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ABSTRACT2

Detector simulation is a key component for studies on prospective future high-energy colliders,3
the design, optimization, testing and operation of particle physics experiments, and the analysis4
of the data collected to perform physics measurements. This review starts from the current state5
of the art technology applied to detector simulation in high-energy physics and elaborates on6
the evolution of software tools developed to address the challenges posed by future accelerator7
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programs beyond the HL-LHC era, into the 2030-2050 period. New accelerator, detector, and8
computing technologies set the stage for an exercise in how detector simulation will serve the9
needs of the high-energy physics programs of the mid 21st century, and its potential impact on10
other research domains.11
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1 INTRODUCTION

Simulation is an essential tool to design, build, and commission the sophisticated accelerator facilities and14
particle detectors utilized in experimental high energy physics (HEP). In this context, simulation refers to15
a software workflow consisting of a chain of modules that starts with generation of initial particles, for16
example, final state particles from a proton-proton collision. A second module simulates the passage of17
these particles through the detector geometry and electromagnetic fields, as well as the physics interactions18
with its materials. The output contains information about times, positions, and energy deposits of the19
particles when they traverse the readout-sensitive components of the detector. In most modern experiments,20
this module is based on the Geant4 software toolkit [1, 2, 3] but other packages such as FLUKA [4, 5] and21
MARS [6] are also widely used, depending on the application. A third module generates the electronic22
signals from the readout components in response to the simulated interactions, outputting this data in the23
same format as the real detector system. As such, the datasets generated through simulation may be input24
to the same algorithms used to reconstruct physics observables from real data. Simulation is thus not only25
vital in designing HEP experiments, it also plays a fundamental role in the interpretation, validation, and26
analysis of the large and complex datasets collected by experiments to produce physics results, and its27
impact here should not be underestimated [7].28

With many unanswered questions remaining in particle physics and the end of the Large Hadron Collider29
(LHC) program expected in the late 2020s, plans and ideas for the next big facilities of the 2030s-2050s30
are gaining momentum. As these facilities intend to explore ever higher energy scales and luminosities,31
the scale of simulated data samples needed to design the detectors and their software, and analyze the32
physics results will correspondingly grow. Simulation codes will thus face challenges in scaling both their33
throughput and accuracy to meet these sample size requirements with finite but ever evolving computational34
facilities [8]. The LHC era has already seen a significant evolution of simulation methods from ”full”35
detailed history-based algorithms to a hybrid of full and ”fast” parameterized or machine-learning based36
algorithms for the most computationally expensive parts of detectors [9]. A hybrid simulation strategy,37
using a combination of full and fast techniques will play a major role for future collider experiments,38
but full simulation will still be required to develop and validate the fast algorithms, as well as to support39
searches and analyses of rare processes. The goal of this article is to discuss how detector simulation codes40
may evolve to meet these challenges in the context of the second and third elements of the above simulation41
chain, that is the modeling of the detector, excluding the generation of initial particles (An overview of the42
computational challenges here may be found in [8]).43

Section 2 presents the design parameters of future accelerators and detectors relevant to their simulation44
such as colliding particle types, beam parameters, and backgrounds. Challenges in the description and45
implementation of complex detector geometries and particle navigation through rapidly varying magnetic46
fields and detector elements of different shapes and materials are discussed in Section 3, while the physics47
models needed to describe the passage of particles through the detector material at the energy ranges48
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associated with the colliders under consideration will be discussed in Section 4. Beam backgrounds from49
particle decay or multiple hard collisions are another important topic of discussion, particularly in the50
case of beams with particles that decay or emit synchrotron radiation, and will be discussed in Section 5.51
Section 6 focuses on readout modeling in the context of the opportunities and challenges posed by new52
detector technology, including novel materials and new generation electronics. Section 7 looks forward53
to the computing landscape anticipated in the era of future colliders, and how these technologies could54
help improve the physics and computing performance of detector simulation software, and even shape55
their future evolution. Section 8 will discuss the evolution of simulation software toolkits, including56
how they might adjust to new computing platforms, experiment software frameworks, programming57
languages, and the potential success of speculative ideas, as well as the features that would be needed58
to satisfy the requirements of future collider physics programs. For decades, HEP has collaborated with59
other communities, such as medical and nuclear physics, and space science, on detector simulation codes,60
resulting in valuable sharing of research and resources. Section 9 will present examples of application of61
detector simulation tools originating in HEP, in particular to the medical field, and how the challenges for62
future HEP simulation may overlap.63

