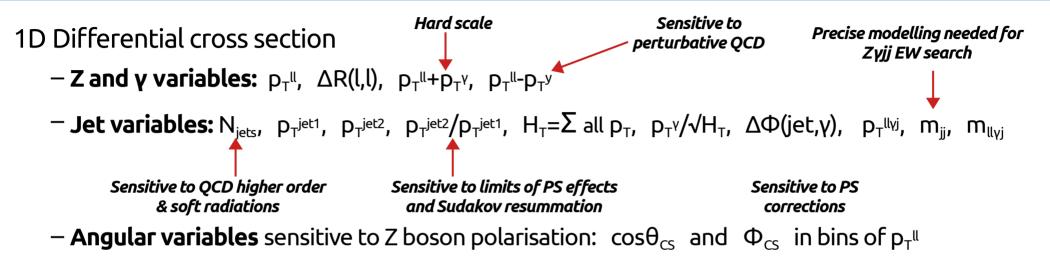
- Combined effective field theory interpretation of Higgs boson and weak boson production and decay with ATLAS data and electroweak precision observables [ATL-PHYS-PUB-2022-037]

– Observation of gauge boson joint-polarisation states in W±Z production from pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector [ATLAS-CONF-2022-053]

Zγ+jets differential cross sections


[ATLAS-CONF-2022-047]

Zγ+jets events


Study differential cross sections for Zγ+jets events

Provide a sensitive test of QCD predictions (jet activity, parton shower predictions,...)

Event selection: select hard photon from Initial State Radiation

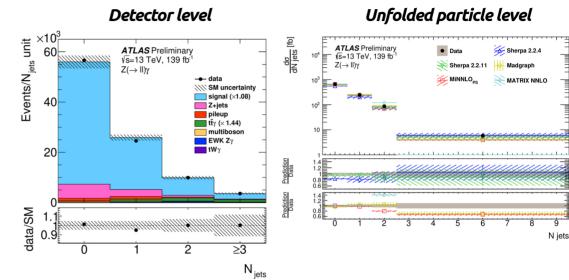
Variables

2D Differential cross section:

→ resolution variable in large bins of hard scale variable (different hard scale regime)

- Sudakov logarithm terms: p_T^{llv}/m_{llv} in bins of m_{llv}
- Additionnal QCD emissions: $p_T^{\mu}-p_T^{\nu}$ in bins of $p_T^{\mu}+p_T^{\nu}$ and $p_T^{\mu\nu}$ in bins of $p_T^{\mu\nu}$

Unfolding

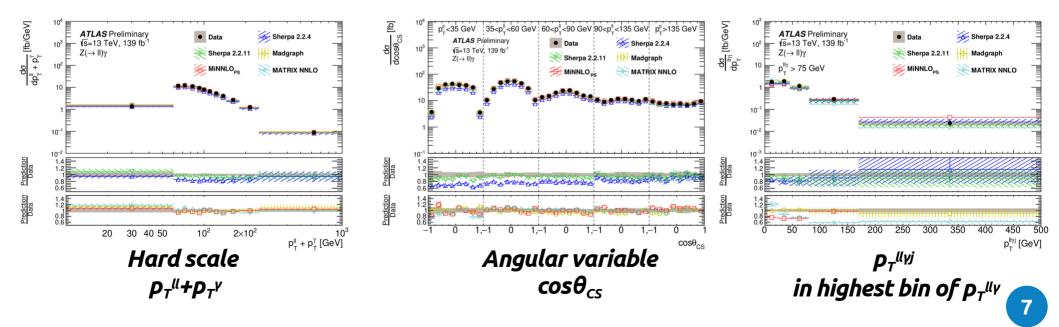

Main backgrounds : **Z+jets**, **Pile-up**, **ttγ**

 \rightarrow Estimated with data driven methods

Differential cross sections: **unfolding** using an **Iterative Bayesian method**

