
ar
X

iv
:2

20
8.

05
98

2v
2 

 [
he

p-
th

] 
 2

2 
A

ug
 2

02
2

CERN-TH-2022-128

Decomposition, condensation defects, and fusion

Ling Lin1, Daniel G. Robbins2, Eric Sharpe3

1 CERN
Theory Department
CH-1211 Geneva, Switzerland

2 Department of Physics
University at Albany
Albany, NY 12222

3 Department of Physics MC 0435
850 West Campus Drive
Virginia Tech
Blacksburg, VA 24061

ling.lin@cern.ch, dgrobbins@albany.edu, ersharpe@vt.edu

In this paper we outline the application of decomposition to condensation defects and their
fusion rules. Briefly, a condensation defect is obtained by gauging a higher-form symmetry
along a submanifold, and so there is a natural interplay with notions of decomposition, the
statement that d-dimensional quantum field theories with global (d − 1)-form symmetries
are equivalent to disjoint unions of other quantum field theories. We will also construct new
(sometimes non-invertible) defects, and compute their fusion products, again utilizing de-
composition. An important role will be played in all these analyses by theta angles for gauged
higher-form symmetries, which can be used to select individual universes in a decomposition.
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1 Introduction

Decomposition [1] is now understood as the statement that a d-dimensional quantum field
theory with a global (d − 1)-form symmetry is equivalent to a disjoint union of other d-
dimensional quantum field theories, known as universes (see e.g. [2] for a recent review).
Typical examples include two-dimensional gauge theories with trivially-acting subgroups of
the gauge group [3–5]. It is also known [6, 7] that unitary two-dimensional topological field
theories are equvialent to disjoint unions of theories, a result which was argued in [8, 9] to
be a special case of decomposition in the sense of [1], utilizing non-invertible symmetries.

Decomposition has been applied in a number of contexts, see e.g. [2] for a recent overview.
In this paper, we will apply decomposition to condensation defects, defined in [10,11] as fol-
lows. Consider a d-dimensional quantum field theory with a global k-form symmetry, and
restrict to a (d− p)-dimensional submanifold Σ. Along Σ, gauge the the restriction of that
global symmetry (assuming there is no obstruction due to anomalies). Along the worldvol-
ume Σ, this appears to be a gauged (k − p)-form symmetry, obtained as a ‘condensation’ of
the k-form symmetry defects on the codimension p submanifold. Such a gauging is described
as a higher gauging or as p-gauging the k-form symmetry, see also [12–25] for other discus-
sions. The resulting theory along Σ, obtained by gauging the restriction of the higher-form
symmetry, is a condensation defect. Such defects may be non-invertible under fusion, and
serve as an explicit construction of non-invertible symmetries in dimensions larger than two,
which has seen a surge of interest very recently, see, e.g. [26–41].

In this paper we outline how decomposition can be applied to condensation defects and
various analogues and their fusion rules, following [10, 11, 20].

We begin in section 2 with a short review of decomposition, focusing on examples of
most direct relevance to this paper, namely orbifolds and topological field theories. We also
discuss how one can recover individual universes by gauging the higher-form symmetry (with
a theta angle that distinguishes the components). For ordinary orbifolds in two dimensions,
this gauging was discussed in [42].

In 3, we then illustrate, after a brief review of condensation defects and higher gauging,
a rather simple, but direct, application of decomposition to condensation defects. Namely,
we discuss p-gauging the (d − 1)-form symmetry in a decomposing theory. This results in
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condensation defects that are projectors onto universes along their worldvolumes, and in fact
are equivalent to local projection operators. For completeness, and because they are very
much in the overall spirit of the rest of this paper, we briefly discuss these ‘condensation
defect projectors’ formally and illustrate concrete computations in two-dimensional orbifolds.

In section 4 we turn to a more intricate interplay between decomposition and condensation
defects. Specifically, we use decomposition to observe, in section 4.1, that sometimes, fusion
ring coefficients described as topological field theories are equivalent to integer multiplicities.
For codimension-one condensation defects in 3d, these TFTs have a one-form symmetry
responsible for decomposition, which only emerges as two defects collide. In section 4.2
we illustrate in examples how these originate from potential one-form symmetries of the
individual defects, which are obstructed from bulk-defect interactions. In section 4.3 we
illustrate how the requisite topological point operators arise in the cases where decomposition
occurs.

Finally, in section 5 we propose other defects, which are motivated by condensation de-
fects, but which are not themselves condensation defects. On a worldvolume of codimension
p, in a theory with a global k = (d − p − 1)-form symmetry, these proposed defects are
obtained by gauging a k-form symmetry along the worldvolume. To be clear, this is not
the same as p-gauging the k-form symmetry, as that results in a gauging which, along the
worldvolume, looks like a (k−p)-form gauging, instead of the k-form symmetry gauged here.
These proposed defects are therefore not the same as condensation defects, and need not
be topological; nevertheless, we argue that, at least formally, they appear to have similar
properties, as evidenced by e.g. their fusion rings, which we compute in examples. Our
examples include defects in ordinary orbifolds as well as in orbifolds by 2-groups. As part
of our analysis, we discuss gauging 2-form symmetries in three-dimensional orbifolds [43],
extending results of [42] on gauging 1-form symmetries in two-dimensional theories.

In passing, when gauging higher-form symmetries, we will use corresponding theta angles
to select particular universes from a decomposition. Theta angles for gauged higher-form
symmetries in other contexts have also been discussed in e.g. [44].

To summarize, in this paper we will give several examples illustrating the interplay be-
tween decomposition, condensation defects, and their fusion products.

As this paper was nearing publication, we were informed that related results will also
appear in [45, 46].

2 Decomposition and gauging higher-form symmetries

In this section we will review pertinent aspects of decomposition, which is the observation
that d-dimensional theories with global (d − 1)-form symmetries are equivalent to disjoint
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unions of quantum field theories. Decomposition has been studied in numerous examples,
see e.g. [2] for a recent review. In this paper, we will frequently utilize examples in two-
dimensional ordinary orbifolds and in topological field theories, in which there are multiple
dimension-zero operators (and hence a global (d − 1)-form symmetry), and our review will
focus on examples of this form.

2.1 Orbifolds in two dimensions

Orbifolds in which a subgroup of the orbifold group acts trivially1 are common examples in
which decomposition arises, and which we shall utilize later in this paper. In this subsection
we will review examples of this form, and how the global one-form symmetry can be gauged
to select out a universe in the decomposition, results which we shall utilize later.

Briefly, in an orbifold [X/Γ] in two dimensions (meaning, a sigma model into target X
with gauged Γ action on X), with

1 −→ K −→ Γ −→ G −→ 1, (2.1)

where K acts trivially on X , it was argued in [1] that

QFT ([X/Γ]) = QFT

([

X × K̂

G

]

ω̂

)

, (2.2)

where ω denotes discrete torsion, and K̂ the set of irreducible representations of K. (See
e.g. [47] for a generalization to the case that the orbifold [X/Γ] has discrete torsion.)

In the special case that Γ is a central extension of G by K, so that K lies within the
center of Γ, the G action on K̂ is trivial, and the expression above simplifies to

QFT ([X/Γ]) =
∐

ρ∈K̂

QFT
(

[X/G]ρ(ω)
)

, (2.3)

where ω ∈ H2(G,K) classifies the extension (2.1) and ρ(ω) ∈ H2(G,U(1)) defines discrete
torsion in the corresponding orbifold [X/G].

1Gauging a trivially-acting group or a noneffectively-acting group (in which a subgroup acts trivially) may
seem counterintuitive, but was extensively studied in two-dimensional orbifolds and gauge theories (such as
abelian theories with nonminimal charges) in e.g. [3–5], which covered material ranging from existence and
possible unitarity issues to massless spectra, mirrors, and quantum cohomology rings, and whose conclusions
formed the basis of the original work on decomposition [1]. The meaning of the related notion of ‘trivially-
acting one-form symmetries’ in three dimensions was recently discussed in [43, 48]. A discussion in the
language of topological defect lines will appear in [49].
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For example, consider the orbifold [X/D4], where the center of D4, which is Z2, acts
trivially. This example was studied in [1, section 5.2]. Since the group D4 is a central
extension

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1, (2.4)

we can apply decomposition in the form (2.3) to see that

QFT([X/D4]) = QFT([X/Z2 × Z2])
∐

QFT ([X/Z2 × Z2]d.t.) . (2.5)

We will apply this example to condensation defects in e.g. section 5.1.3.

A non-central extension example is [X/H], where H is the eight-element group of unit
quaternions {±1,±i,±j,±k}, and 〈i〉 ∼= Z4 acts trivially. This example was studied in [1,
section 5.4]. In this case, H can be expressed as a non-central extension

1 −→ Z4 −→ H −→ Z2 −→ 1. (2.6)

Since this extension is not central, we apply decomposition in the more general form (2.2)
to get

QFT ([X/H]) = QFT (X)
∐

QFT ([X/Z2])
∐

QFT ([X/Z2]) . (2.7)

(Of the four irreducible representations of Z4, two are invariant under G = Z2, and G
interchanges the remaining two.) We will apply this example to condensation defects in
section 5.1.4.

In [42], gauging the 1-form symmetry in a decomposing two-dimensional orbifold was
described. By picking a theta angle for the gauging, one can select out individual universes
in a decomposition. To make this paper self-contained, we briefly outline those methods
here, as we will use such gaugings later.

For simplicity, we take the worldsheet Σ = T 2, and consider an orbifold [X/Γ] as above,
which has a global 2 BK = K [1] symmetry. We shall describe partition functions in which the
BK̃ symmetry is gauged. First, recall that the partition function of a more nearly ordinary
orbifold [X/Γ] on worldsheet Σ = T 2 has the standard form (see e.g. [50, section 8.3])

ZT 2 ([X/Γ]) =
1

|Γ|

∑

g,h∈Γ,gh=hg

g

h

, (2.8)

where the sum is over commuting pairs of elements g, h ∈ Γ, and

g

h

(2.9)

denotes the contribution to the path integral from maps from Σ = T 2 into X with branch
cuts along distinct cycles defined by g, h (equivalently, maps from rectangles into X such

2We use the notation BqK for q-form symmetries, as this is standard in mathematics; other references
use instead K [q].
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that the images of one pair of sides are related by g and the images of the other pair of sides
are related by h). The fact that K acts trivially simplifies this sum; the sectors

g

h

(2.10)

map to corresponding sectors of an orbifold [X/G], and the partition function of the decom-
position can be derived by simplifying the result, as described in e.g. [1].

Gauging a BK̃ symmetry, for K̃ ⊂ K, has partition function [42]

Z
([

[X/Γ]/BK̃
])

=
1

|K̃|

∑

z∈H2(Σ,K̃)=K̃

ǫ(z)

[

1

|Γ|

∑

gh=hgz

g z h

]

, (2.11)

where the sum is over g, h ∈ Γ such that gh = hgz, the figure

g z h (2.12)

denotes maps intoX with branch cuts along g, h, twisted by z as above, and ǫ ∈ Hom(K̃, U(1))
is the theta angle arising in gauging BK̃, which selects out the universe(s) appearing in the
result.

We briefly summarize here two examples, also discussed in [42].

First, consider the orbifold [X/D4], where K = Z2 ⊂ D4 acts trivially. As discussed
in [42], depending upon the choice of ǫ, one finds

Z ([[X/D4]/BZ2]) =

{

Z ([X/Z2 × Z2]) ǫ(−1) = +1,
Z ([X/Z2 × Z2]d.t.) ǫ(−1) = −1,

(2.13)

corresponding to the two universes in the decomposition (2.5) of [X/D4].

A second example studied in [42], and which we will use later, involves the non-central
extension [X/H] orbifold. Here, although a Z4 ⊂ H acts trivially, only a Z2 subgroup is cen-
tral, and only that part corresponds to an invertibly-realized one-form symmetry. Gauging
that BZ2 in the form above, from [42] we recall3

Z ([[X/H]/BZ2]) =

{

Z ([X/Z2]
∐

[X/Z2]) ǫ(−1) = +1,
Z (X) ǫ(−1) = −1.

