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Tetraquarks Q Q q̄q̄ are found to be described remarkably well with the Quantum Chromodynamics 
version of the Hydrogen bond, as treated with the Born-Oppenheimer approximation. We show the 
robustness of the method by computing the mass of the observed Tcc tetraquark following two different 
paths. Relying on this, we provide a prediction for the mass of the expected Tbb particle. The average sizes 
of tetraquarks are estimated to be approximately 3–5 GeV−1. As a consequence hyperfine separations are 
not expected to be sizeable. We discussed possible reasons why LHCb has observed only one state in the 
D D∗ spectrum.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of a doubly charm meson [1,2], as well as the theoretical consensus on the existence of a doubly bottom counterpart [3–
7], is moving the spotlight on heavy-light Q Q q̄q̄ tetraquarks. Since they cannot mix with ordinary charmonia, they turn out to be the 
simplest exotic system to study, see [8].

Given the separation of masses M Q � mq , one finds a situation similar to that encountered in the hydrogen molecule. The fast motion 
of the light quarks in the field of the heavy color sources generates an effective potential, dependent on the relative distance R separating 
the Q Q pair. The potential, in turn, regulates the slower motion of the heavy quarks. Such an effective potential, known as the Born-
Oppenheimer potential (BO), is obtained by solving the eigenvalue equation for the light particles at fixed values of the coordinates of the 
heavy particles (see e.g. [9–13]). The energy E will be a function of the relative distance R between heavy particles and corresponds to 
the core of the full BO potential, which includes the direct interaction between the sources.

When solving the Schrödinger equation of the heavy particles, one neglects the momentum of the heavy particles computed as the 
gradient of the eigenfunction related to E . This is the content of the Born-Oppenheimer approximation, illustrated in detail for QED in [14,
15].

Recently, we have applied the Born-Oppenheimer approximation to calculate the mass of the doubly charm baryon �cc and of the 
lowest lying doubly heavy tetraquarks, Tcc and Tbb [16]. In synthesis, the calculation gave a mass of �cc in reasonable agreement with 
observation, but a mass of Tcc close to the D D threshold and a mass for Tbb considerably below the B B threshold, deep in the stability 
region against weak and electromagnetic decays. Previous calculations based on constituent quark model [6,17–20] had rather indicated a 
Tcc mass close to the D D∗ threshold and, for Tbb , a Q -value well inside the stability region.

The observation of Tcc(3875)+ at the D D∗ threshold calls for a closer examination of our calculation [16]. As emerging from recent 
debates on the compositeness of exotic states [21–25], it is possible that the observed states arise from compact bare states, that couple 
strongly to the continuum. In this respect, it is crucially important to know whether such compact states are expected or not from models 
at the quark level.

We find room for improvement with respect to the use in [16] of the hyperfine κ[(ud)3̄] coupling taken from baryon spectrum, the 
coupling which regulates the mass splitting of �Q –�Q baryons. As demonstrated in previous cases,1 the extension to tetraquarks of 
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hyperfine couplings taken from meson and baryon spectra is, in fact, an unjustified assumption. Hyperfine couplings depend crucially 
from the overlap probability of the quark pair involved, which, in tetraquarks cannot be a priori assumed to be equal to the overlap 
probabilities of the same pair in mesons and baryons.

Recently, several studies of doubly heavy tetraquarks mass spectrum have been presented, based on the constituent quark model 
following the work of [17,18] (for an updated list, see [20] and references therein). These analyses invariably use the hyperfine coupling 
taken from baryon spectrum, and fall under the same criticism.

We proceed to the calculation in the Born-Oppenheimer approximation in two ways:

• Method 1: scaling baryon and mesons hyperfine couplings with the dimensions of the BO bound state. We use the spin-independent 
BO formalism to evaluate the average separations of light quarks and of heavy quarks. We obtain realistic estimates of the corre-
sponding hyperfine couplings by scaling with respect to the separations in baryons (for q̄q̄′) and in charmonium/bottomonium (for 
Q Q ).