Main uncertainties from backgrounds and jet reconstruction

$N_{ m Jet}$	0	1	2	> 2
Source	U	Uncertainty [%]		
Electrons	1.0	0.9	0.8	0.8
Muons	0.3	0.3	0.3	0.4
Jets	1.7	1.7	4.5	8.8
Photons	1.4	1.3	1.3	1.2
Pile-up	2.1	0.8	0.2	0.3
Background	1.8	1.8	3.0	4.4
Stat. MC	0.1	0.2	0.3	0.4
Stat. data	0.8	1.5	1.8	1.9
Luminosity	1.7	1.7	1.7	1.7
Theory	0.6	0.2	1.4	1.0
Total	4.2	3.8	6.3	10.3

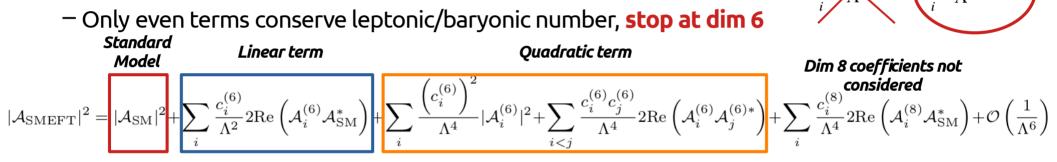

Theory predictions from 5 sources:

- Sherpa 2.2.4 and 2.2.11, Madgraph : NLO/LO ME + PS
- MATRIX NNLO fixed order calculation
- Powheg NLO + MiNNLO

Results

No tension with theory in all differential cross sections

- Jet activity generally well described
- Act more as a test of the different theory prediction methods
 - Sherpa 2.2.11 better than Sherpa 2.2.4: benefits from NLO 0,1j ME
 - MiNNLO performs better than MATRIX, struggles in high energy bin


Combined EFT interpretation

[ATL-PHYS-PUB-2022-037]

Effective Field Theory

Idea: Interpret simultaneously multiple measurements on Higgs processes, multiboson processes, and electroweak precision observables in term of EFT.

Effective Field Theory as an **extension** to the Standard: $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} +$

With some additionnal symmetries (flavour, CP etc.): 59 Wilson coefficients considered
 Any measured observable can be parametrised in term of Wilson coefficients:

$$O_b = O_b^{\text{SM}} \left(1 + \sum_i A_{bi} c_i + \sum_i B_{bi} c_i^2 + \sum_{i < j} C_{bij} c_i c_j \right)$$

Assumption: Wilson coefficient do not affect acceptance, efficacity, backgrounds
 Consider unfolded results

Input measurements

Higgs processes: ATLAS Run 2 dataset

Simplified Template Cross Section as a partition of the phase space of each Higgs production process

MultiBoson electroweak processes: ATLAS (partial) Run 2 dataset

Differential cross section of a given observable for each process


Electroweak Precision Observables: LEP and SLC data

 \rightarrow 8 precision observables

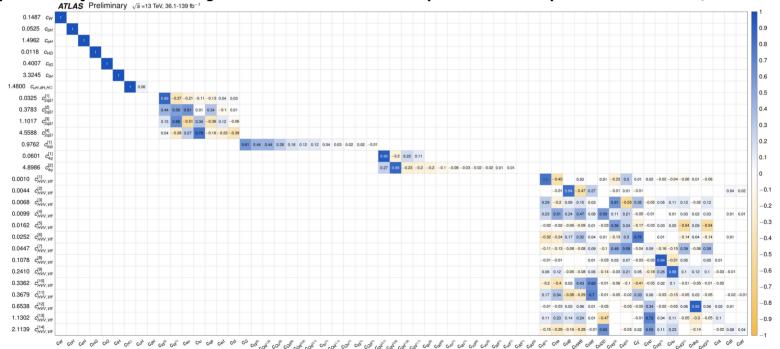
Overlap:

→ Only for inclusive pp → 4l vs H → 4l, dealt with cut on m_{4l} in inclusive

	Decay channel	Target Production M	lodes
c	$\overline{H \to \gamma \gamma}$	$ggF, VBF, WH, ZH, t\bar{t}$	$\overline{H,tH}$
Γ	$H \to ZZ^*$	$ggF, VBF, WH, ZH, t\bar{t}I$	$H(4\ell)$
,	$H \to WW^*$	ggF,	VBF
	$H \to \tau \tau$	$ggF, VBF, WH, ZH, t\bar{t}H(\tau_{had})$	$_{ m l} au_{ m had})$
	_	W E	I, ZH
	$H ightarrow b \overline{b}$		VBF
			$t\bar{t}H$
Process	Import	tant phase space requirements	Observabl
$pp \to e^{\pm}$	$\nu \mu^{\mp} \nu \qquad m_{\ell\ell} >$	$55 GeV, p_{\mathrm{T}}^{\mathrm{jet}} < 35 GeV$	$p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$
$pp \to \ell^{\pm}$	$\nu \ell^+ \ell^- \qquad m_{\ell \ell} \in$	(81, 101) GeV	m_{T}^{WZ}
~ ~	$\ell^-\ell^+\ell^- < m_{4\ell} >$	180 GeV	m_{Z2}
$pp \to \ell^+$	$\ell^{-}jj \qquad m_{jj} >$	$1000GeV,m_{\ell\ell}\in(81,101)GeV$	$\Delta \phi_{jj}$

WW

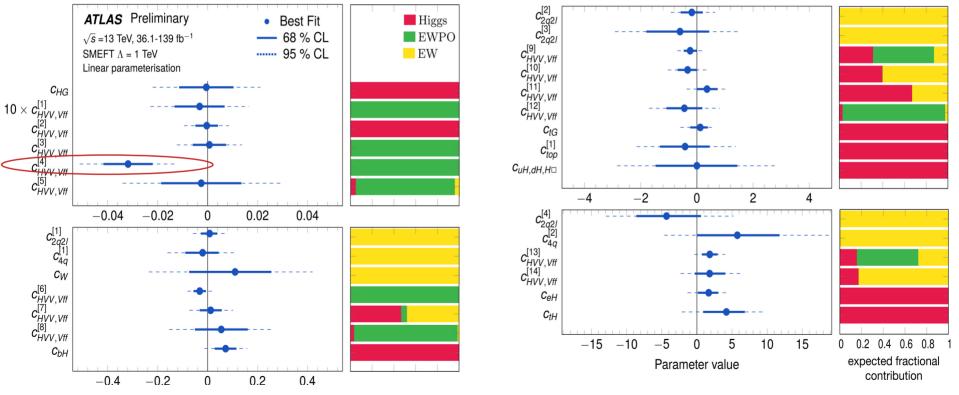
WΖ


77

VBFZ

Statistical Model

Combined Likelihood for all input measurements **parametrised by c**_i


- $O_b = O_b^{\text{SM}} \left(1 + \sum_i A_{bi} c_i + \sum_i B_{bi} c_i^2 + \sum_{i < j} C_{bij} c_i c_j \right)$
- Data **not enough to constrain all directions** in parameter space
 - numerical problem for the fit
- Principal component analysis: 28 directions in parameter space identified, rest set at 0

Results

With Linear parametrisation only:

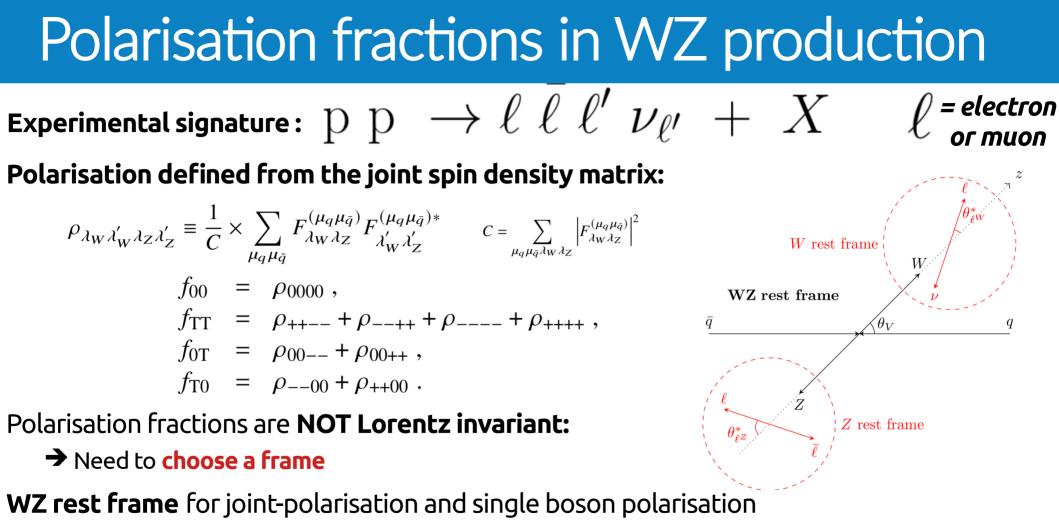
- \rightarrow Most coefficients agree within 2σ with SM expectation of 0
- \rightarrow C^[4]_{HVV,Vff} driven by discrepancy A_{FB}^{0,b} and A_{FB}^{0,c} in LEP-SLC data

Joint-polarisation observation

[ATLAS-CONF-2022-053]

Diboson polarisation status

Previous measurements at LEP: Only **diboson process** accessible for such measurements: **e**⁺ **e**⁻ → **W**+**W**-


- Single W boson polarisation measurements: L3 [arXiv:0301027], OPAL [arXiv:0312047], DELPHI [arXiv:0801.1235]
- Joint-polarisation measurements: OPAL [arXiv:0009021], DELPHI [arXiv:0908.1023]
- → Never reached observation level sensitivity for longitudinal-longitudinal joint-polarisation

Measurements at LHC: Single boson polarisation in WZ production

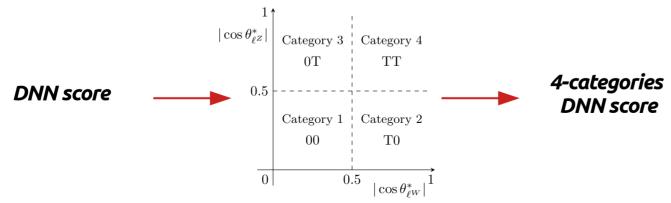
- **ATLAS** : in WZ rest frame, L = **36 fb**-1 [arXiv:1902.05759]
- **CMS** : in Laboratory frame, L = **137 fb**-1 [arXiv:2110.11231]

Newest measurement by ATLAS [CDS:CONF Note] in WZ production with full Run 2 dataset, 139 fb⁻¹:

First observation of longitudinal-longitudinal joint-polarisation state in diboson events

- Meaningfully **compare** both,
- -Decouple longitudinal and transverse single boson polarisation

Discriminating variable for the fit

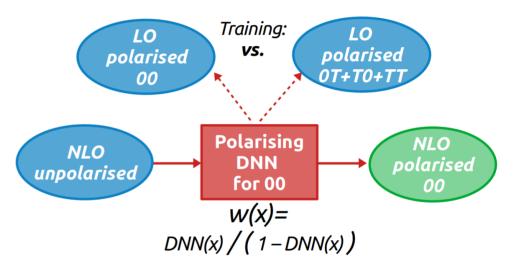

Goal: Perform a binned maximum likelihood template fit to extract simultaneously polarisation fractions
→ Need for a discriminating variable to be fitted

Single boson polarisation fraction measurement: $\cos\theta_{w}^{*}$ and $\cos\theta_{z}^{*}$

Joint-polarisation fraction measurement: need an aggregated variable

Classification DNN between all 4 joint-polarisation states: still poorly discriminant between 0T and T0