This article is one of the first reviews on the role and potential evolution of detector simulation in far64
future HEP collider physics programs. We hope it contributes to highlight its strategic importance both for65
HEP and other fields, as well as the need to preserve and grow its priceless community of developers and66
experts.67

2 FUTURE ACCELERATORS AND DETECTORS IN NUMBERS

There are several designs for future particle accelerators, each with its strengths and challenges. This68
chapter focuses on the accelerator and detector design parameters and issues relevant for software modeling.69
In particular, we survey a number of the most mature proposals, including the high luminosity LHC70
(HL-LHC), the high energy LHC (HE-LHC), the Large Hadron-electron Collider (LHeC) and its high71
luminosity upgrade (HL-LHec), the Future Circular Collider (FCC) program of ee (electron-positron),72
hh (hadron-hadron), and eh (electron-hadron) colliders, the Circular Electron Positron Collider (CEPC),73
the Muon Collider, the International Linear Collider (ILC), the Compact Linear Collider (CLIC), and the74
Cool Copper Collider (CCC). Table 1 summarizes the parameters of these proposed future accelerators,75
including design values for maximal energy, peak luminosity, and integrated luminosity, and references for76
each proposal. There are other potential future colliders that are still being designed, including the Super77
Proton-Proton Collider (SPPC) [10], an electron-muon collider [11], a muon-proton collider [12], and a78
muon-ion collider [13].79

Modern particle physics accelerators operate with bunched beams and reach peak luminosities higher80
than 1–2 ⇥ 1034 cm�2 s�1, exceeding the initial LHC design specification. The luminosity for future81
hadron colliders, such as the High Luminosity LHC (HL-LHC), is limited by the maximum number of82
simultaneous proton-proton collisions, or pileup, under which the detectors can operate effectively. For83
circular lepton colliders at higher energies, the luminosity is limited by the beamstrahlung (deflection-84
induced synchrotron radiation), and “top-up” or “top-off” schemes to inject additional particles during85
beam circulation are expected to be necessary to extend beam lifetime [14]. For linear machines, design86
parameters like the beam size, beam power, beam currents, and repetition rates drive the peak luminosity.87

Proton-proton collisions offer the greatest energy reach, but they are limited by construction costs and the88
availability of high-field magnets. The largest proposed energy comes from the FCC-hh at 100 TeV. Lepton89
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colliders can also push the energy frontier to multiple TeV. The muon collider requires R&D in order to90
reduce the transverse and longitudinal beam emittance via cooling and to accelerate to collision energies91
all within the muon’s 2.2µs lifetime [15]. However, it offers an exciting path to collision energies up to a92
few tens of TeV by suppressing synchrotron radiation relative to electrons. The beam-induced background93
(BIB) created by beam muons decaying in flight places new and unique demands on simulation [16].94
Wakefield acceleration also offers a possibility for reaching high energies more compactly in the further95
future [17].96

The proposed detector technologies for the next generations of experiments at colliders are growing in97
breadth, as indicated by the summary in Table 2. These increases in technological variety are driven by98
both physics goals and experimental conditions. In addition, new detectors will be increasing complex and99
granular. The interplay between instrumentation and computing is therefore increasingly important, as100
detectors become more challenging to simulate. One example is the upcoming High Granularity Calorimeter101
(HGCAL) at the Compact Muon Solenoid (CMS) experiment [18]. With roughly six million channels,102
it will be the most granular calorimeter built to date. This massively increases the geometry complexity,103
leading to a⇠40–60% increase in the time to simulate the detector [19]; in addition, the increased precision104
of the detector is expected to require correspondingly more precise physical models, which may further105
double the simulation time in existing software [20]. The incorporation of precision timing information106
may also place more demands on the accuracy of the simulation.107

The HL-LHC is the nearest-future collider surveyed here, and most further-future colliders aim at higher108
precision measurements or present even more difficult environments. Therefore, detector complexity109
should be expected to continue to increase, in order to facilitate the physics programs and measurements110
for these new colliders. More than ever before, increasingly energetic and potentially heavier particles111
will interact with the detector materials, and massive increases in accumulated luminosity will enable112
physicists to explore the tails of relevant kinematic distributions very precisely. New technologies will113
pose their own challenges, such as the muon collider BIB, or new materials whose electromagnetic and114
nuclear interactions may not be fully characterized. This motivates the continued development of detector115
simulation software, to ensure its computational performance and physical accuracy keep up with the bold116
next steps of experimental high energy physics.117

