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Abstract: We consider a minimal non-supersymmetric SO(10) Grand Unified Theory

(GUT) model that can reproduce the observed fermionic masses and mixing parameters of

the Standard Model. We calculate the scales of spontaneous symmetry breaking from the

GUT to the Standard Model gauge group using two-loop renormalisation group equations.

This procedure determines the proton decay rate and the scale of U(1)B−L breaking, which

generates cosmic strings and the right-handed neutrino mass scales. Consequently, the

regions of parameter space where thermal leptogenesis is viable are identified and correlated

with the fermion masses and mixing, the neutrinoless double beta decay rate, the proton

decay rate, and the gravitational wave signal resulting from the network of cosmic strings.

We demonstrate that this framework, which can explain the Standard Model fermion masses

and mixing and the observed baryon asymmetry, will be highly constrained by the next
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generation of gravitational wave detectors and neutrino oscillation experiments which will

also constrain the proton lifetime.
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1 Introduction

Grand Unified Theories (GUTs) have long been an attractive framework for unifying the

non-gravitational interactions. The minimal option, which can predict neutrino masses and

mixing, uses the gauge group SO(10). Several well-studied symmetries can be embedded

in SO(10), including SU(5) [1], flipped SU(5) × U(1) [2–5] and the Pati-Salam model

SU(4)c × SU(2)L × SU(2)R [6]. Thanks to this rich structure, there are many possible

symmetry-breaking chains from SO(10) down to the Standard Model (SM) gauge group,

GSM, most of them via the Pati-Salam symmetry [7]. An appealing feature of an intermediate

Pati-Salam symmetry in non-supersymmetric GUTs is that gauge unification can be achieved,

and there is an intermediate U(1)B−L subgroup which is spontaneously broken, generating

right-handed neutrino masses. In addition to inducing light neutrino masses via the seesaw

mechanism, the CP-violating and out-of-equilibrium decays of the right-handed neutrinos can

produce the observed matter-antimatter asymmetry via thermal leptogenesis [8]. Moreover,

the U(1)B−L symmetry breaking can also generate cosmic strings in the early Universe,

which can intercommute and emit gravitational radiation forming a stochastic gravitational

wave (GW) background that future GW interferometers can test.

The connection between GUTs and gravitational waves has been studied in [9] where the

simple breaking pattern SO(10) → GSM ×U(1)B−L → GSM was shown to be consistent with

inflation, leptogenesis, and dark matter, while the U(1)B−L symmetry breaking generates

cosmic strings. The connection between high-scale thermal leptogenesis and GWs was also

– 1 –
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pointed in [10] where it was assumed that the U(1)B−L breaking scale is the same as the

seesaw and leptogenesis scales. In ref. [11], we highlighted the complementarity between

proton decay and gravitational wave signals from cosmic strings as a powerful method

of probing GUTs. Subsequently, in ref. [12], we studied all possible non-supersymmetric

SO(10) symmetry-breaking chains. We performed a comprehensive renormalisation group

(RG) analysis to find the correlations between the proton decay rate and the GW signal.

We also identified which chains survived the current non-observation of both proton decay

and GWs and could be tested by future neutrino and GW experiments.

In this paper, we go beyond these works by providing a detailed study on a specific

SO(10) breaking chain that provides unification and predicts a proton decay width via

the channel p → π0e+, consistent with the experimental bound of the Super-Kamiokande

(Super-K) [13] and can be fully tested by future proton decay searches of Hyper-K [12].

Further, this breaking chain generates cosmic strings at the lowest intermediate scale,

M1 ∼ 1013 GeV. A GW background generated by such a string network is just around

the corner and may be even already hinted at by recent observations in PTA experiments,

including NANOGrav [14], PPTA [15], EPTA [16] and IPTA [17]. We determine the minimal

necessary particle content to induce the pattern of breaking and perform an RG analysis

and numerical fit of our model to SM data to postdict the fermion masses and mixing,

including the mass scales of the right-handed neutrinos. As this procedure determines the

scales of symmetry breaking of our model and the masses of the right-handed neutrinos,

the matter-antimatter asymmetry associated with thermal leptogenesis is predicted. We

then show that successful leptogenesis can occur in the regions of the model parameter

space consistent with SM fermion masses and mixing and can be correlated with a GW

signal and proton decay. Compared with [10], such an approach allows us to go beyond

generic considerations and instead to quantitatively account for the hierarchy between the

leptogenesis and see-saw scales, as well as with the U(1)B−L breaking scale, thanks to the

constraints imposed by reproducing the low energy data. The latter scale is of particular

interest since pulsar timing arrays such as PPTA [18] and NANOGrav [19] are sensitive to

the predicted GW signals while future large-scale neutrino experiment, Hyper-Kamiokande

(Hyper-K) [20], will be able to probe the predicted proton decay rate of this model. The

correlation between these two observables will be a crucial test of our GUT model, and

such methodology can be applied to other GUT models, presenting a new avenue to try to

unveil the physics at very high scales.

This paper is organised as follows: in section 2, we discuss the GUT symmetry breaking

pattern and the particle content of our model, including fermionic and Higgs representations

of the GUT and our RG running procedure. In section 3, we discuss how we relate our

model to the quark lepton data, our fitting procedure and the ensuing results. In section 4,

we discuss the basics of non-resonant thermal leptogenesis and how we determine the

baryon asymmetry produced from the successful points in the model parameter space and

in section 5, we demonstrate that the regions of the model parameter space that yield

successful leptogenesis and fermionic masses and mixing will be associated with a GW

signal. Finally, we summarise and discuss in section 6. As a case study, we consider a

benchmark point (referred to as BP1 throughout) and discuss how it satisfies all these

experimental constraints in each section.
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2 The framework

We focus on a breaking chain (classified as chain III4 of type (c) in ref. [12]) that is of

particular interest as it is currently allowed and predicts a proton decay rate testable

by Hyper-K. We discuss the breaking chain’s matter content and gauge unification in

this section.

