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Abstract

Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against a Z
boson. The charged-hadron distributions are studied longitudinally and transversely
to the jet direction for jets with transverse momentum 20 < pT < 100 GeV and
in the pseudorapidity range 2.5 < η < 4. The data sample was collected with
the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an
integrated luminosity of 1.64 fb−1. Triple differential distributions as a function of
the hadron longitudinal momentum fraction, hadron transverse momentum, and
jet transverse momentum are also measured for the first time. This helps constrain
transverse-momentum-dependent fragmentation functions. Differences in the shapes
and magnitudes of the measured distributions for the different hadron species provide
insights into the hadronization process for jets predominantly initiated by light
quarks.
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Quarks and gluons can never be observed in isolation due to confinement in quantum
chromodynamics (QCD). Thus, one of the challenges of QCD lies in relating the quark
and gluon degrees of freedom of the theory to the bound-state hadrons observed in nature.
A great deal of effort over the past several decades has gone into mapping out nucleon
structure in terms of its quark and gluon constituents. A particular focus, in recent years,
has been on the three-dimensional imaging of the nucleon [1,2]. Studying the mechanisms
by which colored quarks and gluons hadronize into new color-neutral bound states offers
complementary information connecting colored and hadronic degrees of freedom.

In the standard collinear perturbative QCD factorization framework, single-inclusive
hadron production in proton-proton (pp) collisions factorizes into the short-distance hard
scattering of partons and the long-distance dynamics described by fragmentation functions
(FFs) and parton distribution functions (PDFs). The latter parametrizes proton structure
as a function of momentum fraction carried by a parton of an incoming proton taking
part in the hard scattering process. Hadronization of charged particles is described by
collinear FFs, denoted as Dh

c (z), where z is the longitudinal momentum fraction of an
outgoing parton c carried by a produced hadron h (see Ref. [3] for a review of FFs).
The FFs and PDFs are not fully calculable perturbatively and must be constrained by
experimental measurements. In Monte Carlo (MC) generators, phenomenological models
tuned to data are used to perform hadronization. [4–6]. Jet fragmentation functions (JFFs)
are experimental observables describing jet substructure that measure the longitudinal
momentum fraction carried by a hadron of a jet [7–13]. Within the soft-collinear effective
theory framework, JFFs are constructed such that they can probe the standard collinear
FFs, defined for inclusive single-hadron production with no requirement of a reconstructed
jet. Similarly, transverse-momentum-dependent (TMD) JFFs defined within the soft-
collinear effective theory framework can access standard TMD FFs [14], traditionally
measured in e+e− collisions [15–18] and semi-inclusive deep inelastic lepton-nucleon
scattering [19, 20]. In addition to the dependence on the longitudinal momentum fraction
z, TMD FFs also depend on jT, the transverse momentum of the produced hadron with
respect to the jet axis in the case of a fully reconstructed jet, or the thrust axis in e+e−

collisions (see e.g. Ref. [18]). Singly differential TMD JFFs for unidentified hadrons have
previously been measured in proton-proton collisions at the LHC [21–24]. The excellent
hadron identification capabilities at LHCb allow for measurements of the JFFs for different
particle species.

This Letter presents the first measurements of JFFs for identified charged hadrons in
jets produced in association with a Z boson in the forward region of pp collisions. The
main observables are the longitudinal momentum fraction of the jet carried by the hadron,
z, and the transverse component of the hadron momentum with respect to the jet axis,
jT, as found in Ref. [23,25] and defined as

z =
phad · pjet

|pjet|2
, jT =

|phad × pjet|
|pjet|

, (1)

where phad and pjet are the hadron and jet three-momentum vectors, respectively.
The dominant leading order hard process for Z+jet production in the LHCb acceptance

is qg → Zq due to the asymmetry between the gluon and quark momentum fractions,
verified with Pythia 8 [26], which enhances jets initiated by light valence quarks and
provides sensitivity to the quark TMD FFs.

The JFFs measured using Z-tagged jets in this Letter are defined in terms of differential
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cross-sections dσ as

f(z, jT) =
dσ

dPS dz djT

/
dσ

dPS
, (2)

F (z) =

∫
djT f(z, jT) =

dσ

dPS dz

/
dσ

dPS
, (3)

F (jT) =

∫
dz f(z, jT) =

dσ

dPS djT

/
dσ

dPS
, (4)

where the phase space dPS depends on the pseudorapidity of the Z boson and the jet,
and the vector sum and the difference between the transverse momenta of the Z boson
and the jet [13].