(2.14)

3In point of fact, the reference [42] formally tried to discuss gauging the BZ4. However, the only possible
contributions to the partition function are from z ∈ Z2 ⊂ Z4, and so gauging a BZ2 instead can be
accomplished by just a factor of 2.
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2.2 Topological field theories

So far we have discussed orbifolds in two-dimensional theories, in which a subgroup of the
gauge group acts trivially. That trivially-acting subgroup is responsible for the appearance
of a global (d− 1)-form symmetry, implemented by topological point-like operators.

Now, any theory with such topological point-like operators should also have a global
(d − 1)-form symmetry, possibly realized non-invertibly, and hence decompose. Examples
that will play an important role later in this paper include some topological field theories.
Specifically, unitary topological field theories with semisimple local operator algebras have
multiple dimension-zero operators, and hence decompose, into disjoint unions of what are
known as invertible field theories, meaning theories whose Fock spaces are one-dimensional.
This was first discussed in e.g. [6,7], and the later works [8,9] observed that this is a special
case of decomposition, by virtue of presence of non-invertible dimension-zero operators.

For example, consider two-dimensional Dijkgraaf-Witten theory for a finite groupG. This
is a unitary toppological field theory with a semisimple local operator algebra, which by the
criteria above should decompose, and in fact there is a second way of understanding it: it
is also an orbifold of a point. Specifically, it is of the form [X/G] where X is a point and
the entire orbifold group G acts trivially, and so it has a decomposition, from our previous
discussion. In particular, this theory decomposes into a disjoint union of invertible field
theories, indexed by irreducible projective4 representations of G (see e.g. [47] for a more
general discussion). For example, if G = Z2, and the Dijkgraaf-Witten theory is untwisted,
the theory is equivalent to two invertible field theories – essentially, trivial field theories
defined solely by Euler counterterms.

To be clear, not every topological field theory so decomposes.

• For one, the theory must admit a local operator algebra. Chern-Simons theories in
three dimensions, unless noneffectively gauged as in [43, 48], do not admit such an
algebra, and so do not decompose.

• Even if there is a local operator algebra, we also emphasize that we only speak of
decomposition in unitary cases. For example, the topological subsector of the A model
with target Pn formally may be equivalent to a disjoint union; however, the full quan-
tum field theory with that target does not decompose. As we are interested in the full
quantum field theory, not just a topological subsector, we emphasize the importance
of unitarity.

So far we have discussed orbifolds and topological field theories, but we emphasize that

4Projective with respect to the element of H2(G,U(1)) that defines the twisting of the Dijkgraaf-Witten
theory.
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results on decomposition are not remotely restricted to these families of examples, but in
fact have been studied much more widely in gauge theories.

3 Condensation defect projectors

In this section we will construct ‘condensation defect projectors,’ special cases of condensa-
tion defects obtained by p-gauging a (d−1)-form symmetry. We begin with a short overview
of condensation defects.

3.1 Overview of condensation defects

In this subsection we will briefly review the notion of condensation defects and p-gauging
k-form symmetries, following [10].

Consider a d-dimensional system with an (invertible) k-form symmetry BkK. Then, p-
gauging this symmetry on a codimension p ≤ k + 1 subspace Σ amounts to summing over
insertions of (or, ‘condensing’) the (d−k−1)-dimensional topological defects, which generate
the k-form symmetry, on all (d− k − 1)-cycles of Σ. The resulting defect along Σ is known
as a condensation defect. Formally, if we let η(γ) denote a symmetry operator of BkK along
a (d− k − 1) cycle γ, then for compact Σ the condensation defect along Σ is5 [10]

Sǫ(Σ) =
|Hk−p−1(Σ, K)|

|Hk−p(Σ, K)|

|Hp−k−3(Σ, K)| · · ·

|Hk−p−2(Σ, K)| · · ·

∑

γ∈Hd−k−1(Σ,K)

ǫ(γ) η(γ). (3.1)

In the expression above, ǫ(γ) is an analogue of a theta angle for the gauging. In general,
when gauging a k-form symmetry BkK on a space X , one can add a theta angle, determined
by an element of cohomology of the classifying space for BkK, namely B(BkK) = Bk+1K.
In the path integral, the corresponding gerbes on X are equivalent to maps φ : X → Bk+1X ,
so given ω ∈ HdimX

sing (Bk+1K,U(1)), we can associate a phase

∫

X

φ∗ω ∈ U(1). (3.2)

For example, if this is an ordinary gauge theory (meaning k = 0), in which case K need
not be abelian, then ordinary theta angles can be understood this way. In that case, ω ∈

5The form of the numerical factor follows from the fact that, along Σ, one is gauging a (k − p)-form
symmetry, and the factors take into account various levels of gauge transformations, gauge transformations
of gauge transformations, and so forth.) We would like to thank S.-H. Shao for an explanation of this point.
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HdimX(BK,U(1)) corresponds essentially to a characteristic class, and then the phase (3.2)
is implemented as

exp

(

iθ

∫

X

TrF ∧ · · · ∧ F

)

, (3.3)

in the usual fashion.

In the present case, we are p-gauging a k-form symmetry, which along the codimension-p
defect Σ, is equivalent to gauging a (k−p)-form symmetry. As a result, the theta angles are
classified by elements of

Hd−p
sing

(

Bk−p+1K,U(1)
)

. (3.4)

In principle, one expects that the phases ǫ(γ) should then be given by analogues of Chern-
Simons forms computed using a form of descent. For example, if p = k and K is finite, these
theta angles correspond to elements of discrete torsion on Σ, in

Hd−p
sing (BK,U(1)) = Hd−p

group(K,U(1)). (3.5)

(Compare [51,52].) This was utilized in e.g. [10,11]. However, in general theta angles will be
different, and may, for example, correspond to other modular-invariant-type phases such as
momentum/winding lattice shift factors [53, 54] that play an important role in asymmetric
toroidal orbifolds, and also arise from equivariant structures on tensor field potentials.

In passing, there is a map

Ω : Hp(BqK,U(1)) −→ Hp−1(Bq−1K,U(1)), (3.6)

the loop space functor discussed in e.g. [43, section 3.3]. In general, Ω is not an isomorphism.
For example, from the universal coefficients theorem, the fact that BkG = K(G, k), and
results in [55, appendix C], one finds

H4
sing(B

2
Z4, U(1)) = Z8, (3.7)

which Ω maps to H3
sing(BZ4, U(1)) = Z4, which is clearly not isomorphic. That said, we will

see in section 3.2.1 that in the special case of matching degrees,

Hn
sing(B

nK,U(1)) = H1
sing(BK,U(1)) = Hom(K,U(1)). (3.8)

Just as in an ordinary gauging procedure, which in this language would be an instance
of 0-gauging, there can be obstructions in form of anomalies to p-gauging. For example, the
obstructions to 1-gauging a 1-form symmetries in a 3d theory would be non-trivial crossing
relations between the topological line defects which generate the 1-form symmetry [10]. In
the following, we will always assume that such obstructions are absent when we talk about
condensation defects.

When two such codimension p condensation defects collide along a common worldvolume
Σ, one can compute the fusion product from the fusion rules of the topological defects η(γ)
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generating the k-form symmetry that has been p-gauged. In general, the result is a non-
invertible fusion rule [10],

S(Σ)× S ′(Σ) =
∑

i

ciSi(Σ) . (3.9)

In concrete examples, it may also be possible to give a ‘microscopic’ description of con-
densation defects, in terms of a Lagrangian field theory on Σ coupled to the d-dimensional
bulk — an approach that we will utilize in Section 4. In such cases, the fusion coefficients ci
in (3.9) can sometimes be described as topological field theories [10]. However, as also noted
implicitly in [11, footnote 3], sometimes those topological field theory coefficients are equiv-
alent to numbers, a simple multiplicity. We will discuss this in greater detail in section 4.

3.2 Condensation defect projectors

In this section we will discuss ‘condensation defect projectors,’ which are defined to be the
condensation defects arising from p-gauging a (d − 1)-form symmetry in a d-dimensional
quantum field theory. We will see that the result has a simple universal form.

In a d-dimensional quantum field theory with a global (d − 1)-form symmetry, the cor-
responding symmetry generators are pointlike, and their linear combinations can be used to
build projectors, as we shall discuss shortly. (This is one reason why such a quantum field
theory decomposes into distinct universes, and gauging the (d− 1)-form symmetry projects
onto one of the universes.)

An important consequence of the existence of these projectors is that the (d − 1)-form
symmetry is 0-gaugeable, i.e., there is no obstruction to summing over insertions of those
pointlike operators. Therefore, it is also p-gaugeable for any p > 0 [10], which produces
condensation defects associated to submanifolds Σ of any dimension (d − p). In fact, along
Σ, the higher gauging is equivalent to gauging a (d − 1)− p = (d − p − 1)-form symmetry,
which undoes the decomposition along Σ. Put another way, this is equivalent to the insertion
of a projection operator for one of the universes of the ambient theory on Σ. As a result,
this is a defect which is invisible to one universe (the one projected onto), but appears as an
insertion of zero to every other universe. When Σ is real codimension one (a domain wall),
this is effectively akin to a bandpass filter.

Now, condensation defects can sometimes be simplified6. For example, if one p-gauges
a global (d − q)-form symmetry, so that the symmetry generators live on submanifolds
of dimension q − 1 > 0, and the submanifold Σ is q-connected, then one expects that
condensation defects S(Σ) on Σ are trivial, as Hq−1(Σ, K) = 0.

6We would like to thank Y. Choi for a useful discussion of this fact.
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In the present case, the condensation defects we will construct (for p-gauging a (d− 1)-
form symmetry) will be equivalent to operators on a collection of points, as many points as
the number of connected components of Σ (with an operator on one point in each component
of Σ), corresponding to elements of H0(Σ, K). As a result, condensation defects correspond-
ing to p-gauged global (d − 1)-form symmetries will be equivalent to (collections of) local
projection operators, for any p.

Nevertheless, we will find it instructive to quickly step through the details and perform
some consistency tests.

3.2.1 Formal construction

Formally, to p-gauge a (d−1)-form symmetry Bd−1K along Σ defines a condensation defect,
according to (3.1), of the form

SR(Σ) =
|Hd−p−2(Σ, K)| |Hd−p−4(Σ, K)| · · ·

|Hd−p−1(Σ, K)| |Hd−p−3(Σ, K)| · · ·

∑

γ∈H0(Σ,K)=K

ǫR(γ) p(γ), (3.10)

where ǫR ∈ K̂ = Hom(K,U(1)) is a theta angle for the symmetry gauging, corresponding to
universe R. It is straightforward to check that

|Hd−p−2(Σ, K)| |Hd−p−4(Σ, K)| · · ·

|Hd−p−1(Σ, K)| |Hd−p−3(Σ, K)| · · ·
=

|K|±χ

|Hd−p(Σ, K)|
, (3.11)

so as Σ has dimension d − p, if we assume it is compact and connected, then up to Euler
counterterms, we have that

SR(Σ) =
1

|K|

∑

γ∈K

ǫR(γ) p(γ). (3.12)

Now, let us describe the theta angles ǫ more explicitly. As discussed previously, theta
angles ǫ appearing when p-gauging a (d− 1)-form symmetry are classified by elements of

Hd−p
sing

(

B(d−1)−p+1K,U(1)
)

= Hd−p
sing

(

Bd−pK,U(1)
)

. (3.13)

Now, from the universal coefficients theorem and the fact that Bd−pK = K(K, d− p) has no
homology in nonzero degree less than d− p,

Hd−p
sing

(

Bd−pK,U(1)
)

= Hom
(

Hd−p(B
d−pK), U(1)

)

, (3.14)

= Hom (K,U(1)) , (3.15)

using the Hurewicz theorem to compute

Hd−p

(

Bd−pK
)

= Hd−p (K(K, d− p)) = πd−p (K(K, d− p)) = K. (3.16)
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See also [56] for further discussion of this result. In any event, we see that when p-gauging
a (d − 1)-form symmetry Bd−1K, the possible theta angles ǫ are classified by elements of
Hom(K,U(1)), for any p.