2.1 Symmetry breaking of SO(10)

We study the following breaking chain with three intermediate symmetries (G3, G2, and G1):

SO(10)

54




y broken at MX

G3 ≡ SU(4) × SU(2)L × SU(2)R × ZC
2

210




y broken at M3

G2 ≡ SU(3)c × SU(2)L × SU(2)R × U(1)X × ZC
2

45




y broken at M2

G1 ≡ SU(3)c × SU(2)L × SU(2)R × U(1)X

126




y broken at M1

GSM ≡ SU(3)c × SU(2)L × U(1)Y . (2.1)

The boldface number beside the arrow indicates the Higgs representation of SO(10), trigger-

ing the symmetry breaking. In this work, we follow the same convention as ref. [12] where

the GUT symmetry breaking scale is denoted as MX and the mass scale of the subsequent

breaking of the group GI (for I = 1, 2, 3) is denoted as MI .1 All particles, except the gauge

fields of the model, are listed in table 1. We note that ZC
2 refers to the parity symmetry

between left and right conjugation (L ↔ Rc, where c indicates charge conjugation) and that

U(1)X is identical to the U(1)B−L symmetry with the charge correlated via X =
√

3
2(B−L

2 ).

The correlations between U(1) charges are given by Y =
√

3
5

(

I3R + B−L
2

)

, where I3R is

the isospin in SU(2)R.

To achieve each step of symmetry breaking, i.e., SO(10) → G3 → G2 → G1, we

include three Higgs multiplets, 54, 210, and 45 of SO(10), respectively. These Higgs fields

spontaneously break the GUT symmetry as follows:

• 54 contains a parity-even singlet (1,1,1) of G3 ≡ SU(4)c × SU(2)L × SU(2)R where

each entry in the bracket (r1, r2, · · · ) refers to the field representation transforming in

the group G ≡ H1 ×H2 × · · · . Once (1,1,1) gains a non-trivial vacuum expectation

value (VEV) at scale MX , SO(10) is spontaneously broken to G3.

• In G3, 210 can be decomposed to (15,1,1)1 of G3, which is further decomposed into

a parity-even and trivial singlet (1,1,1, 0)1 of SU(3)c × SU(2)L × SU(2)R × U(1)X ,

1However, we change the notation of the running energy scale to from µ to Q as the string tension is

often denoted as µ.
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Multiplet Role in the model

Fermions 16 Contains all SM fermions and RH neutrinos

10 Generates fermion masses

45 Triggers intermediate symmetry breaking

Higgses 54 Triggers GUT symmetry breaking

120 Generates fermion masses

126 Generates fermion masses & intermediate symmetry breaking

210 Triggers intermediate symmetry breaking

Table 1. The SO(10) representations of the fermion and Higgs particles of our SO(10) GUT model

and their roles.

SO(10) 54 210 45 126

G3 (1,1,1) (15,1,1)1 (15,1,1)2 (10,1,3) + (10,3,1)

G2 – (1,1,1, 0)1 (1,1,1, 0)2 (1,1,3,−1) + (1,3,1, 1)

G1 – – (1,1,1, 0)2 (1,1,3,−1)

GSM – – – (1,1, 0)S

Table 2. Decomposition of the Higgses which induce spontaneous symmetry breaking at each step

of the breaking chain. Each Higgs (from left to right) is eventually decomposed to a singlet whose

non-vanishing VEV preserves the symmetry GI (for I = 3, 2, 1,SM) in the same row but breaks

larger symmetries. The subscript distinguishes different fields of the same representation.

where the last entry in the bracket is the field charge in the U(1) symmetry and

the subscript is used to distinguish from another field with the same representation

discussed below. The VEV of this singlet breaks G3 to G2 at scale M3.

• The breaking of G2 to G1 is realised via a 45 of SO(10), which decomposed into

(15,1,1)2 of G3 and a further (1,1,1, 0)2 of G2 and G1. This singlet is parity-odd,

and its VEV induces the breaking of G2 → G1 at scale M2.

• Finally, the breaking of G1 → GSM at scale M1 is provided by 126, which is decom-

posed into a triplet (1,1,3,−1) of SU(3)c ×SU(2)L ×SU(2)R ×U(1)X and to a further

singlet, (1,1, 0), of GSM. This singlet field, denoted as φS , provides mass to the three

right-handed neutrinos.

We summarise the decomposition of Higgses, which triggers the breaking of SO(10) and

intermediate symmetries, in table 2.

2.2 Matter field decomposition and fermion masses

In order to assess if our model can predict the measured fermionic masses and mixing, it is

important to understand the matter content of the breaking chain. Fermions are arranged

as a 16 of SO(10) and follow the decomposition given in table 3 where L (R) denote the

– 4 –
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SO(10) 16

G3 (4,2,1)L + (4,1,2)Rc

G2

(3,2,1, 1/6)QL
+ (3,1,2,−1/6)Qc

R

+(1,2,1,−1/2)lL + (1,1,2, 1/2)lc
R

G1

(3,2,1, 1/6)QL
+ (3,1,2,−1/6)Qc

R

+(1,2,1,−1/2)lL + (1,1,2, 1/2)lc
R

GSM

(3,2, 1/6)QL
+ (3,1,−2/3)uc

R
+ (3,1, 1/3)dc

R

+(1,2,−1/2)lL +(1,1, 0)νc
R

+ (1,1, 1)ec
R

Table 3. Decomposition of the matter multiplet 16 in each step of the breaking chain.

left-handed (right-handed) fermions of G3 which contains the SM left-handed (right-handed)

fermions where QL(R) and ℓL(R) are the quark and leptonic SU(2)L(R) doublets, respectively,

and uR, dR, eR, and νR are the quark and lepton SU(2)L singlets, respectively.