The TMD JFF defined in Eq. (2) is integrated over jT to obtain the collinear JFF
shown in Eq. (3). The transverse profile is obtained by integrating the TMD JFF over z
as defined in Eq. (4). Experimentally, these quantities can be expressed in terms of yields
corrected for detector effects as

f(z, jT) =
1

NZ+jet

dNhad(z, jT)

dz djT
, F (z) =

1

NZ+jet

dNhad(z)

dz
, F (jT) =

1

NZ+jet

dNhad(jT)

djT
, (5)

where Nhad is the number of hadrons in Z-tagged jets for given z and jT, and NZ+jet is
the number of Z + jet pairs that contain charged hadrons.

The LHCb detector [27,28] is a single-arm forward spectrometer covering the pseudora-
pidity range 2 < η < 5. The detector includes a high-precision tracking system consisting
of a silicon-strip vertex detector (VELO) [29] surrounding the pp interaction region, a
silicon-strip detector located upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw drift tubes [30, 31] placed
downstream of the magnet. The momentum resolution of charged particles provided by
the tracking system is δp/p ∼ 0.5% at low momentum and reaches 1.0% at 200 GeV1. The
VELO allows reconstruction of multiple primary vertices (PVs) and rejection of events
with more than one PV or additional low-momentum tracks. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers [32].
Photons, electrons, and hadrons are distinguished by a calorimeter system consisting of
scintillating-pad and preshower detectors, an electromagnetic calorimeter, and a hadronic
calorimeter. Different types of charged hadrons are identified using information from two
ring-imaging Cherenkov (RICH) detectors [33], with RICH 1 (C4F10 radiator) covering
momenta 2 to 60 GeV and RICH 2 (CF4) covering 15 to 100 GeV. Simulated pp collisions
are generated using Pythia 8 [26] with a specific LHCb configuration [34]. Decays
of hadronic particles are described by EvtGen [35], in which final-state radiation is
generated using Photos [36]. Finally, the Geant4 toolkit [37] is used to simulate the
interactions of the particles with the detector, as described in Ref. [38].

The data sample used in this analysis corresponds to an integrated luminosity of
1.64 fb−1 collected at

√
s = 13 TeV with the LHCb detector in 2016. The online

event selection is performed by the muon trigger system, where Z boson candidates are
selected via their decay into two oppositely charged muons. The two muons are required
to have pT > 20 GeV, 2.0 < η(µ) < 4.5, and their invariant mass within the range

1In this article, natural units (c = ~ = 1) are used.
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60 < Mµµ < 120 GeV, as applied in Ref. [23, 39]. The muons must satisfy the track-
reconstruction and muon-identification criteria applied in Ref. [40]. Jet reconstruction
is performed offline using a particle-flow algorithm [39], where the neutral and charged
candidates are clustered using the anti-kT algorithm [41] as implemented in the FastJet
package [42] with a distance parameter R of 0.5. The selection criteria for Z+jet pairs and
tracks inside the jets closely follow those described in Ref. [23]. The fiducial criteria require
that the jet with the highest pT in the event, which is analyzed for these measurements, has
20 < pT(jet) < 100 GeV and 2.5 < η(jet) < 4.0. Additional jets with pT(jet) > 15 GeV
are used in unfolding detector effects. The tighter η(jet) requirement ensures that all the
jet constituents are contained within the detector acceptance. To reduce the rate of jets
associated with a different primary vertex than the Z candidate, only events with a single
reconstructed primary vertex are analyzed. The jets must be well separated from the Z
candidate by requiring an azimuthal separation greater than 7π

8
, and are rejected if one

of the muons is found within ∆R =
√

∆η2 + ∆φ2 < 0.5, defined with respect to the jet
momentum. The charged hadron candidates must be constituents of the jet, fall within
∆R < 0.5 of the jet, and have a good quality track with a minimum pT (p) of 0.25 (4)
GeV.

The number of Z+jet pairs in each jet pT interval, used in the normalization of the
JFFs, is corrected to account for reconstruction and selection efficiencies. The same
correction factors are applied to the hadron distributions in jets. The muon detection
and reconstruction efficiencies are determined in data using the tag-and-probe method
employed in the inclusive Z boson cross-section measurements of LHCb [40,43,44]. The
efficiency to reconstruct and identify the jet in the event is evaluated from simulation.
This efficiency increases with pT, from ≈ 85% for jets with pT of 20 GeV to saturate at
≈ 95% for jets with pT of 30 GeV and above.

The charged hadron candidates inside the reconstructed jets are identified by the
particle-identification systems [27, 33]. Reconstructed charged hadron yields are corrected
for the track-reconstruction efficiency, effects from misreconstructed tracks or false associ-
ation with jets, and particle misidentification on a track-by-track basis. Simulation is used
to determine the track reconstruction efficiency for pions, kaons, and protons separately
as a function of momentum and pseudorapidity. The probability of hadronic interactions
in the detector material of ≈20% λ (nuclear interaction lengths), and decays in flight,
results in track reconstruction efficiencies of 79%, 77% and 63% for pions, kaons, and
protons, respectively.

