Constraining Proton Parton Distributions at the LHC

Paul Newman (University of Birmingham)

> on behalf of the ATLAS, CMS & LHCb collaborations

Proton PDF Pre-LHC Baseline: Final HERA Results (ep only: HERAPDF2.0)

- ~2% gluon precision, 1% on sea quarks for x ~ 10⁻² ... BUT ...
- Low x gluon rising in a non-sustainable way at large Q2
- Uncertainties explode above x=10⁻¹

Focusing on High x

Ancient history (HERA v Tevatron)

- Signatures for new physics near kinematic limit can be hidden (or faked!) by imprecise PDFs as $x \rightarrow 1$
- e.g. Apparent excess in large E_T Tevatron jets turned out to be well within uncertainties on high x gluon ...

HERA's High x Limitations

- HERA's lack of high x precision is due to limited luminosity and 1/Q⁴ factor in cross section + kinematic correlation between x, Q²
- High x, intermediate Q^2 region will one day be filled by EIC.
- For now, the best constraints come from fixed target experiments and (especially) the LHC

Constraining PDFs with LHC Data

- Many pp processes are sensitive to PDFs ...
- Electroweak gauge boson production
- Drell Yan (away from Z pole)
- High pT jet production
- Top Quarks
- Direct Photons
- W+c, Z+c ...

... programme to better constrain PDFs with LHC data both by experimental collaborations and by fitting groups

Theory v Data at LHC

High x starting point: Inclusive jets:

- High rates, wide kinematic range
- 'Astonishing' agreement between data and (N)NLO QCD over many orders of magnitude in x-section, up to scales with p_{T} ~2 TeV

PDFs are a vital ingredient in almost all predictions

Looking in more Detail ...

e.g. CMS inclusive jets (R=0.4) versus CT14 and others + non-pert, EW coors

- Deviations at typically 5% level, worse at largest p_T
 - → consistent with experiment + theory (including PDF!) systematics.
- What happens if you include the data in PDF fits?...

PDF Constraints from CMS QCD ANALYSIS

- Inclusive jets have substantial impact on gluon precision at all x relative to CT14 PDFs that already used previous LHC data.
- Singlet quark precision also improves
- Simultaneously, NNLO extraction of strong coupling ...

$$\alpha_s (m_z) = 0.1188 \pm 0.0031$$

... uncertainty still dominated by scale uncertainty (0.0025)

- CMS 13 TeV Double-differential inclusive jets
- NC and CC cross sections from HERA

PDF Constraints from CMS QCD ANALYSIS

- Inclusive jets have substantial impact on gluon precision at all x relative to CT14 PDFs that already used previous LHC data.
- Singlet quark precision also improves
- Simultaneously, NNLO extraction of strong coupling ...

$$\alpha_s$$
 (m_z) = 0.1188 ± 0.0031

... uncertainty still dominated by scale uncertainty (0.0025)

- CMS 13 TeV Double-differential inclusive jets
- NC and CC cross sections from HERA

ATLAS 'Global' Fit (ATLASpdf21)

[EPJ C82 (2022) 438]

Data set	\sqrt{s} [TeV]	Luminosity [fb ⁻¹]
Inclusive $W, Z/\gamma^*$ [9]	7	4.6
Inclusive Z/γ^* [13]	8	20.2
Inclusive W [12]	8	20.2
W^{\pm} + jets [23]	8	20.2
Z + jets [24]	8	20.2
$t\bar{t}$ [25, 26]	8	20.2
$t\bar{t}$ [15]	13	36
Inclusive isolated γ [14]	8, 13	20.2, 3.2
Inclusive jets [16–18]	7, 8, 13	4.5, 20.2, 3.2

Detailed study of correlations between uncertainties in different data sets and of different χ^2 tolerances

Impact of Different Data Sets

- W and Z data strongly constrain quark densities (and also gluon)
- Jet data primarily reduce gluon uncertainty at large x
- Top data also have an influence and soften high x gluon (mild tension with jets)

Further Constraints: Strangeness Fraction

$$R_s = x(s+\bar{s})/x(\bar{u}+\bar{d})$$

- ATLAS fits constrain strange quark density mainly through inclusive W, Z
- Suggests a small strangeness
 suppression relative to u,d sea at low x.
 compatible with other (global) analyses

Strange Density @ CMS: W + c

[arXiv:2112.00895]

Final states with W + charm are directly sensitive to the strange density at lowest order

CMS measurements using jets with charm tags from secondary vertices of low p_T^{rel} muons:

- Reasonable agreement with NLO fits
- Up to 10%disagreements@ low lepton p_T
- Comparisonsusing NNLOPDFs better?

Strange Density at CMS / Overall Picture

- Including CMS W+c data in fit with HERA data and previous CMS W, W+c data shows significant improvement on strange precision
- Also suggestive of small strangeness suppression at low x

Favourable Low and High x Kinematics at LHCb

"Fixed target-like" forward instrumentation (2 < η < 4.5) gives sensitivity to asymmetric incoming x values,

... to $x \sim 10^{-5}$ and at $x \rightarrow 1$

LHCb Z

[arXiv:2112.07458]

- Broad agreement with fixed (NLO) order predictions based on global fits
- FEWZ predictions systematically low at low rapidities for all PDF sets (corresponding to more modest x).
- Further studies on W, top, Drell-Yan, intrinsic charm with Z+c (not shown here).

Back to ATLAS: Quality of Description of Data

Level of agreement within expectations ... but 5-20% effects remain

Theoretical Limitations:

- Hadronisation and Underlying Event
- Missing higher orders (QCD & EW)
- Large logs needing resummations
- Systematics (energy scale ...) 16
- Correlations between measurements

Experimental Limitations:

ATLAS v Global Fits at high x

- Progress compared with HERA only fits
- Notably, gluon density hardens compared with HERA, but remains softer than MSHT / CT

- Detailed ATLAS analysis showed importance of proper treatment of correlated uncertainty sources and the power of NNLO
- Still tensions at the very highest x values, particularly for gluon

Final Words

- Current state of the art in collinear proton parton densities is driven primarily by HERA + LHC
- LHC brought progress in experimental precision and associated theory understanding for wide range of sensitive observables
- LHC impact primarily at high x and in flavour decomposition
- Future challenges:
 - \rightarrow Very large x \rightarrow 1 region
 - → Limits in experimental and theoretical precision
 - → Increasing pile-up
- → Need to maintain independence between PDF-based predictions and searches near the kinematic limit

Thanks to the Organisers!