3 CHALLENGES IN GEOMETRY DESCRIPTION AND NAVIGATION

Geometric modeling is a core component of particle transport simulation. It describes both the material118
properties of detector components, which condition the particle interactions, and their geometric boundary119
limits. Particles are transported through these geometries in small spatial steps, requiring fast and accurate120
computation of distances and finding the geometry location after crossing volume boundaries. This task121
uses a significant fraction of total simulation time even for the current LHC experiments [8], making122
performance a general concern for the evolution of geometry modeling tools. As discussed in section 2,123
future detectors will have both higher granularity and interaction rates than the LHC, requiring the geometry124
modeling and navigation software to increase the throughput of the above calculations given this increased125
complexity. Providing the navigation precision necessary to achieve the required physics accuracy will126
likely be challenged by the presence of very thin detectors placed far away from the interaction point.127

The detector geometry description of a HEP experiment goes through several processing steps between128
the initial computer-aided designs (CAD) [21] to the in-memory representation used by the simulation.129
These transformations primarily reduce the complexity and level of detail available in the CAD model130
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to increase computing performance without compromising the required physics accuracy. Although the131
geometry models at the core of today’s HEP detector simulation were designed in the 60’s, Geant geometry132
implementations [22, 1] have enjoyed continuous success over many generations of CPU architectures133
because of a number of features that reduce both the memory footprint and algorithmic complexity. Multiple134
volume placements, replication using regular patterns, and hierarchies of non-overlapping ‘container’135
volumes enable efficient simulation of very complex setups comprising tens of millions of components.136
However, creating the model description for such setups is often a long and arduous process, and the137
resulting geometry is very difficult to update and optimize.138

The most popular 3D models used in simulation nowadays are based on primitive solid representations139
such as boxes, tubes, or trapezoids, supporting arbitrarily complex Boolean combinations using these140
building blocks. Different simulation packages use different constructive solid geometry (CSG) flavours141
[23], providing a number of features and model constraints to enhance the descriptive power and142
computation efficiency. However, performance can be highly degraded by overuse of some of these143
features, such as creating unbalanced hierarchies of volumes or creating overly complex Boolean solids.144
Using such inefficient constructs in high occupancy detector regions near the interaction point generally145
leads to significant performance degradation.146

The current geometry implementations have a very limited adaptive capability for optimizing such147
inefficient constructs, mainly due to the high complexity of the model building blocks. The geometry148
queries can only be decomposed to the granularity of solid primitives, so user-defined constructs cannot149
be internally simplified. This calls for investigating surface models as alternatives to today’s geometry150
representations. Adopting boundary representation (BREP) models [24] composed of first and second-order151
algebraic surfaces, would allow decomposing navigation tasks into simple surface queries. An appropriate152
choice of the BREP model flavor allowing surface queries to be independent could greatly favor the153
highly-parallel workflows of the future.154

Developing automatic conversion tools from CAD surface-based models to the Geant4 simulation155
geometry proved to be too challenging in the past. Supporting surface representations directly in the156
simulation geometry would make such conversions possible. This would provide a simpler transition from157
the engineering designs to the simulation geometry, having fewer intermediate representations. It would158
also make it easier to implement transparent build-time optimizations for inefficient user constructs.159

Successive upgrades to adapt to new computing paradigms such as object-oriented or parallel design160
have not touched the main modelling concepts described above, which served their purpose for decades161
of CPU evolution but are quickly becoming a limiting factor for computing hardware with acceleration.162
Recent R&D studies [25, 26] have shown that today’s state-of-the-art Geant-derived geometry codes such163
as VecGeom [27] represent a bottleneck for vectorized or massively parallel workflows. Deep polymorphic164
code stacks, low branch predictability, and incoherent memory access are some of the most important165
reasons for performance degradation when instruction execution coherence is a hardware constraint. This166
is intrinsic to the model being used, combining in the same query algorithms of very different complexity,167
called in an unpredictable manner and unfriendly to compiler optimizations. These studies also indicate the168
need to simplify the geometry models being used, highly reducing or eliminating unnecessary abstractions.169