The particle identification (PID) efficiency is determined in intervals of particle mo-
mentum, pseudorapidity, and track multiplicity using dedicated data control samples [45].
The (mis)identification probabilities of charged hadrons are derived from these samples
and used to construct a PID matrix. The particle misidentification effects are unfolded by
solving

x rec = A xunf (6)

in each momentum interval. The vector x unf represents the unfolded yields of the three
particles species π±, K±, and p± in a given momentum interval and x rec the corresponding
reconstructed yields at detector level. A matrix element A ij represents the probability
of a particle j to be reconstructed as i. The probabilities are weighted to describe the
pseudorapidity and track-multiplicity distributions in data.

The uncertainties on the resulting PID-unfolded momentum distributions x unf are
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estimated using a bootstrap method [46] with 500 trials and are statistically dominated.
The impurity of the charged-hadron sample due to misidentification of nonhadronic
particles or long-lived hyperons as charged pions, kaons, or protons is less than 5% of
the statistical uncertainties in all momentum intervals. The particle-species-dependent
efficiencies can be biased if a particle is misidentified. The efficiencies are corrected for
these effects after the PID unfolding.

The unfolding of detector effects in the distributions of transverse momentum and
pesudorapidity of jets in Z+jet pairs is performed using machine learning (ML) techniques
based on the iterative unbinned Bayesian unfolding method as implemented in Ref. [47].
In this method, deep neural networks are employed as classifiers to estimate likelihood
ratios that are used to update event weights in simulation. The unfolding method is
validated with a closure test using the simulated data. In this analysis, two iterations are
performed based on the best results of the closure tests. The unfolded jet-pT distributions
are consistent within statistical uncertainties between the ML method employed in this
analysis and the binned iterative Bayesian method [48, 49] with two iterations. The
charged hadron distributions inside jets in z, jT, and their joint distributions, are unfolded
simultaneously with the jet transverse momentum and pseudorapidity.

Sources of systematic uncertainties on the jet transverse-momentum distribution of
Z+jet pairs and identified charged hadrons in z and jT are evaluated. The former arise
from the background contributions from fake jets (0.2%) and incorrectly reconstructed Z
bosons (1.4%) due to hadrons misidentified as muons. Additionally, uncertainties on the
jet reconstruction are determined by comparing jet-quality quantifiers between the data
and simulation (1.8%), similar to the method employed in Ref. [50]. Uncertainties related
to the muon reconstruction efficiencies are found to be negligible. The Z+jet selection
and jet reconstruction uncertainties added in quadrature return a total uncertainty of
2.4%.

The primary uncertainties associated with the simulated detector response of the jets
arise from the jet-energy scale and resolution. The jet-energy scale has been studied in
previous measurements of the Z+jet cross-section [39, 50]. Exploiting the pT balance
between the Z boson and a single recoiled jet in the event, the uncertainty on the jet-energy
scale is determined to be 3%. The uncertainties on the fragmentation measurements are
estimated by repeating the analysis with the energy scale in the simulation varied by
one standard deviation and taking the difference in the distributions, as in Refs. [23,39,
50]. Similarly, the systematic uncertainty due to the jet-energy resolution is evaluated
by independently varying each component of the reconstructed jet momentum in the
simulation by the uncertainty on the jet resolution. This procedure is repeated until the
difference in the unfolded distributions between the nominal and smeared jet momentum
stabilizes.

The sources of systematic uncertainties on the identified charged-hadron distributions
include the tracking efficiency and particle identification. The effects of the statistical
precision of the efficiency are evaluated by smoothing the two-dimensional efficiency and
repeating the analysis. The differences in the distributions between the smoothed and
nominal efficiencies are taken as uncertainties on the tracking efficiency. Additionally,
PID-dependent uncertainties attributed to the uncertainties on the material budget
implemented in the simulation are found to be 1.50%, 1.27% and 3.3% for pions, kaons,
and protons, respectively. The uncertainty on the track-selection requirement to remove
spurious tracks formed by accidentally matched detector hits and charged hadrons not
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associated with the jet is negligible. For identified charged-hadron distributions, the
systematic uncertainties on the PID are determined from the uncertainties on the PID-
unfolded momentum distributions.

The systematic uncertainties on the unfolding method are determined by taking the
standard deviation of weighted absolute differences in the ratio between the unfolded
and generated distributions. The uncertainties on the unfolded number of jets and the
non-normalized hadronization variables are 1.1% and 0.8%, respectively.
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Figure 1: Distributions of (top) the longitudinal momentum fraction and (bottom) the transverse
momentum of charged hadrons (pions, kaons, and protons combined) with respect to the jet axis
in three jet pT intervals and (right) comparisons with previous results at

√
s = 8 TeV for jets

with 20 < pT < 30 GeV [23]. Statistical (systematic) uncertainties are shown in bars (boxes).