• Method 2: QCD approach. We include in the BO potential the contribution of the hyperfine QCD interaction at the quark level [27–29]. 
Its first-order effect on the energy of the light quark system depends on the separation of the heavy sources, R , and it adds a 
contribution to the Born-Oppenheimer potential, which depends on the light quark spin Sq̄q̄ and on the total angular momentum J
of the tetraquark.2 The effect of the remaining heavy-to-heavy hyperfine interaction can be evaluated perturbatively, using the same 
formula applied to the final wave function of the heavy quarks.

This calculation leads to the following results:

1. For the I = 0, J P = 1+ state, the two methods give remarkably similar values, close to the observed mass of Tcc(3875)+ .
2. We compute the masses of the remaining, double charm states with I = Sq̄q̄ = 1 and J P = 0+, 1+, 2+ . Unlike the familiar �Q , �Q

cases, the doubly heavy, I = 1, J P = 1+ tetraquark is almost degenerate with the isoscalar partner. However, as discussed later, theory 
uncertainties allow for it to appear up to 20 MeV below the D D∗ threshold, thus escaping detection at LHCb.

3. Concerning the [bbq̄q̄], I = 0 tetraquark, the new evaluation gives a mass below the B B threshold but rather close to it, not allowing 
a definite decision about the issue of stability against short-lived (strong and electromagnetic) decays.

2. Color couplings

In pursuing the analogy with the treatment of the hydrogen molecule, the coulombic potential terms are rescaled by the appropriate 
color factors. Quarks are treated as non-relativistic and weakly interacting. The determination of color factors is done in the one-gluon-
exchange approximation.

As in [16] we consider doubly flavored bb and cc tetraquarks, with the doubly heavy pair in color 3̄. The lowest energy state corre-
sponds to Q Q in spin one and light antiquarks in spin and isospin zero. The tetraquark state is |T 〉 = ∣∣(Q Q )3̄, (q̄q̄)3

〉
1 . From the Fierz 

identity

|T 〉 =
√

1

3
|(q̄Q )1, (q̄Q )1〉1 −

√
2

3
|(q̄Q )8, (q̄Q )8〉1 (1)

weighting with the squared amplitudes in (1), one derives the attractive color factors3

λQ Q = λq̄q̄ = −2

3
αs

λQ q̄ =
[

1

3
× 1

2

(
−8

3

)
+ 2

3
× 1

2

(
3 − 8

3

)]
αs = −1

3
αs (2)

We shall add to the QCD coulombic potential a linearly rising, confining, potential, V = kQ q̄ r. The string tension kQ q̄ in the Q q̄ orbital, is 
obtained from the charmonium string tension k according to the so-called Casimir scaling [31]

kQ q̄ = 3

4αs
|λQ q̄|k = 1

4
k (3)

where k is the string tension derived from the charmonium spectrum where |λcc̄ | = 4/3αs .
As shown in (1), Q q̄ is in a superposition of color singlet and color octet. The charge of (q̄Q )8 is represented by an SU (3) tensor vi

j , 

traceless. In the QCD vacuum this charge might be neutralized by soft gluons, as in A j
i vi

j : in that case only the singlet component matters, 
and kQ q̄ = k. We call this possibility ‘triality scaling’.4 We will show the results of both hypotheses for the string tension

2 This method is followed in lattice calculations, where the computed Born-Oppenheimer potential takes full account of flavor and spin properties of the light quarks, see 
e.g. [30].

3 We use the rule based on quadratic Casimir coefficients λ12 = 1/2(C(S) − C(R1) − C(R2)) where S is one of the representations contained in the Kronecker product 
R1 ⊗ R2. C(3) = C(3̄) = 4/3, C(6) = 10/3 and C(8) = 3.

4 Consider a generic color charge described by a SU(3) tensor vii ···in
j1 ··· jm

, having triality T = n − m − 3�(n − m)/3�. It can be lowered to vi1···in−m by repeated contraction 
with soft gluons A jm

in
. If n − m = 1 we get a 3 tensor. If n − m = 2 we get a 6. If n − m ≥ 3, vi1 ···in−m can be further reduced by contraction with the 10 tensors Ar

i1
As

i2
εi3rs

(i1, i2, i3 symmetrized) to finally get either one of 1, 3, 6. Therefore the product of a charge vii ···in
j1 ··· jm

and its conjugate can be reduced to the non-trivial cases 3 ⊗ 3̄ as in (1), 
or 6 ⊗ 6̄. The Kronecker decomposition of 6 ⊗ 8 contains the 3̄ representation as well as 6̄ ⊗ 8 contains the 3. Therefore, by the effect of the contraction with gluons, also 
6 ⊗ 6̄ behaves like 3 ⊗ 3̄ and we still might use k rather than the Casimir scaled value.
2
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Fig. 1. The heavy quarks are separated by the vector R . The vectors ξ and η have their application points at the two heavy quarks.

kQ q̄ =
{

k

4
,k

}
(4)

indicated, respectively, as Casimir and triality scaling.