Performance optimization is particularly important for common geometry navigation tasks such as170
collision detection of the simulated particle trajectories with the geometry setup, and relocation after171
crossing volume boundaries. Navigation helpers are using techniques such as voxelization [28] or bounding172
volume hierarchies (BVH) [29] to achieve logarithmic complexity in setups having several millions objects.173
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Adopting efficient optimization strategies will be more relevant for the more complex detectors of the174
future.175

The same problem of collision detection is addressed by graphics systems, in particular, ray-tracing (RT)176
engines such as NVIDIA OptiX [30] that make use of dedicated hardware acceleration. Adapting HEP177
detector simulations to use such engine was implemented in the Opticks library [31], and demonstrated178
speedups of more than two orders of magnitude compared to CPU-based Geant4 simulations of optical179
photon transport in large liquid-Argon detectors. This required adapting the complete optical photon180
simulation workflow to GPUs, but also simplifying and transforming the geometry description to match181
OptiX requirements. Generalizing this approach for future HEP detector simulation would require a major182
re-engineering effort, in particular for the geometry description. How exactly RT technology evolves183
will likely have a big impact on the solutions adopted for detector geometry modeling. As the use of RT184
acceleration proliferates in the gaming industry, APIs supported by dedicated languages and libraries185
will most probably be made publicly available. Combined with larger on-chip caches, future low-latency186
graphics chips may allow externalizing geometry as an accelerated service for simulation. Such service187
could become an important booster, but would be conditional to the simplification of the geometry188
description and added support for batched multi-track workflows.189

Evolution in computing technology will most probably present game-changing opportunities to improve190
simulation software, as described in Section 7). For example, tensor cores [32] provide a large density191
of Flops, although at a cost in precision. Geometry step calculations cannot make use of half-precision192
floating point (FP16) directly because rounding errors would become too important and affect both physics193
precision and transportation over large distances in the detector. Some optimizations may however be194
delegated to a FP16-based navigation system using ML inference to, for instance, prioritize candidate195
searches. Single-precision FP32-based geometry distance computation should be given more weight196
in the context of the evolution of reduced-precision accelerator-based hardware, because the option to197
reduce precision fulfils physics requirements in most cases. Furthermore, it would provide a significant198
performance boost due to a smaller number of memory operations for such architectures. Recent studies199
report performance gains as large as 40% for certain GPU-based simulation workflows [26], making R&D200
in this area a good investment, as long as memory operations remain the dominant bottleneck, even if chips201
evolve to provide higher Flops at FP32 precision or better. The precision reduction option is, however,202
not suitable for e.g., micron-thin sensors, where the propagation rounding errors become comparable to203
the sensor thickness. Addressing this will require supporting different precision settings depending on the204
detector region.205

4 PHYSICS PROCESSES AND MODELS

As mentioned in Sec. 1, Geant4 has emerged as the primary tool to model particle physics detectors. Geant4206
offers a comprehensive list of physics models [33] combined with the continuous deployment of new207
features and improved functionality, as well as rigorous code verification and physics validation against208
experimental data.209

4.1 Current status210

During the first two periods of data taking in 2010-2018, the LHC experiments produced, reconstructed,211
stored, transferred, and analyzed tens of billions of simulated events. The physics quality of these Geant4-212
based Monte Carlo samples produced at unprecedented speed was one of the critical elements enabling213
these experiments to deliver physics measurements with greater precision and faster than in previous hadron214
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colliders [7, 34]. Future accelerator programs will, however, require the implementation of additional215
physics processes and continuous improvements to the accuracy of existing ones. A quick review of the216
current status of physics models in Geant4 will precede a discussion of future needs.217

Physics in Geant4 are subdivided over several domains, the most relevant for HEP being particle decay,218
electromagnetic (EM) interactions, hadronic processes, and optical photon transport. The precision of219
the modeling has to be such that it does not become a limiting factor to the potential offered by detector220
technology. EM physics interactions of e�/e+/� with the detector material, producing EM showers in221
calorimeters, consume a large fraction of the computing resources at the LHC experiments. Reproducing the222
response, resolution, and shower shape at a level of a few per mille requires modeling particle showers down223
to keV levels, which contain a large number of low-energy secondary particles that need to be produced and224
transported through magnetic fields. This level of accuracy is required in order to distinguish EM particles225
from hadronic jets, and to efficiently identify overlapping showers. Highly accurate models for energy226
deposition in thin calorimeter layers are also essential for reconstruction of charged particles and muons.227
Simulation of tracking devices requires accurate modeling of multiple scattering and backscattering at low228
and high energy, coupled with very low energy delta electrons. Geant4 delivers on all these requirements229
by modeling EM processes for all particle types in the 1 keV to 100 TeV energy range. The accuracy of230
Geant4 EM showers is verified by the CMS [35] and ATLAS [36] experiments.231