The operators p(γ) are pointlike topological operators that generate the global (d − 1)-
form symmetry in the d-dimensional theory – they are the operators which, in some sense,
are responsible for the decomposition of the theory. Assuming, for simplicity, that the
(d− 1)-form symmetry is realized invertibly with finite and abelian K, they obey

p(γ) p(λ) = p(γλ) (3.17)

for all γ, λ ∈ K.

The projection onto the universe associated with an irreducible representation R of K7

is implemented by the local operator8

ΠR =
1

|K|

∑

γ∈K

χR

(

γ−1
)

p(γ), (3.18)

where χR is the character associated to R. The sum corresponds to gauging Bd−1K in the full
spacetime, which ‘undoes’ the decomposition [42]. For example, in a Lagrangian description,
the effect of each p(γ) is to twist the theory by a (higher) K-gerbe with characteristic class
γ, and summing over those (higher) gerbes implements the projection, precisely as in [42].

As a result, for the Rth universe, if we identify the theta angle with the coefficients
appearing in (3.18),

ǫR(γ) = χR

(

γ−1
)

, (3.19)

then we can write very simply
SR(Σ) = ΠR|Σ, (3.20)

which, as claimed, establishes the condensation defect associated to irreducible representation
R as insertions of the projector operator ΠR along the defect Σ. (In fact, as noted earlier,
SR(Σ) is equivalent to an insertion of a local projection operator ΠR at a point in each
connected component of Σ.)

For observers in universe R, an insertion of SR(Σ) anywhere is effectively invisible. How-
ever, correlation functions between operators in any other universe different from R will
vanish if the defect SR(Σ) is inserted along any submanifold Σ, just as inserting a local pro-
jection operator will annihilate correlation functions in different universes. (Decomposing

7The observation that universes are associated with irreducible representations of K, and not represen-
tations of a higher-form analogue such as BpK for some p, was discussed in [48, appendix B].

8Ultimately this is a consequence of Wedderburn’s theorem in mathematics. In two-dimensional theories,
projectors for more general cases were given in [29, section 2.2]. The fact that universes are associated with
irreducible representations of K, and not a higher-form analogue such as BpK for some p, was discussed
in [48, appendix B].
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theories do not obey cluster decomposition [1], and as the condensation defect is topological,
we cannot avoid this conclusion simply by moving the defect Σ far away from observables.)

Fusion rules are now easy to compute. In principle, they follow immediately from the
basic property of projectors:

ΠRΠS = δR,SΠR. (3.21)

In this context, we can repeat this directly from the definition of the defect above. To avoid
Euler counterterms, let us work on a defect Σ = T 2.

Then, we compute

SR(Σ)× SS(Σ) =
1

|K|2

∑

γ,λ∈K

χR

(

γ−1
)

χS

(

λ−1
)

p(γ)p(λ), (3.22)

=
1

|K|2

∑

γ,λ∈K

χS

(

λ−1γ
)

χR

(

γ−1
)

p(λ), (3.23)

=
δR,S

|K|

∑

λ∈K

χR

(

λ−1
)

p(λ) = δR,S SR(Σ), (3.24)

using the identity (see e.g. [29, appendix B])

1

|G|

∑

g∈G

χR(ag)χS(g
−1b) =

δR,S

dimR
χR(ab) (3.25)

for G a finite group and R, S irreducible representations of G. This also is exactly as
expected from the fact that the condensation defect SR(Σ) is equivalent to a collection of
local operators ΠR, one at a point of each connected component of Σ.

3.2.2 Orbifolds in d = 2

Next, to be completely thorough, let us make this more explicit in two dimensions in a
concrete family of examples. Consider an orbifold [X/Γ], where

1 −→ K −→ Γ −→ G −→ 1 (3.26)

is a central extension of the finite group G by another finite (and abelian) group K. Assume
that K acts trivially on X , so that the orbifold has a global one-form symmetry, and so
decomposes.

Now, let us imagine computing the partition function of a two-dimensional theory on
worldsheet Σ with a condensation defect inserted along a line L, corresponding to 1-gauging
the global one-form symmetry BK (with theta angle ǫR, corresponding to universe R in the
decomposition of [X/Γ]). In principle, the partition function of the orbifold [X/Γ] itself is
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a sum over contributions from the constituent universes. Inserting a condensation defect
projector along L should project out the contributions from all but one of those universes,
as we shall see explicitly.

In the spirit of [10, section 6], if we break up the worldsheet Σ into regions to the left
and right of the line L, and imagine orbifolds over each of those regions independently (to
the extent that the global geometry allows), we are led to a partition function which, for
Σ = T 2 for simplicity, has the form

Z (Σ, L) =
1

|K|

∑

z∈K

ǫR(z)







1

|Γ|2

∑

g,h1,h2∈Γ

g

h1 h2

L






, (3.27)

=
1

|K|

∑

z∈K

ǫR(z)

[

1

|Γ|2

∑

g,h1,h2∈Γ

g z h1h
−1
2

]

. (3.28)

In effect, we break the T 2 into a pair of T 2’s, joined along L, with the orbifold partition
function of one T 2 corresponding to a sum over g, h1, and that of the other T 2 corresponding
to a sum over g, h2, where h1, h2 are split at the location of the defect L. Graphically, if we
identify the defect L with an edge of holonomy v, then from demanding that both squares
close, and that one is twisted by z ∈ K as in [42] and section 2.1, we have the two conditions

gh1vh
−1
1 = 1, gzh2vh

−1
2 = 1, (3.29)

and eliminating v implies
gh1h

−1
2 = h1h

−1
2 gz. (3.30)

(The reader could also reach this conclusion by inspection of the diagram in (3.27).)

Now, write h = h1h
−1
2 . One of those two group elements h1, h2 is now redundant, and

summing over its values gemerates a factor of |Γ|. This implies

Z (Σ, L) =
1

|K|

∑

z∈K

ǫR(z)

[

1

|Γ|

∑

g,h∈Γ

g z h

]

, (3.31)

= Z (Σ, [[X/Γ]/BK]) , (3.32)

= Z (universe R) (3.33)

using the description of gauged one-form symmetries in orbifolds in [42], as reviewed in
section 2.1. An illustration of this defect and the conclusion above is in figure 1.

Thus, we see that, formally, the partition function of the two-dimensional orbifold [X/Γ]
with a condensation defect projector along L is equivalent to the partition function of the
BK-gauged orbifold, which is the same as that of the universe corresponding to R.
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[X/Γ]

L

(a)

[X/Γ]

Π

...

...

(b)

[X/Γ]

p(z)
1

|K|

∑

z∈K

ǫ(z)

(c)

[X ]

g

h

z
σ(z)

1

|K|

∑

z∈K

ǫ(z)
1

|Γ|

∑

g,h∈Γ

gh=hgz

(d)

Figure 1: We illustrate the computation of a T 2 correlation function in the orbifold theory
[X/Γ] with one-cycle L wrapped by a condensation defect, as shown in (a). In (b)-(d) the
cycle is shaded gray for visualization purposes, but the only insertions along the cycle are
the point operators shown. The prescription is to insert a projection point operator Π at
every vertex point in some sufficiently fine triangulation of L, as in (b). Since L is connected,
it is sufficient to insert Π at a single point, and we can write Π as a sum over twist fields
p(z), shown in (c). Finally, to compute these correlation functions in terms of the parent
theory [X ], we lift each diagram and sum over all consistent ways of inserting Γ lines. In
the lift, the p(z) operator becomes an operator σ(z) sitting on the end of a z line. We can
choose where that line joins the other lines. One choice (where they all meet at a junction
of degree five) is shown in (d) and it is implicit in our lift that the product of lines around
the junction should be the identity, giving the requirement gh = hgz.
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4 Decomposition in fusion coefficients

4.1 Formal discussion

While the coefficients appearing in the fusion rules (3.9) of general condensation defects are
TFTs, many examples discussed in [10] end up with coefficients that do have an interpretation
as a simple multiplicity.

The fundamental observation here is that in such examples, the unitary topological field
theories all come with semisimple local operator algebras. As such, they decompose into
disjoint unions of invertible field theories, as reviewed earlier. For example, in fusions of
condensation defects of 3d Maxwell theory, Chern-Simons theory, or discrete gauge theories,
the coefficients ci in (3.9) are all themselves 2d Zn gauge theories for appropriate n. Such a
theory decomposes into n isomorphic universes [1,57], and hence, gives n identical copies of
Si.

That said, as noted earlier, not every topological field theory decomposes. In particu-
lar, the Chern-Simons theories appearing as topological-field-theory coefficients in [11] are
typically not equivalent to integers.

We should also clarify that even when the topological field theory decomposes, it still
contains slightly more information than just an integer, in the form of Euler counterterms.
As counterterms, they can be shifted, but for some applications their canonical values may
be pertinent. We give here two examples of those counterterms.

First, for two-dimensional untwisted Dijkgraaf-Witten theory for a finite group G, the
partition function on a connected Riemann surface of genus g is

Zg(G) =
∑

R

(

dimR

|G|

)2−2g

, (4.1)

where the sum is over (untwisted) irreducible representations R of G. This form precisely
reflects the decomposition: the universes into which two-dimensional Dijkgraaf-Witten the-
ory decomposes are indexed by the irreducible representations R, and one can read off the
Euler counterterms in universe R, given by

ln

(

dimR

|G|

)

. (4.2)

Second, consider the G/G model at level k, for G connected and simply-connected. Here,
the partition function equals the dimension of the corresponding Chern-Simons Hilbert space
(see e.g. [58, section 3.4]), which at genus g is [59, equ’n (3.15)], [60], [8, equ’n (C.4)]

Zg =
∑

i

(S0i)
2−2g , (4.3)
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where S0i is proportional to the quantum dimension of the integrable representation i, and
the sum is over integrable representations of the Kac-Moody algebra at level k.

In the following, we will elaborate on such multiplicities in examples of condensation
defects of three-dimensional theories, and provide a ‘microscopic’ explanation for the ap-
pearance of a decomposing TFT fusion coefficient. Namely, we will exhibit the emergence
of a one-form symmetry on the worldvolume as two defects fuse, which can be understood
as a cancellation of obstructions to have a one-form symmetry on each individual defect.

In examples with Lagrangian descriptions, as discussed in [10, section 6], the individual
condensation defects have a 2d BF -type worldvolume action,

in

2π

∫

Σ

φ dA (4.4)

As mentioned abve, these 2d Zn gauge theories decompose by themselves. When coupled to
the 3d bulk, the one-form symmetry is broken; but when bringing two defects close, there is
a linear combination of the two individual one-form symmetries that is unbroken.

4.2 Fusion coefficients in Z2 gauge theories

To illustrate the above story, let us take a closer look at the fusion process of condensation
defects in 3d pure Z2 gauge theories, which itself has a BF -type Lagrangian,

2i

2π

∫

AdÃ , (4.5)

with A and Ã two U(1) gauge fields.

Including a single condensation defect Se obtained from 1-gauging the electric Z2 1-form
symmetry on the codimension-1 surface Σ = {x = 0}, the total system is described by the
action [10, section 6.3.4]:

2i

2π

∫

x<0

AL dÃL +
2i

2π

∫

x>0

AR dÃR −
2i

2π

∫

x=0

Φ d(ÃL − ÃR) ,

AL

∣

∣

∣

x=0
= AR

∣

∣

∣

x=0
= dΦ .

(4.6)

Naively, the worldvolume term,

−
2i

2π

∫

x=0

Φ d(ÃL − ÃR) ≡ −
2i

2π

∫

x=0

Φ dÃd, (4.7)

18



describes a 2d Z2 gauge theory, and should, by itself, decompose. Including the background
field B ∈ H2(Σ,Z2) for the one-form symmetry responsible for the decomposition, the 2d
action takes the form

i

2π

∫

x=0

Φ (2dÃd − B) , (4.8)

where Ãd = ÃL − ÃR.