Three Higgs multiplets, 10, 126 and 120, are required to generate the Standard

Model fermion masses. Compared to ref. [12], where we considered a minimal survival

hypothesis [21], we include one additional Higgs (120) which is required to generate all

fermion mass spectra, mixing angles, and CP-violating phases in the quark and lepton

sectors. Here, 126 is the same Higgs used in the breaking G1 → GSM. For this breaking

chain, we list decompositions of Higgs, which are responsible for mass generation in table 2.

Applying this decomposition, we have two (1,2,2) and two (15,2,2) multiplets of G3

after the SO(10) breaking. These multiplets are composed of four bi-doublets, (1,2,2, 0),

of G2 and G1. After SU(2)R is broken below M1, each bi-doublet contains two electroweak

doublets (1,2,∓1/2), and eventually, we arrive at the eight electroweak doublets of the

model which we denote as hi = {h̃u
10
, h̃u

126
, h̃u

120
, h̃u′

120
, hd

10
, hd

126
, hd

120
, hd′

120
}, where h̃u

10
=

iσ2(hu
10

)∗. These field decompositions introduce particles beyond the SM spectrum and

may contribute to the renormalisation group running behaviour of the gauge coefficients.

However, we reduce their redundancy in the following way: for scale Q which varies in

the range MX > Q > M3, where G3 is preserved, the two decomposed (1,2,2)’s can mix

and we assume that the heavy one gains a mass ∼ MX and thus decouples at scales below

MX . The same assumption applies to the other two (1,2,2)’s. Using these assumptions,

we have two bi-doublets (1,2,2, 0) at the scale M3 > Q > M2 and M2 > Q > M1, where

G2 and G1 are preserved, respectively. We retain them as the physically relevant degrees of

freedom in this range of scales, following the logic of ref. [12]. Four electroweak doublets

remain at energies below M1 but above the electroweak scale. Naively, one can assume all

massive states are sufficiently heavy that they decouple at scale M1, except for the lightest

electroweak doublet, which is the SM Higgs and should be massless before electroweak

symmetry breaking. Without loss of generality, we can write these Higgses as superpositions

of mass eigenstates, ĥi =
∑

j Vijhj , with hSM ≡ ĥ1, where V is a unitary matrix and

– 5 –
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SO(10) 10 126 120

G3

(1,2,2)1 (15,2,2)1 (1,2,2)2 + (15,2,2)2

+(10,1,3) + (10,3,1)

G2

(1,2,2, 0)1 (1,2,2, 0)2 (1,2,2, 0)3,4

+(1,1,3,−1) + (1,3,1, 1)

G1

(1,2,2, 0)1 (1,2,2, 0)2 (1,2,2, 0)3,4

+(1,1,3,−1)

GSM

(1,2,−1/2)hu
10

(1,2,−1/2)hu

126

(1,2,−1/2)
hu

120
,hu′

120

+(1,2,+1/2)hd
10

+(1,2,+1/2)hd

126

+(1,2,+1/2)
hd

120
,hd′

120

+(1,1, 0)S

Table 4. Decomposition of Higgses responsible for the fermion mass generation. 126 is the same

Higgs as shown in table 2 and it is responsible for both the breaking G1 → GSM and right-handed

neutrino mass generation. (1,1, 0)S is the same singlet given in table 2.

the heavy doublets that decouple at MX have also been taken into account. With this

treatment, all physical degrees of freedom present at the relevant scale are the same as

those of chain III4 in ref. [12]. For the second Higgs multiplet, 126, we retain another

decomposed representation (10,3,1) of G1, which contains a SU(2)L triplet, (1,1,3,−1),

of G2 and G1 which contains the singlet S ∼ (1,1, 0) of GSM that is important not only in

its role in symmetry breaking, but also in the generation of neutrino masses. (10,3,1) is

retained due to the requirement of left-right parity symmetry, ZC
2 , and it is decomposed to

a (1,3,1, 1) of G2. After G2 breaking, i.e., the breaking of the left-right parity symmetry,

we assume that this particle decouples.

In the Yukawa sector, couplings above the GUT scale are given by

Y ∗
10

16 · 16 · 10 + Y ∗
126

16 · 16 · 126 + Y ∗
120

16 · 16 · 120 + h.c. , (2.2)

where the asterisk denotes complex conjugation. Considering the flavour indices, Y10 and

Y
126

are in general complex 3 × 3 symmetric matrices and Y120 is an antisymmetric matrix.

In the non-SUSY case, two further couplings 16 · 16 · 10∗ and 16 · 16 · 120∗ are allowed by

the gauge symmetry; however, we forbid them by imposing an additional Peccei-Quinn U(1)

symmetry [22] as described in [23–25]. After the final symmetry is broken to GSM, the above

Yukawa terms generate the following SM fermion mass terms in the left-right convention:

Y10

[(

QuR+LνR

)

hu
10

+
(

QdR+LeR

)

hd
10

]

+
1√
3
Y

126

[(

QuR−3LνR

)

hu

126
+
(

QdR−3LeR

)

hd

126

]

+Y120

[

(

QuR+LνR

)

hu
120

+
(

QdR+LeR

)

hd
120

+
1√
3

(

QuR−3LνR

)

hu′

120
+(QdR−3LeR)hd′

120

]

+h.c.