Geant4 models physics processes for leptons, long-lived hadrons, and hadronic resonances. Simulation232
of particle decay follows recent PDG data. The decay of b-, c-quark hadrons and ⌧ -leptons is outsourced to233
external physics generators via predefined decay mechanisms.234

Simulation of optical photon production and transport is also provided by Geant4. The main accuracy235
limitation arises from the large compute time required to model the large number of photons and the many236
reflections that may occur in within the detector. Various methods to speed-up optical photon transport are237
available, depending on tolerance to physics approximations.238

Hadron-nuclear interaction physics models are needed to simulate hadronic jets in calorimeters, hadronic239
processes in thin layers of tracking devices, and for simulating shower leakage to the muon chambers.240
Geant4 hadronic physics is based on theory models and tuned on thin target data [3]. This approach241
guarantees a more reliable predictive power than that offered by parametric models for a wide range of242
materials, particle types and energy ranges for which data measurements are not available. Parameter243
tuning and model extensions are necessary to describe all particle interactions at all energies [2]. Geant4244
has adopted the approach of combining several models that fit the data best in different energy ranges,245
since it is unrealistic to expect that one single model would do the job over the full kinematic range of246
interest. This is done by providing several sets of predefined ”physics lists”, which are combinations of247
EM and hadronic processes and models. Experiments need to identify the most suitable for their own248
physics program by performing the necessary physics validation studies and possible applying calibration249
corrections [36, 37, 35, 38].250

4.2 Future needs251

The large data volumes to be collected by the HL-LHC experiments will enable experiments to252
reduce statistical uncertainties, therefore demanding more accurate simulation to help reduce systematic253
uncertainties in background estimation and calibration procedures. The next generation of HEP detectors254
to be commissioned at the LHC and designed to operate in future lepton and hadron colliders will have255
finer granularity and incorporate novel materials, requiring simulation physics models with improved256
accuracy and precision, as well as a broader kinematic coverage. Materials and magnetic fields will also257
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need to be described in more detail to keep systematic uncertainties small. Moreover, new technologies258
[39, 40, 41] will allow detectors to sample particle showers with a high time resolution of the order of tens259
of picoseconds, which will need to be matched in simulation. Consequently, the simulation community260
has launched an ambitious R&D effort to upgrade physics models to improve accuracy and speed, re-261
implementing them from the grounds up when necessary (e.g., GeantV [25], Adept [26], Celeritas [42]).262
Special attention will be needed to extend accurate physics simulation to theO(100)TeV domain, including263
new processes and models required to support the future collider programs.264