3. Orbitals

We consider at first the heavy quarks as fixed color sources at a distance R . Light antiquarks are bound each to a heavy quark in 
orbitals with wave functions ψ(ξ ) and φ(η) and the ground state of the q̄q̄ system is assumed to be symmetric under the exchange of 
light quarks coordinates (the notation is defined in Fig. 1).

� = ψ(ξ)φ(η) + ψ(η)φ(ξ)√
2
[
1 + S2(R)

] (5)

Normalization, (�, �) = 1, is obtained with the overlap function given by5

S(R) =
∫
ξ

ψ(ξ)φ(ξ) (6)

The wave function ψ(ξ ) gives the amplitude of q̄ at a distance ξ from Q , as represented in Fig. 1. The wavefunction φ(η) is the amplitude 
of the other light quark q̄ at a distance η from the second heavy quark (which is at distance R from the former). The vectors ξ , η have 
the application points in the positions of the two heavy quarks respectively. The ψ and φ wavefunctions are written in terms of the radial 
functions R = R00/

√
4π in the following way

ψ(ξ) = R(|ξ |) ψ(η) = R(|R + η|)
φ(η) = R(|η|) φ(ξ) = R(|ξ − R|) (7)

R(r) is the radial wave function obtained by solving variationally the Schrödinger equation of the heavy quark-light antiquark system 
with the potential,

V (r) = λQ q̄

r
+ kQ q̄ r + V 0 = −1

3

αs

r
+ 1

4
k r + V 0 (8)

R(r) = A3/2

√
π

e−Ar (9)

We have included a constant V 0, to be discussed below, that defines the offset of the energy for confined systems. The determination 
of A comes from the minimization of (R, H R) = 〈H〉: the value of A used in computations corresponds to 〈H〉min. The light quarks 
energy, to zeroth order when we restrict to the interactions that define the orbitals, is

E0 = 2(〈H〉min + V 0) (10)

where 〈H〉min is the orbital energy eigenvalue (and the minimum of the Schrödinger functional).
In Ref. [16] and in the following, we use the numerical values:

αs(2Mc) = 0.30 αs(2Mb) = 0.21 k = 0.15 GeV2 (11)

4. Determination of the BO potential

We include in a perturbation Hamiltonian the interactions left out from the construction of the orbitals, namely the interaction of each 
light quark with the other heavy quark and the interaction among light quarks. Following Fig. 1

δH = λQ q̄

(
1

|ξ − R| + 1

|η + R|
)

+ λqq̄

|ξ − R − η| (12)

5 Considering ground states only, we restrict ψ and φ to be real functions.
3



L. Maiani, A. Pilloni, A.D. Polosa et al. Physics Letters B 836 (2023) 137624
with color factors taken from (2). We compute the total energy of the light system in the presence of fixed sources, E(R), to first order in 
δH

E(R) = E0 + �E(R)

�E(R) = (�, δH�) = 1

1 + S2(R)

[
−1

3
αs(2I1(R) + 2S(R)I2(R)) − 2

3
αs(I4(R) + I6(R))

]
(13)

The Ii(R) are integrals over the orbital wave functions are defined and computed in [16],6

I1(R) ≡
∫
ξ

ψ(ξ)2 1

|ξ − R| =
∫
η

φ(η)2 1

|η + R|

I2(R) ≡
∫
ξ

ψ(ξ)φ(ξ)
1

|ξ − R| =
∫
η

ψ(η)φ(η)
1

|η + R|

I4(R) ≡
∫

ξ ,η

ψ(ξ)2φ(η)2 1

|ξ − R − η| =
∫

ξ ,η

ψ(η)2φ(ξ)2 1

|ξ − R − η|

I6(R) ≡
∫

ξ ,η

ψ(ξ)φ(ξ)ψ(η)φ(η)
1

|ξ − R − η| (14)

Results in the first three lines are derived from the symmetry transformation ξ → η, R → −R , ψ → φ. With these definitions at hand the 
result (13) for �E(R) is readly derived from the definition (12) of δH .