(2.3)

Rotating the Higgs fields to their mass basis, we derive Yukawa couplings to the SM Higgs as

YuQ h̃SM uR + YdQhSM dR + YνL h̃SM νR + YeLhSM eR + h.c. , (2.4)

– 6 –
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where

Yu = Y10V
∗

11 +
1√
3
Y

126
V ∗

12 + Y120

(

V ∗
13 +

1√
3
V ∗

14

)

,

Yd = Y10V15 +
1√
3
Y

126
V16 + Y120

(

V17 +
1√
3
V18

)

,

Yν = Y10V
∗

11 −
√

3Y
126

V ∗
12 + Y120

(

V ∗
13 −

√
3V ∗

14

)

,

Ye = Y10V15 −
√

3Y
126

V16 + Y120

(

V17 −
√

3V18

)

. (2.5)

A Majorana mass term for the right-handed neutrinos is generated from the second term

of eq. (2.2):

Y
126

νR φS ν
c
R + h.c. , (2.6)

once φS acquires a VEV, vS , which controls the scale of the masses:

MνR
= Y

126
vS . (2.7)

After the right-handed neutrinos decouple and electroweak symmetry is broken, the light

neutrinos acquire their mass via the Type-I seesaw mechanism [26–29]:

Mν = −YνM
−1
νR
Y T

ν v
2
SM , (2.8)

where the SM Higgs VEV is vSM = 175 GeV. We emphasise that the electroweak singlet, φS ,

is essential for the symmetry breaking G1 → GSM and thus, its VEV determines the scale

of M1 and the right-handed neutrino masses. As required by perturbativity, Y
126

. O(1),

the mass of the heaviest right-handed neutrino, MN3
, should be not heavier than the lowest

intermediate scale, M1. On the other hand, neutrino oscillation experiments have given

relatively precise measurements of light neutrino masses and mixing angles. These data

restrict the right-handed neutrino mass spectrum via the seesaw formula, and a realistic

GUT model should survive all such constraints.

2.3 Gauge unification

Given an arbitrary gauge symmetry G, which can be expressed as a product of simple Lie

groups, G = H1 × · · · ×Hn, the two-loop renormalisation group running equation for group

Hi, for i = 1, 2, · · · , is given by

Q
dαi

dQ
= βi(αi) , (2.9)

where αi = g2
i /(4π) and the β function is determined by the particle content of the theory:

βi = − 1

2π
α2

i



bi +
1

4π

∑

j

bijαj



 . (2.10)

Here, i ∈ [1, · · · , n] for Hn, gi is the gauge coefficient of Hi, and bi and bij refer to the

normalised coefficients of one- and two-loop contributions, respectively. In the following, we

– 7 –
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neglect the Yukawa contribution to the RG running equations as it gives a subdominant con-

tribution. Given two scales Q0 and Q, if the conditions Q0 < Q and bjαj(Q0) log(Q/Q0) < 1

are both satisfied then an analytical solution for these equations can be obtained [30]:

α−1
i (Q) = α−1

i (Q0) − bi

2π
log

Q

Q0
+
∑

j

bij

4πbi
log

(

1 − bj

2π
αj(Q0) log

Q

Q0

)

. (2.11)

In the case that both Hi and Hj are non-abelian groups, the coefficients bi and bij are

bi = −11

3
C2 (Hi) +

2

3

∑

F

T (ψi) +
1

3

∑

S

T (φi) ,

bij = −34

3
[C2 (Hi)]

2 δij +
∑

F

T (ψi)

[

2C2 (ψj) +
10

3
C2 (Hi) δij

]

+
∑

S

T (φi)

[

4C2 (φj) +
2

3
C2(Hi)δij

]

, (2.12)

where the ψ and φ indices sum over the fermions and complex scalar multiplets, respectively,

and ψi and φi are their representations in the group Hi, respectively. C2(Ri) (for Ri = ψi, φi)

denotes the quadratic Casimir of the representation Ri in group Hi and C2(Hi) is the

quadratic Casimir of the adjoint presentation of the group Hi.

In particular, for SU(N), C2(SU(N)) = N and the quadratic Casimir of the fundamental

irrep N of SU(N) is given by C2(N) = (N2 − 1)/2N ; for SO(10), C2(SO(10)) = 8, and

the quadratic Casimir of the fundamental irrep 10 of SO(10) is given by C2(10) = 9/2.

The spinor representation of SO(10), 16, has C2(16) = 45/4. T (Ri) is the Dynkin index

of representation Ri of group Hi. For SU(N), T (Ri) = C2(Ri)d(Ri)/(N
2 − 1) where d(Ri)

is the dimension of Ri. If one of Hj is a U(1) symmetry, the coefficient bij is obtained by

replacing C2(Rj) and T (Rj) with the charge square [Qj(R)]2 of the field multiplet R in

U(1)j . For the Abelian symmetry, C2(U(1)) = 0.

Explicit values of bi and bij depend on the degree of freedoms introduced by the gauge,

matter and Higgs fields. The gauge fields are directly determined by the gauge symmetry

in the breaking chain. In regards to the matter fields, we assume they are the minimal

extension which includes all the SM fermions, i.e., minimally a 16 of SO(10) as in table 3.

The most significant uncertainty contributing to RG running comes from the Higgs sector

as one has to account for all the Higgses used to generate fermion masses and the GUT and

intermediate symmetry breaking. Given the decomposition of Higgs fields in table 2 and

the discussion in section 2.2, the Higgs fields included in each step of the RG running are:

• For G1 → GSM, we include only the SM Higgs. Although we arrive at a series of

electroweak doublets after field decomposition, we assume that all degrees of freedom

except the SM Higgs are sufficiently heavy that they are integrated out by this

breaking step and thus have a negligible effect on the RG running.

• For G2 → G1, we include three Higgses in the running, two (1,2,2, 0)’s and one

(1,1,3,−1) of G1. The former includes the SM Higgs, and the latter includes the

gauge singlet φS of GSM which is used to achieve the breaking of G1 → GSM and

right-handed neutrino masses.

– 8 –
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• For G3 → G2, we include two (1,2,2, 0)’s, (1,1,3,−1), (1,3,1, 1), and (1,1,1, 0)2

in the RG running. Two further Higgses are included compared to the above item as

(1,3,1, 1) is required for the matter parity symmetry ZC
2 and (1,1,1, 0)2 is used to

break ZC
2 , G2 → G1.