In general, a 2d BF -theory (4.4) with Zn gauge symmetry has a Zn 1-form symmetry
which is generated by topological point operators : eikφ :, where k is an integer and k ∼ k+n
(see for instance Appendix B of [57]). These operators are topological, i.e. do not depend
on the position of insertion, because the A equation of motion implies that φ is constant
(at least locally; on disconnected spacetimes it can in principle take different values on
each component). Moreover, in order for the action to be well-defined under large gauge
transformations of A, even in the presence of a boundary, we require nφ to be in 2πZ.
Combined with the 2π periodicity of φ, this explains why k ∼ k + n, and why we have only
n distinct topological point operators.

However, in contrast to ordinary BF theory, the scalar Φ on the condensation defect is
related to the restriction of the bulk gauge fields AL and AR, as noted in (4.6). In particular,
as gauge transformations in the bulk must still be allowed,

AL ∼ AL + dαL , AR ∼ AR + dαR , Φ ∼ Φ + α ,
(

α = αL

∣

∣

x=0
= αR

∣

∣

x=0

)

. (4.9)

In the presence of a non-trivial background field B for the 2d 1-form symmetry, such a
gauge transformation would lead to a non-integer shift of the action (4.6), and, thus, to an
ambiguity for the partition function. As the bulk gauge symmetries must remain intact,
this ambiguity poses an obstruction which effectively breaks the 1-form symmetry of the 2d
BF -theory, and prevents the condensation defect from decomposing into simpler pieces. Put
another way, in terms of the topological local operators : exp(ikΦ) :, here the coupling to the
bulk means that Φ is not gauge-invariant, and so those local operators are not well-defined.

Interestingly, given two condensation defects, each with a BF -worldvolume theory, there
is a partial cancellation between the obstructions for the 1-form symmetries on each defect,
in the limit where they collide. To see this, we first start with the two defects separated by
distance ǫ,

2i

2π

∫

x<0

AL dÃL +
2i

2π

∫

0<x<ǫ

AI dÃI +
2i

2π

∫

x>ǫ

AR dÃR (4.10)

−
i

2π

∫

x=0

Φ1 [2d(ÃL − ÃI)− B1]−
i

2π

∫

x=ǫ

Φ2 [2d(ÃI − ÃR)−B2] , (4.11)

where for the purpose of illustration, we have added the 1-form symmetry backgrounds on
each defect even though they must be set to zero for consistency. The gauge symmetries of
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the system include the variations

δΦ1 = α1 , δΦ2 = α2 , δAI = dαI ,

with α1 = αI

∣

∣

x=0
, α2 = αI

∣

∣

x=ǫ
.

(4.12)

At finite ǫ, α1 and α2 are independent, and each pose the obstruction to turning on non-
vanishing B1/2. However, as ǫ → 0, we have the gauge variations δΦ1 = δΦ2 = αI , so that
Φ = Φ1−Φ2 is gauge invariant. Performing the analogous rearrangement of (4.10) as in [10],
but including the B-fields, we obtain the worldvolume Lagrangian of the fused defect,

−
i

2π

∫

x=0

[

−2(Φ1 − Φ2)d(ÃI − ÃL) + Φ1B1 + Φ2B2 + Φ2

(

dÃL − dÃR

)]

. (4.13)

Now we see that, though generic values of (B1, B2) are still not allowed, we can correlate the
1-form symmetries of the two individual defects prior to fusion, by setting B1 = −B2 = B,
in which case the worldvolume Lagrangian becomes

−
i

2π

∫

x=0

[

−Φ [2d(ÃI − ÃL)− B] + Φ2

(

dÃL − dÃR

)]

. (4.14)

Because Φ = Φ1 − Φ2 is invariant under any gauge symmetries of the system, there is no
obstruction as above to turning on non-trivial B.

This is of course just the same conclusion as the observation, that in the fusion rule [10],

Se × Se = (Z2)Se , (4.15)

the coefficient is a 2d Z2 gauge theory which does undergo decomposition, by the existence
of a 1-form symmetry on the worldvolume with background field B. From the discussions
of this subsection, we see that this 1-form symmetry is the (anti-)diagonal subgroup of the
product of two 1-form symmetries from separate defects, which by themselves are broken,
but give rise to an unbroken one in the limit as the two defects fuse.

A similar story applies also to 3d Chern-Simons theory with level 2N . There, the con-
densation defects Sn, with n|N , constructed in [10, section 6.2] also admit a Lagrangian
description that has a BF -type term, namely

in

2π

∫

x=0

dφ(AL − AR). (4.16)

However, gauge invariance of the bulk system require the presence of an additional term,

iN

2π

∫

x=0

ALAR, (4.17)

which does not admit a 1-form symmetry on the worldvolume {x = 0}. Consequently, there
are no ‘simpler’ pieces into which these condensation defects decompose. However, given
two such condensation defects, an unobstructed 1-form symmetry emerges in the limit where
these collide, resulting in a decomposable TFT sector. This is again the fusion coefficient,
Sn × Sn = ZnSn, which admits a simple interpretation as a multiplicity.
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4.3 Topological point operators in fusion coefficients

It is worthwhile to refine the discussion by taking a closer look at the local, or point operators,
on the individual condensation defects and in their fusion. These can be used to build
projection operators onto the different universes of the decomposition associated to a global
(d− 1)-form symmetry, provided they are not bound to topological defect lines.

In the 2d BF -theory (4.4), the objects charged under these point operators are Wil-
son loops, exp(iℓ

∮

A). When a Wilson line encircles one of our topological point operators
(TPOs) eikφ, it picks up a phase relative to the configuration where the TPO is outside the
loop. (For the projection operators, this means that one projection operator will transform
into another when it crosses a Wilson line, so the Wilson lines have an interpretation as inter-
faces between different universes.) We can also interpret the Wilson lines as the topological
lines which generate the global Zn 0-form symmetry, which the 2d theory (4.4) possesses.

Now consider instead a condensation defect obtained by 1-gauging a 1-form symmetry
in a 3d theory. Though the Lagrangian description superficially takes the form of 2d BF
theory coupled to a 3d bulk, the story can change in a subtle, but important way. To be
concrete, let us consider the condensation defects in 3d free Maxwell theory [10]. This 3d
theory has action

S =
1

g2

∫

F ∧ ⋆F. (4.18)

Since the classical equation of motion is simply d ⋆ F = 0, we can introduce a dual scalar σ
by (the factor of i comes from the Euclidean signature)

4πi

g2
⋆ F = dσ. (4.19)

The Dirac quantization of F implies that σ ∼ σ + 2π. This theory has point operators (’t
Hooft monopoles) eiασ. When α ∈ Z, this is a good local operator. When α /∈ Z such
operators can still make sense when they are attached to the endpoint of an electric 1-form
symmetry line exp(4πiα

g2

∫

γ
⋆F ). However, none of these point operators are topological, since

dσ 6= 0 in general. There are TPOs in the theory, but they are not free; they only occur at
junctions of topological line operators. For instance, a collection ofK electric symmetry lines,
exp(

4πiαj

g2

∫

⋆F ), j = 1, · · · , K, can meet at a topological junction provided that
∑

j αj ∈ Z.

We can create a condensation defect SN by 1-gauging a ZN subgroup of the U(1) electric
1-form symmetry. For the case of a defect on a surface x = 0, we can write an action [10]

S =
1

g2

∫

x<0

FL ∧ ⋆FL +
1

g2

∫

x>0

FR ∧ ⋆FR +
iN

2π

∫

x=0

φ (dAL − dAR) . (4.20)

By taking the AL and AR equations of motion and integrating over an infinitesimal interval
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in x around the defect9 we learn that

4πi

g2
⋆F |x=0 = Ndφ ⇒ dσ|x=0 = Ndφ. (4.23)

The 2d theory on the defect admits monopole operators eikφ. If N |k, then this is equivalent to
a bulk monopole operator and the operator can leave the defect, but for k not zero modulo N
this operator is bound to the defect. However these are not topological, and we do not have
decomposition on the single defect SN . To get a TPO we again need a nontrivial junction.
We can for instance have a bulk ZN electric symmetry line exp(4πik

g2N

∫

⋆F ) which ends on the

defect (hooking on to the network of lines from the 1-gauging), but no free TPOs.

On the other hand, consider the fusion of two such defects SN and SN ′ . We have the
possibility of an electric symmetry line that starts on one defect and ends on the other,
connecting topologically to both networks. This will only work if the line is both ZN valued
and ZN ′ valued. In other words it must have the form exp( 4πik

g2 gcd(N,N ′)

∫

⋆F ) and we have

gcd(N,N ′) such configurations in total. In the limit where we take the two defects to be
coincident, these become a pair of topological point operators connected by a line along the
defect. Shrinking the line and taking the ends to be coincident produces a TPO which is
bound to the defect but otherwise free. The theory on the fusion project thus does have a
Zgcd(N,N ′) 1-form symmetry on the defect, resulting in decomposition. Of course this is just
the decomposition of the TFT coefficient Zgcd(N,N ′) in the fusion

SN × SN ′ =
(

Zgcd(N,N ′)

)

Slcm(N,N ′). (4.24)

We could gauge this 1-form symmetry on the defect, essentially inserting a projector built
out of the TPOs, and project onto a single Slcm(N,N ′) defect.

Similar considerations apply in other theories. For instance, in U(1)2N Chern-Simons
theory there is a non-1-anomalous ZN 1-form symmetry generated by the Wilson line η :=
exp(2i

∫

A), and for any divisor n of N we can 1-gauge a Zn subgroup generated by ηm,
where N = nm, to create a condensation defect Sn. In the bulk theory the only TPOs are
at junctions of Wilson lines exp(iaj

∫

A) such that aj ∈ Z and
∑

j aj ≡ 0 (mod 2N). Again
the Sn defect has no free TPOs on it, and hence no 1-form symmetry and no decomposition.
We can once more look for the possibility of a bulk symmetry line ending on the defect at a

9Explicitly we can rewrite (4.20) as

S =

∫ [

1

g2
FL ∧ ⋆FLΘ(−x) +

1

g2
FR ∧ ⋆FRΘ(x) +

iN

2π
φ (dAL − dAR) ∧ δ(x)dx

]

, (4.21)

where Θ(x) is the Heaviside function. This results in an equation of motion for AL

0 =
2

g2
d ⋆ FΘ(−x) +

2

g2
⋆ F ∧ δ(x)dx +

iN

2π
dφ ∧ δ(x)dx. (4.22)
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topological point. In order to attach on to the network of lines from the 1-gauging, the bulk
line must be of the form exp(2ikm

∫

A), i.e. it must be (ηm)k for some integer k. However,
now there is an additional twist relative to the Maxwell case. Since these Wilson lines have
non-trivial braiding, an ηm line along the defect can produce a phase if it encircles the point
where the bulk line meets the defect. When we 1-gauge we sum over all such configurations
and the phases will cancel out unless the meeting point is invariant (essentially we project
onto Zn-invariant bulk lines), and this will happen if and only if the bulk line has the form
ηnℓ for some integer ℓ. In summary then, the only way for a bulk line ηa to meet the defect
topologically is if m|a and n|a, where N = nm. Now if we want to fuse a pair of defects
Sn and Sn′, with N = nm = n′m′, then there can be a bulk line ηa between them if and
only if a is a multiple of n, of m, of n′, and of m′. There will be g := gcd(n,m, n′, m′)
such configurations in total, generating a Zg 1-form symmetry on the fusion product (again
corresponding to a Zg TFT coefficient). This matches the results in [10, 61, 62].

5 Proposal for additional defects

So far in this paper we have discussed condensation defects. In this section, we will propose
a related set of objects, which are not, to our knowledge, condensation defects, but which in
some respects seem analogous.

Let us outline our proposed defects formally. Suppose a d-dimensional quantum field
theory has a k-form symmetry, and restrict to a (d − p)-dimensional submanifold Σ. (To
be clear, when we speak of restricting to Σ, we imagine working locally on Σ × R

p, and
dimensionally-reducing to Σ.) If k = d − p− 1, then the restriction of the theory to Σ will
decompose (as the restriction to Σ is a (d − p)-dimensional theory with a (d − p − 1)-form
symmetry).