Achieving an optimal balance between accuracy and software performance will be particularly challenging265
in the the case of EM physics, given that the corresponding software module is one of the largest consumers266
of compute power [34]. Reviews of EM physics model assumptions, approximations and limitations,267
including those for hadrons and ions will be needed to support the HL-LHC and Future Collider (FCC)268
programs. The Geant4 description of multiple scattering [43] of charged particles provides predictions in269
good agreement with data collected at the LHC. Nevertheless, the higher spatial resolution in new detectors,270
[44, 39, 45, 46] may require even higher accuracy to reproduce measured track and vertex resolutions.271
Excellent modeling of single-particle scattering and backscattering across Geant4 volume boundaries272
for low energy electrons are critical for accurate descriptions of shower shapes in calorimeters, such as273
CMS’s high granularity hadronic calorimeter. At the very high energies present at the FCC, nuclear size274
effects must be taken into account, and elastic scattering models must be extended to include nuclear275
form factors in the highest energy range. The description of form factors may affect EM processes at high276
energies in such a way that it affects shower shapes and high energy muons. A theoretical description277
of the Landau-Pomeranchuk-Migdal (LPM) effect, significant at high energy, is included in the models278
describing the bremsstrahlung and pair-production processes in Geant4. For the latter, introducing LPM279
leads to differences in cross sections at very high energies that will need to be understood when data280
become available. A relativistic pair-production model is essential for simulation accuracy at the FCC. Rare281
EM processes like � conversion to muon and hadron pairs also becomes important at very high energies282
and will have to be added. This is also essential to properly model beam background effects in the collision283
region of a Higgs Factory. In the cases of the FCC and dark matter search experiments, the description284
of pair production will need to be extended to include the emission of a nearby orbital electron (triplet285
production) and to take into account nuclear recoil effects. Finally, � radiative corrections in EM physics286
may effects significantly the accuracy of measurements at Higgs factories and will need to be added to287
the models. All these rare processes must be added to the simulation to improve the accuracy in the tails288
of the physics distributions, where backgrounds become important. These corrections must be included289
such that they are invoked only as needed, thus not increasing the computing cost of EM modeling. At the290
FCC collision energy, the closeness of tracking devices to the interaction points will also require widening291
the range of physics models of short lived particles. This will be particularly important for high-precision292
heavy flavor measurements, as non-negligible fractions of beauty and charm hadrons will survive long293
enough to intercept beam pipes and the first detector layers. Describing the interaction of such particles with294
matter may already be required at the HL-LHC program because of a reduction of the distance between the295
trackers and the interaction point [44, 39]. A review of how detector simulation interfaces to dedicated296
decay generators during particle transport may be necessary.297

In hadronic interactions, more than one model is needed to describe QCD physics processes accurately298
over the whole energy range. Typically, a hadronic interaction is initiated when a high energy hadron299
collides with a nucleon in the nucleus of a given material. This is followed by the propagation of the300
secondary particles produced through the nucleus, the subsequent de-excitation of the remnant nucleus301
and particle evaporation, until the nucleus reaches the ground state. Different sets of models map naturally302

This is a provisional file, not the final typeset article 8



Sample et al. Running Title

to these phases depending on the initial energy of the collision: a parton string model for energy above303
few GeV, an intra-nuclear cascade model below that threshold. Pre-compound and de-excitation models304
are used to simulate the last steps in the evolution of the interaction. A reliable description of showers in305
hadronic calorimeters requires accurate descriptions of all these processes.306

Geant4 offers two main physics lists to describe hadronic physics in high energy collider experiments.307
The main difference between the two consists in the choice of the model describing the initiating quark-308
parton phase mentioned above, either a quark-gluon string model, or a Fritiof model [3]. Having more309
than one model allows to estimate the systematic uncertainties arising from the approximations they use.310
Unfortunately, neither of them is accurate enough to describe the hadronic interactions at multi-TeV311
energies occurring at the FCC. New processes will need to be implemented in the hadronic physics312
simulation suite to address this higher energy domain, taking inspiration from those available in the EPOS313
generator [47], used by the cosmic ray and heavy ion physics communities.314

Another element essential for the simulation of hadronic physics is precise calculations of interaction315
cross-sections. At the highest energies, Geant4 uses a general approach based on the Glauber theory [48],316
while at lower energies cross sections are evaluated from tables obtained from the Particle Data Group [49].317
This approach profits from the latest thin-target experiment measurements and provide cross-sections for318
any type of projectile particle. The precision of cross-section calculations for different types of particles319
will need to be improved as more particle types become relevant to particle flow reconstruction in granular320
calorimeters.321

A correct description of particle multiplicity within hadronic showers is also needed to model the322
physics performance of highly granular calorimeters (e.g. CMS [50]), and is also essential to simulate323
high-precision tracking devices (e.g. LHCb spectrometer). The parameters describing hadronic models324
must be tuned to describe all available thin target test beam data, and the models expanded to provide325
coverage to as many beam particles and target nuclei as possible. For flavor physics, it is important to take326
into account the differences in hadronic cross-sections between particle and anti-particle projectiles.327

5 BEAM BACKGROUNDS AND PILEUP

The main categories of beam backgrounds at ee colliders are machine and luminosity induced [51]. The328
former is due to accelerator operation and includes Synchrotron Radiation (SR) and beam gas interactions.329
The latter arises from the interaction of the two beams close to the interaction point of the experiment.330