The Born-Oppenheimer potential, to be used in the Scrödinger equation of the heavy quarks, is then

V BO(R) = −2

3
αs

1

R
+ E(R) (15)

At large separations V BO(R) tends to the constant value

V BO(R) → E0 = 2 (〈H〉min + V 0) for R → ∞ (16)

As noted in [16], at infinity the two orbitals tend to a superposition of color 8–8 and color 1–1. The color of a triality zero pair can be 
screened by soft gluons from the vacuum, as first noticed in [31] and supported by lattice QCD calculations (see [30] for recent results). 
The upshot is that, including the constituent quark rest masses taken from the meson spectrum, Table I, the limit V BO(∞) + 2(M Q + Mq)

must coincide with the mass of a pair of non-interacting beauty (charmed) mesons with spin-spin interaction subtracted, which is just 
2(M Q + Mq). Thus, we derive the boundary condition

〈H〉min + V 0 = 0 (17)

which fixes V 0.

5. Tetraquark spectrum and Q values

The negative eigenvalue E of the Schrödinger equation with V BO(R) (including the condition on V 0 just found) is the binding energy 
associated with the BO potential. The masses of the lowest tetraquark with [(Q Q )S=1(q̄q̄)S=0] and of the pseudoscalar mesons P = Q q̄
are

M(T ) = 2(M Q + Mq) + E + 1

2
κQ Q − 3

2
κq̄q̄ (18)

M(P ) = M Q + Mq − 3

2
κQ q̄ (19)

The resulting Q -values with respect to the P P thresholds are

Q Q Q = M(T ) − 2M(P ) = E + 1

2
κQ Q − 3

2
κq̄q̄ + 3κQ q̄ (20)

With the values in (11) and in Table I we obtained [16]:

6 When computing e.g. I1, the angle between ξ and R corresponds to the polar angle θ in the ξ integration. The distance between light quarks |ξ − R −η| = dq̄q̄ , occurring
in I4,6 can be computed by shifting along x or y as in

dq̄q̄ =
√

(ξ sin(θξ ) cos(φξ ) − η sin(θη) cos(φη))2 + (ξ cos(θξ ) − η cos(θη))2 + (−η sin(θη) sin(φη) + ξ sin(θξ ) sin(φξ ) − R)2

where the polar and azimuthal angles are related to ξ and η.
4



L. Maiani, A. Pilloni, A.D. Polosa et al. Physics Letters B 836 (2023) 137624
Table I
Constituent quark masses from S-wave mesons 
[32], with q = u, d.

Flavors q s c b

M (MeV) 308 484 1667 5005

Table II
S-wave Mesons and Baryons: spin-spin interactions of the lightest quarks with 
the heavier flavors [32]. Values for κ[(Q Q̄ )1] are taken from the mass differences 
of ortho- and para-quarkonia. Following the one-gluon exchange prescription one 
then takes κ[(Q Q )3] = 1/2κ[(Q Q )1].

Mesons (qq̄)1 (qs̄)1 (qc̄)1 (sc̄)1 (qb̄)1 (cc̄)1 (bb̄)1

κ (MeV) 318 200 70 72 23 56 30
Baryons (qq)3̄ (qs)3̄ (qc)3̄ (sc)3̄ (qb)3̄ (cc)3 (bb)3

κ (MeV) 98 59 15 50 2.5 28 15
Ratio κM E S

κB AR
3.2 3.4 4.7 1.6 9.2 – –

E = −70 (−87) MeV for cc,

E = −67 (−85) MeV for bb, (21)

where the first result assumes Casimir scaling, and the one in parentheses assumes triality scaling. For the I = 0, J P = 1 state, the 
Q -values turned out to be [16]

Q cc = +7 (−10) MeV (22)

Q bb = −138 (−156) MeV (23)

To obtain (22) and (23) we used the hyperfine couplings obtained from meson and baryon spectra reported in Tables I and II [32]. As 
mentioned in the Introduction, this hypothesis needs a closer examination.