– Split DNN score for 00 in **4 categories** based on $\cos\theta^*$

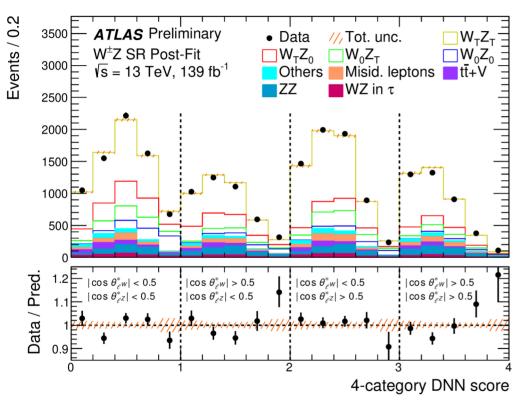

Classification **DNN** input variables (by importance) $|\mathbf{y}_{lw} - \mathbf{y}_{z}|$ **P**_Twz P_−ι,w $\Delta \phi(l_{W}, v)$ $\Delta \phi(l1^z, l2^z)$ E_{τ} miss $\mathbf{P}_{\mathsf{T}}^{\mathsf{l2},\mathsf{Z}}$ $\mathbf{P}_{\mathsf{T}}^{l1,Z}$

NLO accurate polarisation templates

- Direct polarised generation with Madgraph 2.7.3 only at LO+real corrections
 - → Big **bias**, from **10% to 50%** of the fraction values

Reweighting using DNNs (Baseline)

- Acts as some multi-dimensionnal reweighting [arXiv:<u>1907.08209</u>]
- Found to be the least biased method of all tried (almost no bias)



Reweighting to parton level calculation at NLO QCD of the classification DNN

[Collaboration with theorists A. Denner& G. Pelliccioli arXiv: 2010.07149]

- Still some **bias**, but **reduced to ~10%** of the fraction value
- → Used as Modelling uncertainty for alternative polarisation template set choice

Binned Maximum Likelihood Template Fit

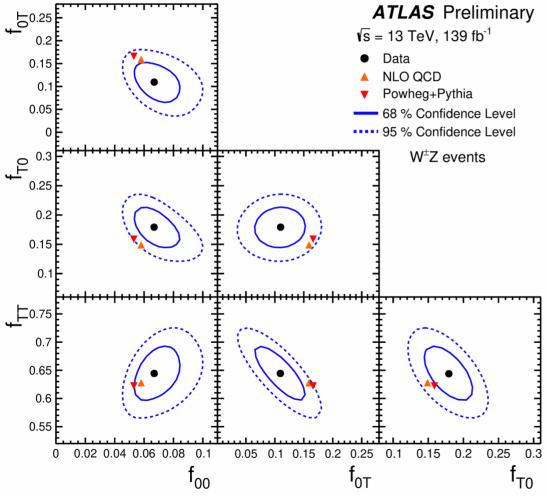
All joint-polarisation states observed:

- Significance on f_{00} at 7.1 σ
- Significance on $f_{\tau\tau}$ and f_{τ_0} >5\sigma

Statistical uncertainties **at the same level** as **systematic** uncertainties, mainly

- Template modelling uncertainties
- QCD scale
- $E_{T^{miss}}$ /jets object reconstruction

Higher order QCD shape effects on polarisation templates


	Data	Powheg+Pythia	NLO QCD			
$W^{\pm}Z$						
f_{00}		0.0590 ± 0.0009				
f_{0T}	0.110 ± 0.029	0.1515 ± 0.0017	0.159 ± 0.003			
$f_{\rm T0}$	0.179 ± 0.023	0.1465 ± 0.0017	0.149 ± 0.003			
$f_{\rm TT}$	0.644 ± 0.032	0.6431 ± 0.0021	0.628 ± 0.004			

Separating by the W charge:

- Significance on f_{00} at 6.9 σ in W+Z
- Significance on f_{00} at 4.1 σ in W-Z

Joint-polarisation CL regions

Strong correlations between simultaneously extracted fractions

- Confidence Level regions represented for fractions 2 by 2
- No tension with theory: better than 2σ agreement