• For SO(10) → G3, we include (1,2,2), (15,2,2), (10,1,3), (10,3,1) and two

(15,1,1)’s in the RG running. The former two are required to obtain the two

(1,2,2, 0)’s above. (10,1,3) and (10,3,1) are required for (1,1,3,−1) and (1,3,1, 1).

One (15,1,1), decomposed from 45 is for (1,1,1, 0)2, and the other, decomposed

from 210, includes the singlet (1,1,1, 0)1 to achieve the breaking G3 → G2.

By including the above particle content in the RG running, we obtain the coefficients bi

and bij at the two-loop level, which we list in table 5 and are the same as in the chain III4

of ref. [12]. Although we include one more Higgs multiplet 120, the contribution of induced

new particles can be ignored, as explained in the previous subsection, by assuming heavy

mass eigenstates heavier than the breaking scale, MX [31]. In order to keep the treatment

of the RG running economical, the scalar multiplets which are unnecessary for the breaking

chain are assumed to be as massive as the SO(10) breaking scale MX . Therefore, these

scalars will not affect the RG running or provide threshold corrections.

During the symmetry breaking at an intermediate scale (M3, M2 orM1), gauge couplings

of the larger symmetry and those of the residual symmetry after spontaneous symmetry

breaking (SSB) must satisfy matching conditions. Here we list one-loop matching conditions

that appear in the GUT breaking chains. For a simple Lie group Hi+1 broken to subgroup

Hi at the scale Q = MI , the one-loop matching condition is given by [32]

Hi+1 → Hi : α−1
Hi+1

(MI) − 1

12π
C2(Hi+1) = α−1

Hi
(MI) − 1

12π
C2(Hi) . (2.13)

For G1 → GSM, we encounter the breaking, SU(2)R × U(1)X → U(1)Y , which has the

matching condition [33]:

SU(2)R × U(1)X → U(1)Y :
3

5

(

α−1
2R(MI) − 1

6π

)

+
2

5
α−1

1X(MI) = α−1
1Y (M1) . (2.14)

Applying the matching conditions of the above two equations, all gauge couplings of the

subgroups unify into a single gauge coupling, αX ≡ g2
X/4π, of SO(10) at the GUT scale,

MX . This condition restricts both the GUT and intermediate scales for each breaking chain.

We denote the mass of the heavy gauge boson masses associated with SO(10) breaking as

MX and M3, M2 and M1 are associated to the breaking of G3, G2 and G1, respectively.

Correlations among M1, M2, M3 and MX are determined numerically using the following

procedure for the breaking chain SO(10) → G3 → G2 → G1 → GSM where the two-loop

RG running evolution is performed in reverse, GSM → G1 → G2 → G3 → SO(10):

1. Begin the evaluation from the scale MZ with the SM gauge couplings α3 = 0.1184,

α2 = 0.033819 and α1 = 0.010168 [34]. Evolve these couplings using the RGE of the

SM to scale M1, where G1 is recovered. Apply the matching conditions for the SM

gauge couplings and the G1 gauge couplings to obtain the values of couplings in the

intermediate symmetry group.
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SO(10) broken at Q = MX









y

{bi} =











10
3
26
3
26
3











, {bij} =











4447
6

249
2

249
2

1245
2

779
3 48

1245
2 48 779

3











G3 broken at Q = M3









y

{bi} =

















−7

−2

−2

7

















, {bij} =

















−26 9
2

9
2

1
2

12 31 6 27
2

12 6 31 27
2

4 81
2

81
2

115
2

















G2 broken at Q = M2









y

{bi} =

















−7

−8
3

−2
11
2

















, {bij} =

















−26 9
2

9
2

1
2

12 37
3 6 3

2

12 6 31 27
2

4 9
2

81
2

61
2

















G1 broken at Q = M1









y

{bi} =











−7

−19
6

41
10











, {bij} =











−26 9
2

11
10

12 35
6

9
10

44
5

17
10

199
50











GSM

Table 5. Coefficients bi and bij of gauge coupling β functions appearing in the specified breaking

chain.

2. RG evolve the G1 gauge couplings from the scale M1 to M2, where G2 is recovered,

and the gauge couplings of G2 are obtained via matching conditions at scale M2.

3. Repeating this same procedure, to evolve all couplings to the GUT scale, MX , to

unify to a single value αX with the matching condition at MX fully accounted for.

The above RG running procedure involves four scales M1, M2, M3 and MX . Gauge

unification requires that three SM gauge couplings meet each other at the GUT scale, up to

matching conditions, and enforces two constraints; thus, there are only two free scales. The

remaining scales and the gauge coupling, αX , are then determined via gauge unification.

General restrictions on the parameter space of scales i.e., M2, M3 and MX varying with

M1, are shown in the left plot of figure 1.

Given the gauge unification scale, MX , and its gauge coupling at that scale, the proton

lifetime via the decaying process p → π0e+ is predicted. Due to the scale correlations

imposed by gauge unification, the correlation between the proton lifetime, τp, and MX can
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M1 (GeV)

1010

1011

1012

1013

1014

1015

1016

1017
M

i
(G

eV
)

M2

M3

MX

1010 1011 1012 1013 1014

M1 (GeV)

1032

1033

1034

1035

1036

τ
(

p
→

π
0 e
)

(y
r)

Super-K Bound

Hyper-K Sensitivity

Figure 1. Left panel: regions of M2, M3, MX as functions of M1 allowed by gauge unification;

right panel: prediction of proton lifetime as functions of M1, with exclusion upper bound of Super-K

and future sensitivity of Hyper-K indicated.

be transformed into a correlation between τp and any intermediate scale. Following the

formulation of ref. [12], we derive the allowed parameter space of τp versus intermediate

scales. By varying the lowest intermediate scale M1, we obtain general regions of τp. The

bound of τp versus the lowest scale M1 is shown in the right panel of figure 1. The Super-K

experiment set a lower bound on the proton lifetime, τ(p → e+π0) > 2.4 × 1034 years at 90

% confidence level [13]. In the future, Hyper-Kamiokande (Hyper-K) is expected to improve

the measurement of proton lifetime by almost one order of magnitude [20]. If proton decay

is not observed, the entire parameter space of this breaking chain will be excluded.