Within the Born-Oppenheimer scheme we will improve this calculation with two methods, as mentioned in the Introduction.

6. Method 1: Hyperfine couplings by rescaling the overlap probabilities

The average distance of the light quarks as a function of R , the heavy quarks distance, is given by the integral [16]:

dq̄q̄(R) = (�, |ξ − R − η|�) =
∫

ξ ,η

ψ(ξ)2φ(η)2 + ψ(ξ)φ(ξ)ψ(η)φ(η)

1 + S2(R)
|ξ − R − η| (24)

The average distance between light quarks in the tetraquark is then given by

d̄q̄q̄ =
∫

dR χ2(R)dq̄q̄(R) (25)

where χ(R) is the normalized radial wave function of the Q Q pair, solution of the Schrödinger equation in the Born-Oppenheimer 
potential V B O (R). In correspondence, we scale the hyperfine coupling in the tetraquark by rescaling κqq in Table II as with the inverse 
cube of d̄q̄q̄ .

The inverse radius of diquarks [qq] in baryons is estimated in Ref. [33] from the electrostatic contributions to the isospin breaking 
mass differences of baryons. They quote a parameter a from which the radius is derived according to

a = α
〈
R−1

[qq]
〉
� 2.83 MeV =⇒ R[qq] � 2.58 GeV−1 (26)

This leads to estimate the rescaled coupling

κ ′
qq = κqq

(
R[qq]/d̄q̄q̄

)3
(27)

We proceed analogously for the hyperfine Q Q coupling in the tetraquark, defining

d̄Q Q =
∫

dR χ2(R) R (28)

We find a characteristic value of d̄cc ≈ 5 GeV−1 and d̄bb ≈ 3 GeV−1. Similar results for d̄q̄q̄ . We scale with the quarkonium average radius 
R Q Q̄ , obtained variationally from the wave function of the Cornell potential

V (r) = −4

3

αs(M Q )

r
+ k r (29)

to obtain
5
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κ ′
Q Q = κQ Q

(
R Q Q̄ /d̄Q Q

)3
(30)

with κQ Q from Table II.
From the treatment of charmed baryons which can be found in [34] we extract

R Q q � 2.64 GeV−1 (31)

A quark pair Q q̄ in Q Q q̄q̄ has two alternatives: A) Q and q̄ belong to the same orbital, and lie at an average distance d̄A
Q q̄; B) Q and q̄

belong to different orbitals, being at a relative distance d̄B
Q q̄ . One has to rescale the couplings by the appropriate distances, i.e.

κ ′
Q q̄ = κQ q̄

4

[
1

2

(
R Q q/d̄A

Q q̄

)3 + 1

2

(
R Q q/d̄B

Q q̄

)3
]

(32)

where κQ q̄ is taken from Table II, 1/4 is the color factor of Q q̄ in the tetraquark with respect to the meson, and the average distances are

d̄A
Q q̄(R) =

∫
dR χ2(R)

∫
ξ

ψ(ξ)2 + ψ(ξ)φ(ξ)

1 + S2(R)
|ξ | (33a)

and

d̄B
Q q̄(R) =

∫
dR χ2(R)

∫
ξ

ψ(ξ)2 + ψ(ξ)φ(ξ)

1 + S2(R)
|ξ − R| (33b)

The resulting Q -values with respect to the P P thresholds are finally

Q Q Q = E + 1

2
κ ′

Q Q + κ ′̄
qq̄

[
Sq̄q̄(Sq̄q̄ + 1) − 3

2

]
+ κ ′

Q q̄

[
J ( J + 1) − Sq̄q̄(Sq̄q̄ + 1) − 2

] + 3κQ q̄ (34)

7. Method 2: Hyperfine couplings from QCD

We start from the interaction Hamiltonian at the quark level,

Hij = − λi j

Mi M j

8π

3
S i · S j δ3(xi − x j) ≡ Kij S i · S j δ3(xi − x j) (35)

with λi j given in Eq. (1). Following [28], the light quark interaction Hamiltonian is

Hq̄q̄ = Kq̄q̄ S q̄ · S q̄ δ3(x1 − x2) (36)

where x1 − x2 is the distance between the light quarks. According to the δ3-function in (36) we have that η = ξ − R and