Now, given any quantum field theory in d dimensions, schematically with action

S0 =

∫

X

ddxL, (5.1)

we are free to introduce new fields that propagate along a submanifolds Σ ⊂ X . Specifically,
in our proposed defects, we introduce tensor field potentials and couplings along Σ which
gauge the k-form symmetry on Σ, giving a total theory with action of the form

S = S0 +
1

g2

∫

Σ

dd−pxL1, (5.2)

where 1/g2 is related to the tension of the defect, and L1 is the Lagrangian density for fields
along the defect.

Along Σ, the result of this gauging is to project to a subset of the universes of the
decomposition along Σ, as in [42]. To define the gauging we pick a theta angle, whose choice
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determines which subset is projected onto by the gauging. The resulting theories define our
proposal for a class of defects.

In this section, we will make that proposal explicit in examples, both for these defects
themselves as well as for their fusion products, computed in a limit in which the defect is
massive, to minimize interactions with bulk fields.

Although the construction will be analogous to a higher gauging, the result will not be
precisely the same as a condensation defect. For example, in a condensation defect along a
codimension p submanifold Σ, p-gauging a k-form symmetry of the ambient theory looks,
along Σ, like gauging a (k − p)-form symmetry. By contrast, in this section we consider
gauging a k-form symmetry along Σ, not a (k − p)-form symmetry.

Since these defects are not condensation defects, they need not be topological, for ex-
ample. Nevertheless, we believe they may be of interest, so we define them and propose
computations of fusion rules.

5.1 Two-dimensional defects in orbifolds

5.1.1 Construction

Consider a three- or four-dimensional10 orbifold [X/Γ], where

1 −→ K −→ Γ −→ G −→ 1, (5.3)

and K acts trivially. Since K acts trivially, the theory has a BK symmetry – but not a
decomposition, for which we would need a two- or three-form symmetry, depending upon
dimension.

Now, restrict the theory to a 2-submanifold Σ. The restriction is a two-dimensional
orbifold with a trivially-acting subgroup, hence again a one-form symmetry, and now, a
decomposition. We can produce an analogue of a condensation defect by gauging that global
one-form symmetry along Σ, which, following [42] and as reviewed in section 2.1, selects out
a universe (depending upon the theta angle chosen).

So, for each 2-submanifold Σ, we now have a collection of defects, one for each universe
in the decomposition of the two-dimensional orbifold [X/Γ].

Now, let us compute fusion rules. Following [42], the defect is obtained by gauging a
1-form symmetry BK on a theory on the two-dimensional space Σ, which means the path

10The dimension indicated is that of the space on which the quantum field theory lives, and is not related
to the dimension of the target space X . Also, if X is not flat, then the orbifold theory should be understood
as a low-energy effective field theory, as also discussed in [48].
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integral

• sums over K gerbes, and then,

• for each K gerbe, sums over K-twisted bundles and maps into X .

In principle, in the path integral of the fusion of two defects along the same submanifold Σ,
one would like to tensor together the K gerbes and the K-twisted bundles.

We consider these two issues in turn. First, consider the gerbes. Since K is abelian, K is
a product of cyclic groups, so for simplicity of presentation, and without loss of generality,
let us suppose that K is cyclic, and imagine computing a fusion product of two such defects.
Suppose one defect is defined by gauging BZp, and the other by gauging BZk, where both
Zk,Zℓ ⊂ K. Let us first consider the gerbes in the path integral. In the collision, one has a
product of a Zp gerbe and a Zk gerbe. This product is a Zpk gerbe, induced from a Zlcm(p,k)

gerbe. Note that Zpk is not necessarily a subgroup of K, so we cannot consistently extend
the gerbes on either side to Zpk, as the groups are assumed to lie within K. However, it
will always be the case that Zlcm(p,k) ⊂ K, so we extend the gerbes on either side to Zlcm(p,k)

gerbes. Doing that change of variables in the path integral on Σ× I will leave the BZgcd(p,k)

uncoupled.

More formally11,

1 −→ Zgcd(p,k) −→ Zp × Zk −→ Zlcm(p,k) −→ 1, (5.4)

which induces

H2(Σ,Zgcd(p,k)) −→ H2(Σ,Zp × Zk) −→ H2(Σ,Zlcm(p,k)) −→ 0. (5.5)

For our purposes, this means that the product of Zp and Zk gerbes can be described as
Zlcm(p,k) ⊂ K gerbes, and the mapping to Zlcm(p,k) gerbes has, as fiber, Zgcd(p,k) gerbes.

Now that we have a picture of how to combine the gerbes, we turn to the bundles.
Unfortunately, if G is not abelian, we do not know of a well-defined way to tensor two G
bundles to get another G bundle. To make sense of this product, we borrow a trick from OPE
computations of anomalies (see e.g. [63, section 19.1]), where one repairs gauge invariance by
connecting two operators, separated by a finite distance, by a Wilson line. Here, we extend
Σ to a box, Σ× I, for I an interval, with the two defects at either end of the interval, where
we shrink the interval to zero size at the end of the computation. The path integral sums
over isomorphisms between the boundaries. For bundles, this means the path integral sums
over gauge fields in the interior, generating parallel transporters which explicitly identify
boundary fields. For gerbes, the gerbes on the ends are forced to be isomorphic, and so we
can identify them, following the gcd/lcm prescription described above.

11We would like to thank T. Pantev for a discussion of these products.
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Let us make this more explicit. To compute a fusion product, we extend Σ to a box,
Σ × I, for I an interval, with the two defects at either end of the interval. After doing the
computation, we then shrink the interval to zero size. For example, if Σ = T 2, we consider
a box T 2 × I

with
g1 y h1

, g2 z h2
(5.6)

at either end, where we now think of y, z ∈ Zlcm(p,k).

Since I is contractible, these twisted bundles must be isomorphic, and the edges parallel
to the interval provide parallel transporters relating the holonomies around the edges. In
particular, for this box to be nonzero requires y = z and

g1 = γg2γ
−1, h1 = γh2γ

−1, (5.7)

for some γ ∈ Γ (corresponding to the edges parallel to I). To contribute to a twisted sector,
consistency requires

g1h1 = h1g1y, g2h2 = h2g2z, (5.8)

and it is straightforward to check that so long as (5.7) holds, and K is in the center of Γ,
the two conditions (5.8) are equivalent to one another.

Now, let us assemble these pieces. In a limit of large mass (e.g. g2 → 0), the partition
function for a single defect, gauging BK, on Σ = T 2 is of the form [42, equ’n (6.9)]

Z =
1

|K|

1

|Γ|

∑

z∈K

∑

gh=hgz

ǫℓ(z) g z h, (5.9)

where
g z h (5.10)

denotes a twisted sector of the Γ orbifold which has been twisted by a K gerbe with char-
acteristic class z ∈ H2(Σ, K) = K, and ǫℓ(z) is a theta angle for the gauged one-form
symmetry. (The choice of ǫℓ determines which universe, or collection of universes, in the
decomposition is selected by the one-form-symmetry gauging.)

In the same limit, the partition function of the fusion product of two such defects on
Σ = T 2, one with a gauged Zp, the other with a gauged Zk, is then of the form

gcd(p, k)
1

|Zlcm(p,k)|

1

|Γ|2

∑

z∈Zlcm(p,k)

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈Γ

ǫℓ1(z)ǫℓ2(z)

γ

(5.11)
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where we sum over g1, h1, g2, h2, γ ∈ Γ such that

gihi = higiz, g1 = γg2γ
−1, h1 = γh2γ

−1. (5.12)

(The overall factor of the gcd reflects the uncoupled Zgcd(p,k) gerbe in the path integral, and
the fact that the denominator has a factor of the order of Zlcm(p,k) reflects the fact that the
separate Zp and Zk gerbes have been replaced by a gerbe of order lcm(p, k).) We shall see
in examples that in general this is a rather complicated combinatorial condition.

In the next several subsections we will work through details of examples of these com-
putations. We will begin in sections 5.1.2, 5.1.5 with a pair of relatively simple examples,
orbifolds in which the entire orbifold group acts trivially, closely analogous to examples
in [10]. Our later examples in sections 5.1.3, 5.1.4 discuss more general cases, involving
nonabelian orbifolds in which only a subgroup acts trivially on the space.

5.1.2 Example: Z2 gauge theory

Consider the case that the three-dimensional orbifold is [X/Z2] with the Z2 itself acting
trivially, closely analogous to examples in [10, section 6.3] and described earlier in section 4.2.
(That said, we emphasize again that in this section we are gauging a 1-form symmetry along
the defect, not a 0-form symmetry, so this is not the same as the condensation defects studied
there.) This theory has a BZ2 symmetry, and its restriction to a two-dimensional Σ therefore
decomposes, in this case to two identical copies of a sigma model on X . If we gauge BZ2

along Σ, then depending upon the choice of discrete theta angle, we will recover each of
those two sigma models.

As before, suppose that Σ = T 2, so that in the large tension limit the partition function
for Sk(Σ) is [42, equ’n (6.9)]

Z =
1

|Z2|2

∑

z∈Z2

∑

gh=hgz

ǫk(z) g z h. (5.13)

Here, however, there are no contributions when z 6= 1, as all of the group elements are
abelian, and as ǫk(1) = +1 for all k, this reduces to

Z (Sk(Σ)) =
1

|Z2|2

∑

gh=hg

g

h

= Z(Σ, X), (5.14)

for both values of k.

Now, let us compute the fusion product (5.11):

(2)
1

|Z2|

1

|Z2|2

∑

z∈Z2

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈Γ

ǫℓ1(z)ǫℓ2(z)

γ

(5.15)
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where K = Γ = Z2 in this case. Now, since Γ = Z2 is abelian, the equation

gihi = higiz (5.16)

can only be solved when z = 1, and also since Γ = Z2 is abelian,

g1 = γg2γ
−1 = g2, h1 = γh2γ

−1 = h2, (5.17)

independent of Γ. Thus, g2 and h2 are uniquely determined by g1 and h1, and the sum over
γ just contributes an overall factor of |Γ| = 2. Thus, we find

(2)
1

|Z2|

1

|Z2|2

∑

z∈Z2

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈Γ

ǫℓ1(z)ǫℓ2(z)

γ

= (2)
1

|Z2|2

∑

gi,hi

ǫℓ1+ℓ2(z = 1) g1
h1

, (5.18)

= (2)Z(X) (5.19)

for all ℓ1,2, as ǫℓ(+1) = +1 and, since the Z2 acts trivially,

g

h

= 1

1

(5.20)

for all (commuting) pairs g, h ∈ Γ.

In terms of the fusion product, we interpret the factor of 2 to mean that two copies of
the defect appear. In other words, our two defects S0(Σ) ∼= S1(Σ), and if we write Se for
either, the partition function above implies

Se × Se = 2Se. (5.21)

This fusion product for closely analogous defects was also computed in [10, section 6.3].
There, one single condensation defect Se(Σ) was discussed, which here appears as a pair of
defects S0,1(Σ), and the fusion product computed there [10, equ’n (6.64)] matches the result
above, modulo describing a disjoint union of two copies of Se as a TFT coupled to Se (as
discussed earlier in section 4.1).

In sections 5.1.3, 5.1.4 we will discuss more general examples in which a BZ2 is gauged
in an orbifold with a trivially-acting Z2, and in those examples, the two defects S0,1(Σ) will
no longer be isomorphic, though we will find that they still obey a variation of the fusion
product above.