Benchmark Point 1 (BP1). In figure 2, we show an example of the RG running of the

gauge couplings along with the scale and fix

M1 = 2 × 1013 GeV , M2 = 5 × 1013 GeV , (2.15)

where the remaining scales, M3 and MX , as well as the gauge coupling αX , are then

determined via the gauge unification,

M3 = 7.55 × 1013 GeV , MX = 5.68 × 1015 GeV , αX = 0.0279 . (2.16)

This benchmark point will be considered throughout this paper. Its associated proton decay

rate, τ(p → e+π0) ∼ 5.1 × 1034 years, is consistent with the current Super-K bound and

will be tested by Hyper-K. We note that BP1 is consistent with SM fermion masses and

mixing to a high statistical significance, and this requires M1 ∼ 1013 GeV. Such a high

value for M1 leads a compressed hierarchy between M1, M2 and M3 and this comes from

the constraint of gauge unification (from the left panel of figure 1 this region is in the right

corner of the blue triangle.)
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1012 1013 1014 1015 1016

µ (GeV)

32

34

36

38

40

42

44

46

1/
α
i

1/α3

1/α2L

1/αY

1/α1X

1/α2R

1/α4

M1 M2 M3 MX

Figure 2. The RG running of gauge couplings in the breaking chain SO(10) → G3 → G2 → G1 →
GSM. BP1 with the first and second lowest intermediate scales are fixed at M1 = 2 × 1013 GeV

and M2 = 5 × 1013 GeV, the remaining scales M3 and MX , as well as gauge couplings α2R, are

determined by the gauge unification at MX .

3 Fermion masses and mixing

As all the SM fermions are embedded in the same SO(10) multiplet (16), their masses

are correlated with each other. Therefore, it is a non-trivial task to find regions of the

GUT model parameter space that predict the SM fermion masses and mixing consistent

with the precisely measured (particularly in the quark sector) experimental data. This

section presents the correlations of masses and mixing between quarks and leptons and

predicts heavy neutrino masses using the model we discussed in the previous section. We

parametrise the up, down, neutrino, charged lepton Yukawa couplings and right-handed

neutrino mass matrix, respectively, as follows [35]:

Yu = h+ r2f + i r3h
′ , Yd = r1(h+ f + i h′) , Yν = h− 3r2f + i cνh

′ ,

Ye = r1(h− 3f + i ceh
′) , MνR

= f

√
3 r1

V16
vS , (3.1)

where

h=Y10V11 , f =Y
126

V16√
3

V ∗
11

V15
, ce =

V17−
√

3V18

V17+V18/
√

3
, cν =

V ∗
13−

√
3V ∗

14

V17+V18/
√

3

V15

V ∗
11

,

r1 =
V15

V ∗
11

, r2 =
V ∗

12

V16

V15

V ∗
11

, r3 =
V ∗

13+V ∗
14/

√
3

V17+V18/
√

3

V15

V ∗
11

, h′ = −iY120

(

V17+V18/
√

3
) V ∗

11

V15
,

(3.2)

and Vji denotes the mixing between the mass and interaction basis of the electroweak Higgs

doublets. The light neutrino mass matrix, Mν , is obtained by

Mν = m0Yνf
−1Yν , (3.3)

where m0 = − V16√
3 r1

v2
SM

vS
.
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3.1 Parametrisation using Hermitian Yukawa matrices

The most general form of Yukawa couplings and neutrino mass matrix includes many free

parameters. A considerable reduction in the number of parameters can be achieved by

considering only the Hermitian case for all fermion Yukawa couplings matrices Yu, Yd, Yν

and Ye (and MR should be real as a consequence of the Majorana nature for right-handed

neutrinos). Such a reduction can result from spontaneous CP violation [36, 37] which

assumes that there exists a CP symmetry above the GUT scale, leading to real-valued

Y10, Y
126

and Y120, and the CP is broken by some complex VEVs of Higgs multiplets

during GUT or intermediate symmetry breaking. For the particular chain we applied in

the last section, one can consider, for example, the parity-odd singlet of G2 ≡ SU(3)c ×
SU(2)L ×SU(2)R ×U(1)X ×ZC

2 , decomposed from 45, gains a purely imaginary VEV. Then,

via couplings such as 45 · 10 · 120 (and 45 · 126 · 120) which generate purely imaginary

off-diagonal mass terms between hu,d
10

and hu,d
120

(and those between hu,d

126
and hu,d

120
) and

further purely imaginary mixing entries V13, V14 (and V17, V18) are obtained. As a result,

h, f and h′, as well as all parameters on the right-hand side of eq. (3.1), are real. Since

h′ is antisymmetric, we arrive at Hermitian Dirac Yukawa coupling matrices Yu, Yd, Yν

and Ye. This texture has widely been applied in the literature, see e.g., refs. [23, 31, 38].

The resulting fermion mass matrices conserve parity symmetry L ↔ R [31] and following

from the assumption that there is no CP violation in the Higgs sector, apart from that of

120, r1, r2, r3, ce, and cν are all real parameters resulting in a real symmetric right-handed

neutrino mass matrix, MνR
. The CP symmetry in the Yukawa coupling is spontaneously

broken after the Higgses gain VEVs.