η =
√

ξ2 + R2 − 2Rξ cos θ (37)

In particular we find

Vq̄q̄(R) = (�, Hq̄q̄�) = 8παs

9M2
q

∫
ξ

ψ(ξ)2 φ(R − ξ)2

1 + S2(R)
×

{ −3 (Sq̄q̄ = 0)

+1 (Sq̄q̄ = 1)
(38)

In the heavy-light case we have (with an obvious notation we distinguish the two heavy quarks as A, B and the light quarks as 1, 2)

H Q q̄ = K Q q̄

[
S A · S1 δ3(xA − x1) + S A · S2 δ3(xA − x2) + (A → B)

]
= H A1 + H A2 + (A → B) (39)

Therefore

(�, H A1�) = K Q q̄

2
[
1 + S2(R)

] ·
[
ψ(0)2 + ψ(R)2 + 2S ψ(0)ψ(R)

]
(S A · S1) (40)

where we used the fact that ξ = 0 thus η = −R (and φ(−R) = φ(R) = ψ(R) from (7) and (9)).
Adding all terms, one finds

V Q q̄(R) = K Q q̄
ψ(0)2 + ψ(R)2 + 2S ψ(0)ψ(R)

2(1 + S2)
S Q Q · S q̄q̄ (41)

We have

V Q q̄(R) = 0 for Sq̄q̄ = 0 (42)

whereas for Sq̄q̄ = 1 we have
6
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Table III
Scaling of couplings, Sq̄q̄ = 0, J = 1. All units are in MeV. Numbers in parentheses correspond to the triality scaling. 
The Q -value is taken from the P P meson pair threshold. The mass of the state is calculated by adding the Q -value 
to the physical mass of the P meson pair.

κ ′̄
qq̄ κ ′

Q Q κ ′
Q q̄ E Q -value BO Mass

cc +1.9 (+5.0) +0.4 (+0.7) +0.7 (+2.0) −70.3 (−86.8) +137.0 (+116.1) 3872 (3851)

bb +2.7 (+8.6) +0.3 (+0.4) +3.0 (+1.1) −72.5 (−91.7) −7.4 (−35.5) 10553 (10525)

Table IV
Couplings from QCD, Sq̄q̄ = 0, J = 1. All units are in MeV. Note that E includes the 
effect of light-heavy and light-light hyperfine interactions. The contribution from κ ′′

Q Q
is to be added, as indicated in Eqs. (44) and (45). Numbers in parentheses correspond 
to the triality scaling.

κ ′′
Q Q E Q -value BO Mass

cc +1.2 (+2.0) −74.8 (−100.2) +135.8 (+110.8) 3871 (3846)

bb +0.5 (+0.7) −77.3 (−107.4) −8.0 (−38.0) 10552 (10522)

Table V
Couplings from QCD, Sq̄q̄ = 1. All units are in MeV. Numbers in parentheses correspond 
to the triality scaling.

J κ ′′
Q Q E Q -value BO Mass

cc 0 +1.1 (+1.6) −77.3 (−113.9) +133.2 (+96.9) 3868 (3832)

1 +1.1 (+1.5) −73.1 (−98.2) +137.5 (+112.5) 3872 (3848)

2 +1.0 (+1.4) −64.6 (−67.1) +145.9 (+143.6) 3881 (3879)

bb 0 +0.5 (+0.6) −73.4 (−95.5) −4.2 (−26.2) 10556 (10534)

1 +0.5 (+0.6) −72.2 (−91.1) −3.0 (−21.8) 10557 (10538)

2 +0.5 (+0.6) −69.5 (−82.5) −0.3 (−13.2) 10560 (10547)

V Q q̄(R) = 4παs

9Mq M Q

ψ(0)2 + ψ(R)2 + 2S ψ(0)ψ(R)

2
[
1 + S2(R)

] ×
⎧⎨
⎩

−4 ( J = 0)

−2 ( J = 1)

+2 ( J = 2)

(43)

Both Vq̄q̄(R) and V Q q̄(R) are added to V BO(R) in Eq. (15) before solving the Schrödinger equation. Finally the contribution of the Q Q
interaction is added perturbatively. The following equation replaces (20)

Q Q Q = E + 1

2
κ ′′

Q Q + 3κQ q̄ (44)

where +3κQ q̄ comes from subtracting 2M P as in (20) and

κ ′′
Q Q = K Q Q

2

∫
1

4π

(
χ(R)

R

)2

δ3 (R)d3 R = 2αs

9M2
Q

χ ′(0)2 (45)

We remark that, with this method, the energy value E already incorporates the spin interactions of light-light and light-heavy quarks, that 
were added perturbatively in Method 1.