Test of independence of fractions of W and Z by reparametrising :

$$f_{0T} = f_0^W - f_{00},$$

$$f_{T0} = f_0^Z - f_{00},$$

$$f_{TT} = 1 + f_{00} - f_0^W - f_0^Z$$

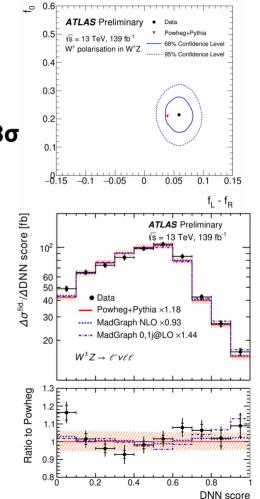
$$R_c = \frac{f_{00}}{f_0^W f_0^Z}$$

 \Rightarrow R_c = 1.54 ± 0.35 (if independent, R_c=1)

Other results

Single Boson polarisation: f_0 and $f_L - f_R$ measured for W and Z boson

- $-\mathbf{f}_0$ mesured with $\mathbf{5\sigma}$ significance even in charge break-down
- No tension with theory, except small tension for f_L - f_R in W-Z at **2.8** σ


WZ **inclusive** production **cross section** at Born level:

$$\sigma_{W^{\pm}Z \to \ell' \nu \ell \ell}^{\text{fid.}} = 64.6 \pm 2.1 \text{ fb}$$

VS NNLO QCD SM prediction = $64.0^{+1.5}_{-1.3} \text{ fb}$

→Perfect aggreement

Differential cross sections of polarisation sensitive variables

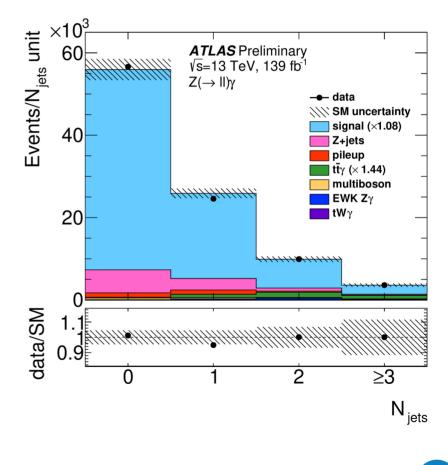
20

Zγ+jets backgrounds

Z+jet background: jet mistaken for a γ

Data driven sideband method ("ABCD") with cuts on isolation and identification of the photon

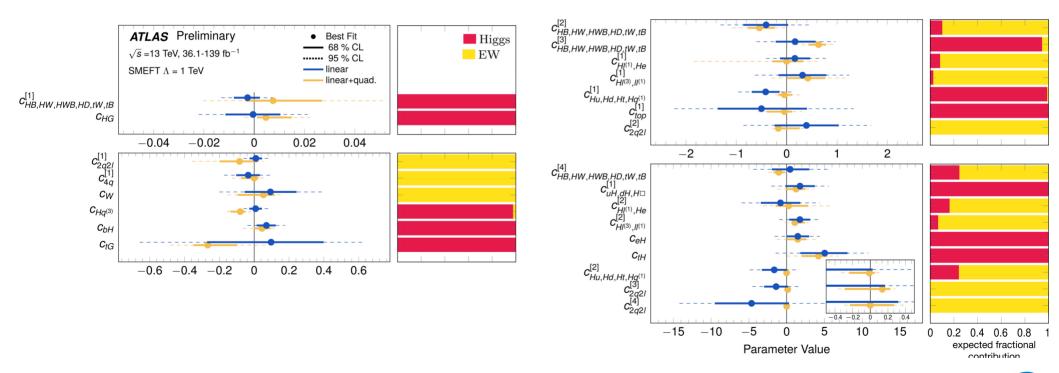
Pile-up events: γ not from primary vertex


Proportion of pile-up photon estimated from photon converted in tracker in e+e- pair and transferred to unconverted photons: data driven

ttγ background

Monte Carlo sample scaled using a control region

Other backgrounds: VV, VVV


→ Less than 1% of selected events, only from Monte Carlo

EFT Linear + Quadratic constraints

Using ATLAS data only, linear + quadratic constraint available

 \rightarrow No tension either