For simplicity, we assume that r3 = 0, which implies that the imaginary part of Yu

vanishes. It is convenient to write the up-type Yukawa in the diagonal basis

Yu = h+ r2f = diag{ηuyu, ηcyc, ηtyt} , (3.4)

which can be achieved via a real-orthogonal transformation on the fermion flavours without

changing the Hermitian property of Yd, Ye, and Yν . In the above, ηu,c,t = ±1 refer to signs

that cannot be determined by the real-orthogonal transformation. While ηt = +1 can be

fixed by making an overall sign rotation for all Yukawa matrices, the remaining signs, ηu

and ηc, cannot be fixed and are randomly varied throughout our analysis. In the basis of

the diagonal up-quark mass matrix, Yd is given by

Yd = PaVCKM diag{ηdyd, ηsys, ηbyb}V †
CKMP

∗
a , (3.5)

where again ηd,s,b = ±1 represent the signs of eigenvalues, and VCKM is the CKM matrix

parametrised in the following form

VCKM =







c12c13 s12c13 s13e
−iδq

−s12c23 − c12s13s23e
iδq c12c23 − s12s13s23e

iδq c13s23

s12s23 − c12s13c23e
iδq −c12s23 − s12s13c23e

iδq c13c23






, (3.6)

where sij = sin θq
ij , cij = cos θq

ij and Pa = diag{eia1 , eia2 , 1}. The matrices h, f and h′ are

then expressed in terms of Yu and Yd

h = − Yu

r2 − 1
+

r2ReYd

r1(r2 − 1)
, f =

Yu

r2 − 1
− ReYd

r1(r2 − 1)
, h′ = i

ImYd

r1
,
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where Yν , Ye are

Yν = −3r2 + 1

r2 − 1
Yu +

4r2

r1(r2 − 1)
ReYd + i

cν

r1
ImYd ,

Ye = − 4r1

r2 − 1
Yu +

r2 + 3

r2 − 1
ReYd + iceImYd . (3.7)

The light neutrino mass matrix can be expressed as

Mν = m0

(

8r2(r2 + 1)

r2 − 1
Yu − 16r2

2

r1(r2 − 1)
ReYd

+
r2 − 1

r1
(r1Yu + icνImYd) (r1Yu − ReYd)−1 (r1Yu − icνImYd)

)

. (3.8)

Using this parametrisation, all six quark masses and four CKM mixing parameters are

treated as inputs, and we are then left with seven parameters (a1, a2, r1, r2, ce, cν , and

m0) to fit eight observables, including three Yukawa couplings ye, yµ, yτ , two neutrino

mass-squared differences ∆m2
21, ∆m2

31 and three mixing angles θ12, θ13, θ23, where the

leptonic CP-violating phase, δ, will be treated as a prediction.2

3.2 Procedure of numerical analysis

This section describes how we identify regions of our model parameter space consistent with

fermion masses and mixing while evading the existing proton decay limit. In our numerical

analysis, we use the following experimental data:

• We fix the Yukawa couplings (y) of charged fermions and CKM mixing angles (θ) at

their best-fit (bf) values [23, 39, 40]

ybf
u = 2.54 × 10−6 , ybf

c = 1.37 × 10−3 , ybf
t = 0.43 ,

ybf
d = 6.56 × 10−6 , ybf

s = 1.24 × 10−4 , ybf
b = 5.7 × 10−3 ,

ybf
e = 2.70 × 10−6 , ybf

µ = 5.71 × 10−4 , ybf
τ = 9.7 × 10−3 ,

(3.9)

and

θq,bf
12 = 0.227 , θq,bf

23 = 4.858 × 10−2 , θq,bf
13 = 4.202 × 10−3 , δq,bf = 1.207 .

(3.10)

These values are obtained by RG evolving the experimental best-fit values at a low

scale to 2 × 1016 GeV, where we have ignored the experimental errors. For simplicity,

small corrections induced by RG running above intermediate scales have been ignored,

but their inclusion would further relax the parameter space.3 However, as we will

later see, fixing them at the best fit values is sufficient to reproduce all mixing data.

Thus, in this current discussion, we will ignore them for simplicity.

2While we do not show the Majorana phases, we compute the effective Majorana mass.
3Although the coupling for the heaviest RH neutrino in eq. (2.6) can be of order 1, its contribution to

RG running is under control and is expected to be at most 5% as MX/M1 ∼ 10
−2.
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• In the neutrino sector, we use the best-fit values from NuFIT 5.1 [41] and include

the 1σ uncertainty. Those data with and without Super-K atmospheric data are,

respectively, given by

∆m2
21 = (7.42 ± 0.21) × 10−5 eV2 , ∆m2

3l = (2.510 ± 0.027) × 10−3 eV2 ,

θ12 = 33.45◦ ± 0.77◦ , θ23 = 42.1◦ ± 1.1◦ , θ13 = 8.62◦ ± 0.12◦ ,

(3.11)

and

∆m2
21 = (7.42 ± 0.21) × 10−5 eV2 , ∆m2

3l = (2.514 ± 0.028) × 10−3 eV2 ,

θ12 = 33.44◦ ± 0.77◦ , θ23 = 49.0◦ ± 1.3◦ , θ13 = 8.57◦ ± 0.13◦ .

(3.12)

The atmospheric mixing angle, θ23, is restricted to first octant (0 < θ23 < 45◦) and

the second (45◦ < θ23 < 90◦), respectively, in the two cases. In both cases, normal

ordering (i.e., m1 < m2 < m3) of neutrino masses is assumed. Inverted ordering (i.e.,

m3 < m1 < m2) will not be discussed as a preliminary scan indicates that our model

does not favour the inverted ordering. We do not consider the small flavour-dependent

RG running effect due to the suppression of charged lepton Yukawa coupling.