5.1.3 Example: [X/D4]

Consider an orbifold [X/D4], where D4 is the eight-element dihedral group, and the Z2

center of D4 acts trivially on X . The resulting three-dimensional orbifold has a global BZ2
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symmetry. Let Σ be a 2-submanifold, and restrict the orbifold to Σ. The restriction to Σ
decomposes:

[X/D4]|Σ = [X/Z2 × Z2]|Σ
∐

[X/Z2 × Z2]d.t.|Σ, (5.22)

where the d.t. subscript indicates discrete torsion, as has been discussed in e.g. [1, section
5.2]. If we gauge the BZ2 along Σ, as discussed in [42, section 6.2] and reviewed in section 2.1,
then depending upon theta angles, we can get either [X/Z2 × Z2] or [X/Z2 × Z2]d.t.. Let
S0(Σ) denote the Z2 × Z2 orbifold without discrete torsion, and S1(Σ) the orbifold with
discrete torsion:

S0(Σ) = [X/Z2 × Z2]|Σ, S1(Σ) = [X/Z2 × Z2]d.t.|Σ. (5.23)

Now, let us consider their fusion products. To be explicit, suppose that Σ = T 2. Then,
in the limit of large mass, the partition function for a single defect Sk(Σ) is [42, equ’n (6.9)]

Z =
1

|Z2|

1

|D4|

∑

z∈Z2

∑

gh=hgz

ǫk(z) g z h, (5.24)

where
g z h (5.25)

denotes a twisted sector of the D4 orbifold which has been twisted by a Z2 gerbe with
characteristic class z ∈ H2(Σ,Z2) = Z2, and

ǫk(z) = zk =

{

+1 z = 1 or k = 0,
−1 z = −1 and k = 1.

(5.26)

To compute the fusion, let us enumerate twisted sectors. Following the same notation
as [1, 42], write

D4 = {1, z, a, b, az, bz, ab, ba = abz}, (5.27)

where a2 = 1 = z2, b2 = z generates the Z2 center, which is quotiented to form Z2 × Z2.
Also, write Z2 × Z2 = 〈a, b〉, where the projection of a, az ∈ D4 is a ∈ Z2 × Z2, and the
projection of b, bz ∈ D4 is b ∈ Z2 ×Z2. To help keep track of computations, let A denote all
of the D4 twisted sectors appearing when z = +1, and B denote all of the D4 twisted sectors
appearing for z = −1. As discussed in [42], for z = +1, the D4 twisted sectors correspond
to Z2×Z2 twisted sectors that lift to D4, which almost all do, except for sectors of the form

a

b

, a

ab

, b

ab

. (5.28)

The set above defines B.

29



Now, in the large mass limit, the partition function of the fusion product is of the
form (5.11), here

(2)
1

|Z2|

1

|D4|2

∑

z∈Z2

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈D4

ǫk(z)ǫℓ(z)

γ

(5.29)

where we have already identified the gerbe characteristic classes on either end as a single
z ∈ H2(T 2,Z2) = Z2, and where

g1 = γg2γ
−1, h1 = γh2γ

−1. (5.30)

Counting g1, h1, g2, h2, γ ∈ D4 such that, for any fixed z ∈ K ⊂ D4,

gihi = higiz, g1 = γg2γ
−1, h1 = γh2γ

−1 (5.31)

is a nontrivial combinatorial problem. For example, in the z = 1 sector, if we let L and R
denote the diagrams on either end of the box, then

L : 1

z

, R : 1

z

(5.32)

are related by any γ ∈ D4, since both 1, z commute with everything, but only γ ∈ {b, bz, ab, abz}
can relate

L : a

a

, R : az

az

, (5.33)

and there are no γ ∈ D4 at all that can relate

L : a

a

, R : a

az

. (5.34)

In table 5.1 we have compiled a list of prototypical examples of L, R boundary config-
urations, Z2 × Z2 orbifold twisted sectors to which they project, and a count of the total
numer of (g1, h1, g2, h2, γ) of the form given, for the case z = 1. In table 5.2 we have listed
analogous examples for the case z 6= 1.

Briefly, we find that in each case, for each Z2 × Z2 sector, there are (4)(8) = 32 sets of
(g1, h1, g2, h2, γ) that realize that sector. The details of how those sectors are implemented
by (g1, h1, g2, h2, γ) vary considerably between cases, as the tables illustrate.

Now, we can simplify the partition function of the fusion product (5.29, following the
same analysis as in [42]. First,

ǫk(z) ǫℓ(z) = ǫk+ℓ(z). (5.35)

From the same reasoning as in [42], when k+ℓ = 0 mod 2, this will simply add together the
z = 1 and z = −1 sectors, but when k+ℓ = 1 mod 2, this will have the effect of multiplying
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L R γ Z2 × Z2 sector Total number
1,z 1,z same D4 1 1 (4)(8)

a,az a,az same 1, z, a, az a a (4)(4)
a a az a none 0

a,az a,az az,a az,a b, bz, ab, abz a a (4)(4)
1,z a,az same 1, z, a, az 1 a (4)(4)
1,z a,az 1,z az,a b, bz, ab, abz 1 a (4)(4)

Table 5.1: Listed here are some prototypical examples of twisted sectors L, R on the
boundary of the box, γ ∈ D4 relating them, Z2 × Z2 twisted sectors to which they project,
and the total number of (g1, h1, g2, h2, γ) ∈ D5

4 of this form that project to the same Z2 ×Z2

twisted sector, all for the case z = 1.

L R γ Z2 × Z2 sector Total number
a,az b,bz same 1, z a b (4)(2)
a,az b,bz az,a bz,b none 0
a,az b,bz a,az bz,b a, az a b (4)(2)
a,az b,bz az,a b,bz b, bz, ab, abz a b (4)(4)

Table 5.2: Listed here are some prototypical examples of twisted sectors L, R on the
boundary of the box, γ ∈ D4 relating them, Z2 × Z2 twisted sectors to which they project,
and the total number of (g1, h1, g2, h2, γ) ∈ D5

4 of this form that project to the same Z2 ×Z2

twisted sector, all for the case z 6= 1.

some of the Z2 ×Z2 sectors by discrete torsion (as precisely the z = −1 sectors are the ones
that are weighted by signs under Z2 × Z2 discrete torsion). Putting this together, we see
that

(2)
1

|Z2|

1

|D4|2

∑

z∈Z2

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈D4

ǫk(z)ǫℓ(z)

γ

=

{

2ZT 2 ([X/Z2 × Z2]) = 2Z (S0(Σ)) k + ℓ ≡ 0 mod 2,
2ZT 2 ([X/Z2 × Z2]d.t.) = 2Z (S1(Σ)) k + ℓ ≡ 1 mod 2,

(5.36)

where the d.t. subscript indicates that the Z2×Z2 orbifold is computed with discrete torsion.

The factor of 2 should be interpreted to mean that the fusion product Si(Σ)× Sj(Σ), is
two copies, either

[X/Z2 × Z2]|Σ
∐

[X/Z2 × Z2]|Σ (5.37)

or
[X/Z2 × Z2]d.t.|Σ

∐

[X/Z2 × Z2]d.t.|Σ (5.38)
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along Σ, or in other words,

S0(Σ)× S0(Σ) = 2S0(Σ), (5.39)

S0(Σ)× S1(Σ) = 2S1(Σ), (5.40)

S1(Σ)× S1(Σ) = 2S0(Σ). (5.41)

These defects arose from gauging a BZ2 in an orbifold with a trivially-acting Z2, closely
related to the example discussed in [10, section 6.3] and our section 5.1.2. There, as was
previously observed in our section 5.1.2, the analogue of the defect that is labelled “Se”
in [10, section 6.3] is here two distinct, albeit isomorphic, defects. In this example, the
distinction between those two defects S0(Σ), S1(Σ) is much more clear.

The fusion rule obtained in [10, section 6.3] for Se was simply

Se × Se = Se + Se. (5.42)

The fusion rules we have derived above for S0,1(Σ) are therefore of the expected form, as
they refine the fusion rule for Se in section 5.1.2, analogous to fusion rules for condensation
defects in [10, section 6.3]. (The reader may find it useful to recall from section 4.1 that
Se + Se is equivalent to coupling Se to a particular topological field theory.)

5.1.4 Example: [X/H]

Now, consider the three-dimensional orbifold [X/H], where H is the eight-element group of
unit quaternions, and 〈i〉 ∼= Z4 ⊂ H acts trivially on X .

This three-dimensional theory has a one-form symmetry, and its restriction to a two-
dimensional submanifold Σ of spacetime decomposes, as [1, section 5.4]

[X/H]|Σ = X|Σ
∐

[X/Z2]|Σ
∐

[X/Z2]|Σ. (5.43)

Because Z4 is not in the center, part of that one-form symmetry is realized non-invertibly,
as discussed in [29]. That trivially-acting Z4 contains the Z2 center of H, and the BZ2 is
realized linearly.

Consider gauging that BZ2 symmetry along Σ. Applying a slight variant12 of the analysis
in [42, section 6.3], reviewed in section 2.1, by gauging a BZ2, one gets (depending upon the
one-form theta angle) either

[X/Z2]|Σ
∐

[X/Z2]|Σ (5.44)

12Reference [42, section 6.3] formally considered gauging the BZ4, not just the Z2. The analysis for BZ2

is nearly identical, the only real change is to replace the 1/|Z4| factor with 1/|Z2|, as only z = ±1 contribute
to the sum over gerbes. The results of the BZ2 gauging are as indicated above.
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(for ǫ(z = −1) = +1) or
X|Σ (5.45)

(for ǫ(z = −1) = −1). Denote the two resulting defects by S0,1(Σ):

S0(Σ) = [X/Z2]|Σ
∐

[X/Z2]|Σ, S1(Σ) = X|Σ. (5.46)

In this case, S0(Σ) is reducible, though we will not utilize that fact.

Next, let us compute the fusion product of these defects. Take Σ = T 2, then from (5.11),
we have that the partition function of the fusion is of the form

(2)
1

|Z2|

1

|H|2

∑

z∈Z2

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈H

ǫℓ1(z)ǫℓ2(z)

γ

(5.47)

where
g1 = γg2γ

−1, h1 = γh2γ
−1. (5.48)

As before, counting collections (g1, h1, g2, h2, γ) satisfying the conditions above for any
fixed z is an exercise in combinatorics. In tables 5.3, 5.4 we have summarized results for
some pertinent cases, and a summary of the sector counting is given in table 5.5. In the
tables, ξ denotes the generator of the effective Z2 = H/〈i〉 orbifold.

(g1, h1) (g2, h2) γ Z2 sector Number
(±1,±1) same all (1, 1) (4)(8)
(±1,±i) same ±1,±i (1, 1) (4)(4)
(±1,±i) (±1,∓i) ±j,±k (1, 1) (4)(4)
(±i,±1) same ±1,±i (1, 1) (4)(4)
(±i,±1) (∓i,±1) ±j,±k (1, 1) (4)(4)
(±i,±i) same ±1,±i (1, 1) (4)(4)
(±i,±i) (∓i,∓i) ±j,±k (1, 1) (4)(4)
(±j,±j) same ±1,±j (ξ, ξ) (4)(4)
(±j,±j) (∓j,∓j) ±i,±k (ξ, ξ) (4)(4)
(±k,±k) same ±1,±k (ξ, ξ) (4)(4)
(±k,±k) (∓k,∓k) ±i,±j (ξ, ξ) (4)(4)

Table 5.3: Some prototypical examples of twisted sectors on the boundary of the box defining
a fusion product of defects on Σ = T 2 in [X/H], for z = +1.

Now, we can assemble these pieces. From table 5.5, we see that the partition function of
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(g1, h1) (g2, h2) γ Z2 sector Number
(±1,±j) same ±1,±j (1, ξ) (4)(4)
(±1,±j) (±1,∓j) ±i,±k (1, ξ) (4)(4)
(±1,±k) same ±1,±k (1, ξ) (4)(4)
(±1,±k) (±1,∓k) ±i,±j (1, ξ) (4)(4)
(±i,±j) same ±1 (1, ξ) (4)(2)
(±i,±j) (±i,∓j) ±i (1, ξ) (4)(2)
(±i,±j) (∓i,±j) ±j (1, ξ) (4)(2)
(±i,±j) (∓i,∓j) ±k (1, ξ) (4)(2)
(±i,±k) same ±1 (1, ξ) (4)(2)
(±i,±k) (±i,∓k) ±i (1, ξ) (4)(2)
(±i,±k) (∓i,±k) ±k (1, ξ) (4)(2)
(±i,±k) (∓i,∓k) ±j (1, ξ) (4)(2)
(±j,±k) same ±1 (ξ, ξ) (4)(2)
(±j,±k) (±j,∓k) ±j (ξ, ξ) (4)(2)
(±j,±k) (∓j,±k) ±k (ξ, ξ) (4)(2)
(±j,±k) (∓j,∓k) ±i (ξ, ξ) (4)(2)

Table 5.4: Some prototypical examples of twisted sectors on the boundary of the box defining
a fusion product of defects on Σ = T 2 in [X/H], for z = −1.

the fusion product is given by

(2)
1

|Z2|

1

|H|2

∑

z∈Z2

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈H

ǫℓ1(z)ǫℓ2(z)

γ

=

{

4ZT 2 ([X/Z2]) = 2Z (S0(Σ)) ℓ1 + ℓ2 = 0 mod 2,
2ZT 2(X) = 2Z (S1(Σ)) ℓ1 + ℓ2 = 1 mod 2.