Figure 1 shows z and jT distributions in three intervals of jet pT for unidentified
charged hadrons. The z distributions show a humpbacked structure in z < 0.04 due to
both color coherence and kinematic requirements. Color coherence is a manifestation
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of parton hadron duality [51] where the perturbative partonic structure of a jet defines
the momenta of the final hadrons, and produces this structure due to the suppression
of wide-angle gluon emissions. In these distributions the kinematic requirements on the
tracks shift the peak of the structure to varying degrees for different jet pT intervals;
higher pT jets can probe smaller z. At mid-to-high z, 0.04 < z < 0.4, scaling behavior is
seen across all jet pT intervals. An overall increase of particle production in all regions of
jT for jets with higher pT is seen, with a larger increase at high jT. Comparisons with
previous measurements at

√
s = 8 TeV [23] show a general similarity in shape. While the

measurements indicate that charged hadron production may be slightly shifted towards
lower z at

√
s = 13 TeV for a given jet pT, the jT distributions are consistent within

uncertainties between the two center-of-mass energies.

Figure 2: Double differential JFFs of the longitudinal momentum fraction z and the transverse
momentum jT of charged hadrons (pions, kaons, and protons combined) in three jet pT intervals.

The double differential JFFs in jT, z, in three jet pT intervals for unidentified charged
hadrons are shown in Fig. 2. Charged hadrons carrying a larger momentum fraction
along the jet axis tend to have a larger transverse momentum with respect to the jet axis.
With increasing jet pT, the centroid of the joint distributions moves towards a smaller
z, a region dominated by soft particle production, and a larger jT, resulting in wider
jets. Charged particles also carry a larger jT for a given z in jets with a higher pT. This
is consistent with Markov chain fragmentation models, e.g. the string or cluster model,
where a momentum kick transverse to the parton system is sampled independently per
hadron. Jets with higher pT experience longer Markov chains, resulting in a higher jT for
a given z.

The z distributions for identified charged hadrons and the ratios of heavier particles
with respect to pions are shown in Fig. 3. Pions are the predominant charged hadron
produced due to their low mass and the flavor content of the initial-state protons. Hadrons
with heavier mass require a larger z threshold for their formation, leading to the position
of the maximum at a higher z. In the lowest jet pT interval, proton production relative to
kaon production is clearly suppressed for lower z values. When different jet pT intervals
are overlaid, the scaling behavior across all jet pT intervals begins at z ∼ 0.07 for heavier
particles and 0.03 for pions.

The JFFs and the ratios are compared to predictions from Pythia 8 in Fig. 1 and
Fig. 3. The predictions are generated using Pythia 8.186 with the CT09MCS PDF
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Figure 3: Collinear jet fragmentation functions of (top) identified pions, kaons and protons in
three jet pT intervals and (bottom) the ratios of kaons to pions and protons to pions. Statistical
(systematic) uncertainties are shown in bars (boxes).

set and a specific LHCb configuration [34]. In general, Pythia 8 describes unidentified
charged hadron distributions well with only slight underestimation while the number
of charged pions (kaons and protons) are largely underestimated (overestimated). The
production of heavier particles relative to pions is well described by Pythia 8 at high jet
pT, while at low jet pT Pythia 8 significantly overestimates it. These data can be used
to tune MC generators for production of identified charged particles.

Figure 4 shows the TMD JFFs measured as joint distributions in z and jT for the
three separate particle species. The center of the distribution shifting towards higher
values in both z and jT with the mass of the particle suggests that heavier hadrons are
produced from harder partons.

Figure 4: Joint distributions of the longitudinal momentum fraction z and the transverse
momentum jT of identified charged (left) pions, (middle) kaons and (right) protons in jets with
20 < pT < 30 GeV.

7



In summary, the LHCb collaboration has measured the joint distributions in two
kinematic variables simultaneously, probing the longitudinal and transverse profiles of
identified charged pions, kaons, and protons inside predominantly light-quark-initiated
jets for the first time. These distributions describe the 3D picture in the collinear and
transverse dimension with respect to the jet axis, and the hadron-mass hierarchy in
the hadronization processes. They will help constrain TMD FFs in uncharted phase
space. These measurements exploit the full particle-identification capabilities of the LHCb
detector. The joint distributions for all charged hadrons have also been measured for the
first time.

The collinear JFFs for identified charged hadrons exhibit the effects of quark-flavor
content inside the proton. The relative jet-fragmentation functions of heavier particles to
pions could provide insights into the role of the valence versus sea quarks in the parton
shower leading to hadronization. The projected single-variable distributions in jT and z
have been measured for identified and all charged hadrons and compared to the previous
LHCb results at 8 TeV. Overall, similar patterns are seen in jT and z > 0.04 between√
s = 8 TeV and 13 TeV.
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