The statistical analysis is performed in the following way:

• As quark masses and mixing parameters are fixed at their best-fit values, Yu is fully

determined except for the signs of ηu and ηd (note that ηt = +1 is fixed by an

overall sign rotation). Yd depends on two free model parameters, a1 and a2, and

signs (ηd, ηs, ηb).

• Based on eq. (3.7), Ye depends on the two phases a1, a2 and three ratios r1, r2, ce up to

the above sign differences. Note that Ye must satisfy three equations simultaneously:

Tr
[

YeY
†

e

]

= y2
e + y2

µ + y2
τ ,

Tr
[

YeY
†

e YeY
†

e

]

= y4
e + y4

µ + y4
τ ,

Det
[

YeY
†

e

]

= y2
ey

2
µy

2
τ , (3.13)

and as the right hand side is fixed, r1, r2 and ce are fully determined by the phases

a1, a2 and the signs ηq (for q = u, c, d, s, b). We scan the phase parameters in the

range a1, a2 ∈ [0, 2π] and vary the signs ηq = ±1 randomly and solve for r1, r2 and ce.

Then, we substitute these values into eq. (3.7) and determine the unitary matrix Ve

used in the diagonalisation V †
e YeY

†
e Ve = diag{y2

e , y
2
µ, y

2
τ }.

• In eq. (3.8), the neutrino mass matrix, Mν , is determined by two further parameters

cν and m0. The former determines the flavour structure and the latter the absolute

mass scale, and by scanning these parameters, we determine Mν . The diagonalisation

V †
ν MνV

∗
ν = diag{m1,m2,m3} provides the neutrino mass eigenvalues and unitary

matrix Vν .
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• The PMNS matrix is given by UPMNS = V †
e Vν , and the three leptonic mixing angles

are derived via

sin θ13 = |(UPMNS)e3| , tan θ12 =

∣

∣

∣

∣

(UPMNS)e2

(UPMNS)e1

∣

∣

∣

∣

, tan θ23 =

∣

∣

∣

∣

(UPMNS)µ3

(UPMNS)τ3

∣

∣

∣

∣

.

(3.14)

These angles and two mass squared differences ∆m2
21 = m2

2 −m2
1 and ∆m2

31 = m2
3 −m2

1

are taken as outputs to compare with the experimental data shown in eq. (3.11).

In summary, once the charged fermion masses and quark mixing parameters are fixed, we

are left with only four free model parameters a1, a2, cν ,m0 and signs ηq:

Pm ∈ {a1, a2, cν ,m0, ηq} . (3.15)

We scan the model parameter space, Pm, to fit five observables:

On ∈ {θ12, θ13, θ23,∆m
2
21,∆m

2
31} . (3.16)

In this way, we efficiently reduce the dimensionality of the parameter space from 17 to 5

dimensions. Following the above simplified treatment, we scan two phases a1, a2 in the

range [0, π]. The coefficient |cν | is logarithmically scanned in the range [10−3 , 103], and we

randomly assign its ± sign. m0 (meV) is solved by minimising the χ2 function, which is

used as a measure of how well our model fits the data, being defined as

χ2 =
∑

n

[

On(Pm) − Obf
n

σOn

]2

. (3.17)

Given the predefined theory model parameter space, Pm, and scanning in the relevant

ranges of these parameters, we determine which regions fit the experimental data by setting

an upper bound of χ2 value. This procedure of the scan is divided into two steps: we first

perform a preliminary scan by setting the upper bound of χ2 < 100 and then perform a

subsequent scan to find the points with χ2 < 10. The results of the first scan which uses the

neutrino oscillation data of eq. (3.11) (first octant) are shown in figure 3. A two-dimensional

subspace of a1-a2 (m0-cν) is shown in the top (bottom) left panel and predictions of θ23-δ

(MN1
-MN3

) are given in the right top (bottom) panel. MN1
, MN2

and MN3
are three

right-handed neutrino masses ordered from lightest to heaviest, and they are obtained by

solving the inverse of the Type-I seesaw formula:

MνR
= Y T

ν M
−1
ν Yνv

2
SM , (3.18)

where the mass states of νR, from the lightest to heaviest, are denoted as N1, N2 and

N3. We impose an upper bound by requiring MN3
. M1, and this is approximately

equivalent to requiring that the largest eigenvalue of Y
126

. 1 such that the perturbativity

is respected. Since the maximal value of M1 allowed by proton decay measurements is given

by 4.4 × 1013 GeV [12], viable points in the model parameter space require that

MN3
< 4.4 × 1013 GeV . (3.19)
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Figure 3. Two-dimensional correlations between theory inputs (left two panels) and predicted

observables (right two panels) for χ2 < 100 for θ23 ≤ 45◦. Consistency with gauge unification is

not considered.

Naively, by assuming the magnitude of the Dirac Yukawa coupling Yν ∼ O(1), we know

from the seesaw formula that the RHN mass scale is around 1015 GeV. Thus, one can expect

that the condition of eq. (3.19) rules out most points. This is confirmed by the bottom-left

panel figure 3 where most of the points predict the heaviest neutrino mass, MN3
, to be

heavier than 4.4 × 1013 GeV. Therefore, these points are not consistent with the requirement

of gauge unification. We then perform a second more dense scan around the former

points by requiring χ2 < 10 and gauge unification, e.g., the bound of the heaviest right-

handed neutrino mass satisfying eq. (3.19). The results of this scan are shown in figures 4

and 5, where neutrino oscillation data in eqs. (3.11) and (3.12) are used, respectively. In

both figures, scatter plots of parameters are shown in the left panel and predictions of

observables are given in the right panel. In the first 2 × 2 grid of both figures, we arrange

two-dimensional subspaces of a1-a2, m0-cν (left), and predictions θ23-δ, MN1
-MN3

(right).

We have checked that truncating the upper bound of χ2 from 100 to 10 removes most of the

– 17 –
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