(5.49)

Put more simply, this implies the fusion rules

S0(Σ)× S0(Σ) = 2S0(Σ), (5.50)

S0(Σ)× S1(Σ) = 2S1(Σ), (5.51)

S1(Σ)× S1(Σ) = 2S0(Σ), (5.52)

of the form expected from results in sections 5.1.2, 5.1.3, and similar to results for analogous
condensation defects in [10, section 6.3].

5.1.5 Example: Zp gauge theory

Let us now consider the case that the three-dimensional orbifold is [X/Zp] with all of the Zp

acting trivially, as in [10, section 6.4]. This theory has a BZp symmetry, and its restriction

34



Z2 sector Num. appearances in z = +1 Num. appearances in z = −1
(1, 1) 128 0
(1, ξ) 64 64
(ξ, 1) 64 64
(ξ, ξ) 64 64

Table 5.5: A summary of the counting of twisted sectors appearing in the fusion product of
defects in [X/H] and their relation to Z2 orbifold sectors.

to a two-dimensional Σ therefore decomposes, in this case to p identical copies of a sigma
model on X . If we gauge BZn along Σ, for n a divisor of p, then depending upon the choice
of one-form theta angle, we will recover subsets of that collection of sigma models, consisting
of sums of p/n copies of sigma models on X . We will denote those defects Sp,n,k(Σ), where
n divides p (corresponding to the gauged BZn) and k ∈ {0, · · · , n− 1}, indexing the various
copies.

As before, suppose that Σ = T 2, so that in the large tension limit the partition function
for Sp,n,k(Σ) is [42, equ’n (6.9)]

Z (Sp,n,k(Σ)) =
1

|Zn|

1

|Zp|

∑

z∈Zn

∑

gh=hgz

ǫk(z)g z h. (5.53)

Here, as Zp is abelian, there are no contributions when z 6= 1, and as ǫk(+1) = +1 for all k,
this reduces to

Z (Sp,n,k(Σ)) =
1

|Zn|

1

|Zp|

∑

gh=hg

g

h

= (p/n)Z(Σ, X) (5.54)

for all values of k, corresponding to p/n copies of a sigma model on X . In particular, this
suggests that

Sp,n,i(Σ) ∼= Sp,n,j(Σ) ∼= ⊕p/nX|Σ (5.55)

for all i, j ∈ {0, · · · , n − 1}. Since the result is independent of the last index, we will
sometimes write each of these defects as Sp,n(Σ), omitting the last index.

Now, let us compute the fusion product, when one defect has a gauged BZn, and the
other a gauged BZn′. From (5.11), the partition function of the fusion product is

gcd(n, n′)
1

|Zlcm(n,n′)|

1

|Zp|2

∑

z∈Zlcm(n,n′)

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈Zp

ǫℓ1(z)ǫℓ2(z)

γ

. (5.56)

In this case, since Γ is abelian, the only solutions of

gihi = higiz (5.57)
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require z = 1, and as ǫℓ(z = 1) = +1, the ǫ factors drop out. Furthermore, since Γ is abelian,

g1 = γg2γ
−1 = g2, h1 = γh2γ

−1 := h2, (5.58)

so we see that g2, h2 are uniquely determined by g1, h1, and the sum over γ merely contributes
an overall factor of |Γ| = |Zp|. Putting this together, we find

gcd(n, n′)
1

|Zlcm(n,n′)|

1

|Zp|2

∑

z∈Zlcm(n,n′)

∑

g1h1=h1g1z

∑

g2h2=h2g2z

∑

γ∈Zp

ǫℓ1(z)ǫℓ2(z)

γ

= gcd(n, n′)
1

|Zlcm(n,n′)|

1

|Zp|

∑

g1,h1

g1
h1

, (5.59)

= gcd(n, n′)
|Zp|

|Zlcm(n,n′)|
1

1

= gcd(n, n′)
|Zp|

|Zlcm(n,n′)|
Z(Σ, X). (5.60)

The computation above suggests that the fusion product is

Sp,n × Sp,n′ = ⊕(p)gcd(n,n′)/lcm(n,n′)X|Σ, (5.61)

which can be rewritten in terms of the Sp,m for various m depending upon p, n, n′. The
reader should note that since n and n′ both divide p, the ratio

p
gcd(n, n′)

lcm(n, n′)
(5.62)

is a positive integer.

Now, let us compare to the results for analogous condensation defects in [10, section 6.4],
which also considered Zp gauge theories in three dimensions, for p prime. The defects above
correspond, in the language of [10, section 6.4], to gauging a single cyclic factor, hence their
m = ∞. If we take p to be prime and n = n′ = p, so that, for example,

Sp,n(Σ) = Sp,n′(Σ) = X|Σ, (5.63)

then our result (5.61) reduces to

S
Z
(∞)
p

× S
Z
(∞)
p

= pX|Σ = pS
Z
(∞)
p

, (5.64)

in the notation of [10, section 6.4], which matches the pertinent piece of [10, equ’n (6.70)], af-
ter taking into account the relation between topological field theory factors and multiplicities
explained in section 4.1.

To be clear, our analysis is somewhat orthogonal to that of [10, section 6.4], both because
the defects here are not, so far as we are aware, condensation defects, and also because [10,
section 6.4] considers more general gaugings (and hence more general defects) for the case
of p prime than we have considered here.
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5.2 Three-dimensional defects in orbifolds by 2-groups

In this section we discuss three-dimensional defects, in higher-dimensional orbifolds by 2-
groups. We begin with an overview of three-dimensional orbifolds by 2-groups, their decom-
position, as well as previously unpublished results on gauging global two-form symmetries
in such theories, then we turn to a study of defects specifically.

5.2.1 Orbifolds by 2-groups in three dimensions

Decomposition in three-dimensional orbifolds by 2-groups was discussed in [48]. Specifically,
that work discussed three-dimensional orbifolds [X/Γ̃] where Γ̃ is a two-group extension of
an ordinary finite group G by a trivially-acting one-form group BK:

1 −→ BK −→ Γ̃ −→ G −→ 1. (5.65)

Since the gauged BK acts trivially, the theory has a global 2-form symmetry, and hence
decomposes. Specifically, it was argued that

QFT
(

[X/Γ̃]
)

=
∐

ρ∈K̂

QFT
(

[X/G]ρ(ω)
)

, (5.66)

where ω ∈ H3(G,K) corresponds to the extension class of (5.65), ρ(ω) ∈ H3(G,K) is the
composition of ρ ∈ K̂ with the extension class ω, and the orbifold [X/G] is twisted by a
three-dimensional analogue of discrete torsion, as in e.g. [51, 52].

If the three-manifold Y = T 3, then the partition function of [X/Γ̃] is [48, equ’n (4.18)]

ZT 3

(

[X/Γ̃]
)

=
|H0(T 3, K)|

|H1(T 3, K)|

1

|H0(T 3, G)|

∑

z1,z2,z3∈K

∑

g1,g2,g3∈G

′

Z(g1, g2, g3),

=
1

|K|2|G|

∑

z1,z2,z3∈K

∑

g1,g2,g3∈G

′

Z(g1, g2, g3), (5.67)

where the prime (′) indicates that the sum over elements of G is restricted to those such that

ǫY (g1, g2, g3) = 1, (5.68)

reflecting the fact that not all G bundles appear as images of Γ̃ orbifolds, as discussed in [48].
For Y = T 3,

ǫY=T 3(g1, g2, g3) =
ω(g1, g2, g3)

ω(g1, g3, g2)

ω(g3, g1, g2)

ω(g3, g2, g1)

ω(g2, g3, g1)

ω(g2, g1, g3)
, (5.69)

where ω ∈ H3(G,K) is the class of the extension (5.65). Projecting to G bundles of that
form is equivalent to working with a sum over universes, and it was argued in [48] that

ZT 3

(

[X/Γ̃]
)

=
∑

ρ∈K̂

ZT 3

(

[X/G]ǫρ)
)

, (5.70)
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reflecting the decomposition (5.66).

Just as in the case of decomposing two-dimensional theories discussed in [42], where one
gauges the global one-form symmetry to recover individual universes, in principle in a decom-
posing three-dimensional theory one should be able to gauge the global two-form symmetry
to recover individual universes. In this section we will review results on decomposition in
such three-dimensional orbifolds, and also suggest a concrete mechanism to gauge the global
two-form symmetry so as to recover individual universes in the decomposition, results we
shall be utilizing later in this paper.

Let us describe the partition function of such a gauging explicitly. In general terms, the
partition function of [[X/Γ̃]/B2K] on a three-manifold Y should have the form

ZY

([

[X/Γ̃]/B2K
])

=
1

|K|

∑

γ∈H3(Y,K)

ǫR(γ)
{

sum over γ-twisted Γ̃ bundles and maps into X
}

, (5.71)

where ǫR(γ) is the gauged two-form theta angle associated with R ∈ K̂ that determines
which universe will be selected.

It is natural to conjecture that a γ-twisted Γ̃ bundle on Y defines a G bundle on Y
obeying the constraint

ǫY (P ) = γ, (5.72)

and we will see that this correctly selects out universes when gauging B2K in a three-
dimensional theory.

Utilizing the conjecture above, our general formula (5.71) for the partition function of a
B2K gauged 2-group orbifold [X/Γ̃] on the three-manifold Y = T 3 takes the form

ZY

([

[X/Γ̃]/B2K
])

=
1

|K|

∑

γ∈H3(Y,K)

ǫR(γ)





1

|K|2|G|

∑

z1−3∈K

∑

g1−3∈G,ǫY =γ

Z(g1, g2, g3)



 , (5.73)

where the sum in G is over commuting triples of elements of G (such that ǫY (g1, g2, g3) = γ).

Let us check this in some simple examples. First, from [48, section 4.3], consider the case
G = Z2 = K, so that

1 −→ BZ2 −→ Γ̃ −→ Z2 −→ 1. (5.74)

As noted in [48, section 4.3], there is a nontrivial extension of this form, which we take. For
that extension, it was argued in [48, section 4.3] that the theory decomposes as

QFT
(

[X/Γ̃]
)

=
∐

ρ∈K̂

QFT ([X/G]) , (5.75)

38



all universes with trivial discrete torsion.