8. Results for I = Sq̄q̄ = 0

The comparison between Table III (Method 1) and Table IV (Method 2) is encouraging. The difference between Casimir and triality 
scaling provides an estimate of the theory uncertainty ≈ 20–25 MeV. There is a remarkable agreement between the two results on the 
Q -values and the Tcc mass are well consistent with the mass value T +

cc (3875) observed by LHCb [1,2]. For the Tbb , we find

M(Tbb) = 10552 (10522) MeV (46)

The Q -value of Tbb compares well to the recent lattice QCD determination Q = M(Tbb) − 2M(B) = −13+38
−30 MeV [30].

I = S q̄q̄ = 1. We report in Table V the results for isovector states, restricting to Method 2 for simplicity. We see that in the BO 
approximation all quarks are at higher average relative distances than in ordinary baryons. This translates in the fact that all hyperfine 
splittings are small.

One may wonder why the I = 1, J = 1 state, that is almost degenerate to I = 0, J = 1, has not been seen by LHCb yet. The Tcc(3875)+
is observed by LHCb over a large background of pp collision products. If the mass of the I = J = 1 state is actually close to Tcc(3875)+ , 
its non observation may be due to a significantly lower production cross section, as it happens for the �/� production ratio. If the mass 
falls outside the range ≈ −15 to ≈ +5 MeV from Tcc (which is of the order of our theoretical uncertainty), the I = J = 1 state would be 
out of the observational window of a D Dπ line, even for a comparable cross section to the I = 0 state.

As for the other spin partners, neither could be seen in the D D∗ LHCb analysis ( J = 0 is forbidden, and J = 2 decays in D-wave and 
is suppressed at threshold). However, both could be detected in D D .

Our results can be compared with other approaches in the literature, as the four-body calculation of [19,35,36], or with the global fits 
of [18,20,37]. The latter use invariably the hyperfine κ[(ud)¯ ] from the baryon spectrum, and predict large spin splittings, as well as a Tbb
3
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much lighter than our estimate. Detecting the bottom and spin partners of the Tcc will allow us to understand which method is capturing 
the right properties of multiquark systems.

9. Conclusions

We have presented the calculations of double-heavy tetraquarks, based on a picture of the tetraquark system which is well described in 
the Born-Oppenheimer approximation. In this scheme the mass of the Tcc state is found with very good agreement with data. We predict 
a Tbb state, that agrees with lattice studies. We find this result significant as the method used here is particularly simple.

Our results are obtained following two different methods: i) Scaling baryon and mesons hyperfine couplings with the dimensions of 
the Born-Oppenheimer bound state: hyperfine couplings are scaled with respect to the separations in baryons, for q̄q̄, and in quarkonia, 
for Q Q . Then the hyperfine couplings are included perturbatively to the energy obtained solving the Schrödinger equation with the 
Born-Oppenheimer potential ii) Starting from the interaction Hamiltonian at the quark level, adding Vq̄q̄(R) and V Q q̄(R) to the Born-
Oppenheimer potential and then solving the Schrödinger equation. The results obtained following these two distinct paths are in excellent 
agreement, adding solidity to the scheme used.

The average sizes of tetraquarks are estimated to be approximately 3–5 GeV−1. At such distances the wave function is dominantly 
the meson-meson one, while at shorter distances it would be dominated by the diquark-antidiquark configuration, as illustrated by the 
Lattice QCD calculation in [30]. This can explain why the lineshape of such state gives a small (albeit negative) effective range. Finally, as 
a consequence of the larger size of tetraquarks with respect to ordinary baryons, hyperfine separations are not expected to be sizeable. 
We discussed possible reasons why LHCb has observed to date only one state in the D D∗ spectrum.
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