Now, we consider partition functions on Y = T 3. As noted in [48, section 4.3], for all G
bundles on Y = T 3 (meaning, commuting triples (g1, g2, g3) ∈ G3),

ǫY (g1, g2, g3) = 1, (5.76)

regardless of the extension class ω. As a result, there is no constraint on G bundles ap-
pearing in the partition function of [X/Γ̃] on T 3, and the orbifolds [X/G] appearing in the
decomposition do not have any discrete torsion. Explicitly, the partition function of [X/Γ̃]
on Y = T 3 was given by

ZT 3

(

[X/Γ̃]
)

=
1

|K|2|G|

∑

z1,z2,z3∈K

∑

g1,g2,g3∈G

Z(g1, g2, g3), (5.77)

=
|K|

|G|

∑

g1,g2,g3

Z(g1, g2, g3), (5.78)

= ZT 3





∐

ρ∈K̂

[X/G]



 , (5.79)

consistent with the decomposition of [X/Γ̃]

Next, we consider gauging the global B2K symmetry of this theory. From the prescription
we outlined above, the partition function on Y = T 3 is given by

ZT 3

([

[X/Γ̃]/B2K
])

=
1

|K|

∑

γ∈H3(T 3,K)=K

ǫR(γ)

(

1

|K|2|G|

∑

z1,z2,z3∈K

∑

g1,g2,g3∈G,ǫY =γ

Z(g1, g2, g3)

)

. (5.80)

Since ǫY (g1, g2, g3) = γ only has solutions in the case γ = 1, we see that the only contributions
to the path integral arise from γ = 1, hence

ZT 3

([

[X/Γ̃]/B2K
])

=
1

|K|

(

1

|K|2|G|

∑

z1,z2,z3∈K

∑

g1,g2,g3∈G

Z(g1, g2, g3)

)

, (5.81)

=
1

|G|

∑

g1,g2,g3∈G

Z(g1, g2, g3), (5.82)

= ZT 3 ([X/G]) , (5.83)

where we have used the fact that the theta angle ǫR(+1) = 1. Thus, we see that the partition
function of the B2K-gauged theory matches that of the orbifold [X/G] for all ǫR. This is
consistent with the original decomposition: all universes are identical, copies of [X/G], so
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we see that, trivially, for each R ∈ K̂, we have recovered the corresponding universe of the
decomposition.

Next, we consider a less trivial case. Specifically, consider the case G = (Z2)
3, K = Z2,

with extension
1 −→ BZ2 −→ Γ̃ −→ (Z2)

3 −→ 1 (5.84)

of extension class ω4 ∈ H3(G,K), as discussed in [48, section 4.4]. In this case, the decom-
position is nontrivial:

QFT
(

[X/Γ̃]
)

= QFT (]X/G])
∐

QFT([X/G]d.t.) , (5.85)

where the second copy of [X/G] has nontrivial discrete torsion.

The partition function of [X/Γ̃] on Y = T 3 takes the form

ZY=T 3

(

[X/Γ̃]
)

=
1

|K|2|G|

∑

z1,z2,z3∈K

∑

g1,g2,g3∈G,ǫY =1

Z(g1, g2, g3). (5.86)

In this case, the constraint ǫY (P ) = 1 on G bundles arising as Γ̃ bundles is nontrivial for
Y = T 3, and as discussed in [48, section 4.4],

ZY=T 3

(

[X/Γ̃]
)

=
|K|

|G|

∑

g1−3∈G,ǫY =1

Z(g1, g2, g3), (5.87)

= ZT 3

(

[X/G]
∐

[X/G]d.t.

)

. (5.88)

Next, we gauge the B2K action on the theory above. From the general prescription (5.73),

ZY=T 3

([

[X/Γ̃]/B2K
])

=
1

|K|

∑

γ∈H3(T 3,K)=K

ǫR(γ)

(

1

|K|2|G|

∑

z1,z2,z3∈K

∑

g1,g2,g3∈G,ǫY =γ

Z(g1, g2, g3)

)

, (5.89)

=
1

|K|
ǫR(+1)





|K|

|G|

∑

g1−3∈G,ǫY =+1

Z(g1, g2, g3)





+
1

|K|
ǫR(−1)





|K|

|G|

∑

g1−3∈G,ǫY =−1

Z(g1, g2, g3)



 . (5.90)

In the case that ǫR(−1) = +1,

ZY=T 3

([

[X/Γ̃]/B2K
])

=
1

|G|

∑

g1,g2,g3∈G

Z(g1, g2, g3), (5.91)

= ZY=T 3 ([X/G]) , (5.92)
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consistent with
QFT

([

[X/Γ̃]/B2K
])

= QFT ([X/G]) , (5.93)

recovering one of the two universes of the decomposition (5.85).

In the case that ǫR(−1) = −1,

ZY=T 3

([

[X/Γ̃]/B2K
])

=
1

|G|

∑

g1,g2,g3∈G

ǫY (g1, g2, g3)Z(g1, g2, g3), (5.94)

= ZY=T 3 ([X/G]d.t.) , (5.95)

where ǫY (g1, g2, g3) represents the phase arising from discrete torsion in this context [51,
52] (which is a minus sign on the sectors which were excluded in the original Γ̃ orbifold),
consistent with

QFT
([

[X/Γ̃]/B2K
])

= QFT ([X/G]d.t.) . (5.96)

In this case, we recover the other universe of the decomposition (5.85), as expected.

5.2.2 Defects

In this section we will consider a three-dimensional defect in a four-dimensional low-energy
effective orbifold [X/Γ̃] by a 2-group Γ̃:

1 −→ BK −→ Γ̃ −→ G −→ 1, (5.97)

where BK acts trivially, and the extension is classified by ω ∈ H3(G,K), as in [48] and as
reviewed in section 5.2.1.

Because the BK acts trivially, the resulting theory has a global two-form symmetry. In a
four-dimensional theory, this would not result in a decomposition, but in a three-dimensional
theory, as along a defect Y , it does.

Restrict the four-dimensional theory above to a three-dimensional submanifold Y of
spacetime, the location of the defect. The restriction of the four-dimensinoal theory to
Y is a theory with a global two-form symmetry, and so decomposes. We will product an
analogue of a condensation defect by gauging that global two-form symmetry, as reviewed
in section 5.2.1, which selects out a universe (depending upon the theta angle chosen).

So, for each three-dimensional submanifold Y , we now have a collection of defects, one
for each universe in the decomposition of a three-dimensional orbifold [X/Γ̃].

Now, let us consider fusion rules. Following section 5.2.1, the defect s obtained by gauging
a 2-form symmetry B2K on a theory on the three-dimensional space Y , which means the
path integral
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• sums over K 2-gerbes, and then,

• for each K 2-gerbe, sums over 2-gerbe twisted Γ̃-bundles and maps into X .

In principle, just as in the two-dimensional case, in the path integral of the fusion of the two
defects along the same submanifold Y , one would like to tensor together the K 2-gerbes and
the twisted Γ̃-bundles, for which one runs into analogues of the same issues encountered in
two-dimensional examples previously.

First, let us discuss tensoring the 2-gerbes. Our analysis here is very similar to that in
the two-dimensional orbifold examples earlier, and we shall closely follow the same pattern.
Since K is abelian, it suffices to assume that K is cyclic. Suppose one defect is defined
by gauging B2

Zp, and the other by gauging B2
Zk, where both Zp,Zk ⊂ K. Formally, the

product of these 2-gerbes maps to a Zpk 2-gerbe; however, that overcounts physical degrees
of freedom, as a common Zgcd(p,k) 2-gerbe can be eliminated through a change of variables.
Proceeding in a fashion closely analogous to the two-dimensional case, the relation (5.4)
induces

H3(Y,Zgcd(p,k)) −→ H3(Y,Zp × Zk) −→ H3(Y,Zlcm(p,k)) −→ 0. (5.98)

Put more simply, this means that the product of Zp and Zk 2-gerbes can be described as
Zlcm(p,k) ⊂ K 2-gerbes, and the mapping to Zlcm(p,k) 2-gerbes has, as fiber, Zgcd(p,k) 2-gerbes.

Next, we turn to the Γ̃ bundles. As in the case of two-dimensional orbifolds, we do not
know of a way to simply tensor together the bundles in general. However, as in our previous
discussion, we can instead borrow a trick from OPE computations of anomalies, and compute
the fusion products by replacing Y with a box Y ×I, with the defects at either boundary. As
before, since I is contractible, the path integral sums over isomorphisms between the data
at each boundary.

Assembling these pieces, and using results for partition functions for Γ̃ orbifolds and
B2K orbifolds thereof, we find that in a large mass limit, the partition function of the fusion
product of one defect obtained by gauging B2

Zp and another obtained by gauging B2
Zk on

Y = T 3 is

gcd(p, k)

|Zlcm(p,k)|

∑

k∈H3(Y,Zlcm)





|K|2

|G|2

∑

g1−3∈G,ǫY =k

∑

h1−3∈G,ǫY =k

∑

γ∈G

ǫℓ1(k) ǫℓ2(k)Z(g1−3, h1−3, k)



 , (5.99)

where
gigj = gjgi, hihj = hjhi, gi = γhiγ

−1, (5.100)

and
ǫY (g1, g2, g3) = k = ǫY (h1, h2, h3). (5.101)
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Suppose for example that G is abelian, then γ effectively decouples as gi = hi, and the
partition function above reduces to

gcd(p, k)

|Zlcm(p,k)|

∑

k∈H3(Y,Zlcm)





|K|2

|G|2
|G|

∑

g1−3∈G,ǫY =k

ǫℓ1+ℓ2(k)Z(g1−3, k)



 ,

= (gcd(p, k)) |K|ZY

([

[X/Γ̃]|Y /B
2
Zlcm(p,k)

])

. (5.102)

For example, if G = (Z2)
3, K = Z2, and p = k = 2, then denoting the ℓth defect by

Sℓ(Y ), and assuming we did not drop any factors, this becomes

Sℓ1(T
3)× Sℓ2(T

3) = (2)|Z2|Sℓ1+ℓ2 mod 2(T
3), (5.103)

= (4)Sℓ1+ℓ2 mod 2(T
3). (5.104)

Acknowledgements

We would like to thank Y. Choi, S. Gukov, H.-T. Lam, T. Pantev, S.-H. Shao, and M. Yu for
useful discussions, and especially T. Vandermeulen for both numerous discussions and initial
collaboration. L.L. and D.R. further thank the Simons Center for Geometry and Physics
for hospitality during 2022 Summer Workshop, at which parts of this work was carried out.
D.R. was partially supported by NSF grant PHY-1820867. E.S. was partially supported by
NSF grant PHY-2014086.

References

[1] S. Hellerman, A. Henriques, T. Pantev, E. Sharpe and M. Ando, “Cluster decom-
position, T-duality, and gerby CFT’s,” Adv. Theor. Math. Phys. 11 (2007) 751–818,
[hep-th/0606034].

[2] E. Sharpe, “An introduction to decomposition,” [arXiv:2204.09117].

[3] T. Pantev and E. Sharpe, “Notes on gauging noneffective group actions,”
[hep-th/0502027].

[4] T. Pantev and E. Sharpe, “String compactifications on Calabi-Yau stacks,”
Nucl. Phys. B 733 (2006) 233–296, [hep-th/0502044].

[5] T. Pantev and E. Sharpe, “GLSM’s for gerbes (and other toric stacks),”
Adv. Theor. Math. Phys. 10 (2006) 77–121, [hep-th/0502053].

43

https://doi.org/10.4310/ATMP.2007.v11.n5.a2
http://arxiv.org/abs/hep-th/0606034
https://arxiv.org/abs/hep-th/0606034
http://arxiv.org/abs/2204.09117
https://arxiv.org/abs/2204.09117
http://arxiv.org/abs/hep-th/0502027
https://arxiv.org/abs/hep-th/0502027
https://doi.org/10.1016/j.nuclphysb.2005.10.035
http://arxiv.org/abs/hep-th/0502044
https://arxiv.org/abs/hep-th/0502044
https://doi.org/10.4310/ATMP.2006.v10.n1.a4
http://arxiv.org/abs/hep-th/0502053
https://arxiv.org/abs/hep-th/0502053


[6] B. Durhuus and T. Jonsson, “Classification and construction of unitary topological field
theories in two-dimensions,” J. Math. Phys. 35 (1994) 5306–5313, [hep-th/9308043].

[7] G. W. Moore and G. Segal, “D-branes and K-theory in 2d topological field theory,”
[hep-th/0609042].

[8] Z. Komargodski, K. Ohmori, K. Roumpedakis and S. Seifnashri, “Symmetries and
strings of adjoint QCD2,” JHEP 03 (2021) 103, [arXiv:2008.07567].

[9] T.-C. Huang, Y.-H. Lin and S. Seifnashri, “Construction of two-dimensional
topological field theories with non-invertible symmetries,” JHEP 12 (2021) 028,
[arXiv:2110.02958].

[10] K. Roumpedakis, S. Seifnashri and S.-H. Shao, “Higher gauging and non-invertible
condensation defects,” [arXiv:2204.02407].
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