The SR that may affect the detector comes from the bending and focusing magnets closest to it. While331
detectors will be shielded, a significant fraction of photons may still scatter in the interaction region and be332
detected. This is expected to be one of the dominant sources of backgrounds in the FCC-ee detector [52].333
Beam gas effects are a result of collisions between the beam and residual hydrogen, oxygen and carbon334
gasses in the beam pipe inside the interaction region.335

The luminosity induced background is generated from the electromagnetic force between the two336
approaching bunches, which leads to the production of hard bremstrahlung photons. These may interact337
with the beam and an effect similar to e+e� pair creation can occur, or they scatter with each other which338
can result in hadrons, and potentially jets, in the detector. Stray electrons due to scattering between beam339
particles in the same bunch can also hit the detector.340

The main background at pp colliders are the large number of inelastic proton–proton collisions that341
occur simultaneously with the hard-scatter process, collectively known as pileup. This usually results in342
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a number of soft jets coinciding with the collision. The number of interactions per crossing at the future343
colliders is expected to exceed one thousand, compared to no more than 200 at the end of the HL-LHC344
era. An additional source of luminosity induced background is the cavern background. Neutrons may345
propagate through the experimental cavern for a few seconds before they are thermalized, thus producing346
a neutron-photon gas. This gas produces a constant background, consisting of low-energy electrons and347
protons from spallation.348

Machine induced backgrounds at pp colliders are similar to the ee ones [36]. Besides the beam gas, the349
beam halo is a background resulting from interactions between the beam and upstream accelerator elements.350
In general, pile-up dominates over the beam gas and beam halo.351

Muon colliders are special in that the accelerated particles are not stable. The main source of beam352
backgrounds are decays of primary muons and the interaction of their decay products with the collider and353
detector components [53]. Compared to ee colliders this represents an additional source of background354
resulting in a large number of low momentum particles that may not be stopped by shielding end enter the355
interaction region of the detector. Additionally, this type of background needs to be simulated with higher356
precision outside of the interaction region.357

An important consideration is the detector response and readout time compared to the time between358
collisions, which is often longer. In-time and out-of-time pile-up should be considered separately. In-time359
pileup are additional collisions that coincide with the hard-scatter one, while out-of-time pile-up are360
collisions from different bunch crossings than the hard-scatter one, but affect the readout implicitly.361

5.1 Bottlenecks in computational performance362

The biggest bottleneck in the time it takes to model pileup in a pp collider is the number of interactions per363
bunch crossing. As seen in black circles in Fig. 1, the CPU time requirement has a very steep dependence364
on this parameter, which needs to match data-taking conditions. The second issue can be the slow response365
time of the detectors, requiring a large number of out-of-time bunch crossings to be simulated. This can366
be solved by only simulating the detectors when needed, as not all have the same sensitive time range.367
Improvements in detector technologies that will be used in future experiments may make these times small368
enough not to cause a significant overhead.369

Traditionally each in-time or out-of-time interaction is sampled individually and taken into account at the370
digitisation step, when detector digital responses are emulated. Experiments pre-sample pile-up events and371
reuse them between different samples to reduce computational time [54, 55]. While the pre-sampling itself372
still has the same CPU limitations, using those pileup events barely depends on the amount of pileup (red373
circles in Fig. 1), but could cause larger stress on storage. Thresholds to analogue signals are applied at374
digitization to reduce the amount of saved digits significantly, at the cost of reduced precision when two375
digital channels are merged. Thus pre-sampling thresholds need to be tuned for each individual detector,376
and computing resources can only be saved by reusing pre-sampled events, where a compromise between377
CPU savings and increased storage needs to be made in a way that maintains optimal physics performance.378

Another option to fully avoid the CPU bottleneck of pileup pre-sampling is to use pileup events from data.379
The main bottlenecks here are non-constant detector conditions and alignment. Re-initializing the simulated380
geometry adds overheads which may be mitigated by averaging conditions over long periods. However,381
this solution will come at the cost of reproducing data less precisely. Furthermore detector readout only382
provides digital information above some thresholds which are usually tuned for primary collisions and thus383
relatively high. This reduces precision when merging the information with the simulated hard-scatter event.384
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While other types of background are much lower at pp colliders and their simulation can usually385
be skipped, this is not the case for ee colliders. Some of those backgrounds, e.g. beam gas effects,386
synchrotron radiation and intra-beam scattering, happen outside the detector cavern. They are simulated387
by the accelerator team as they also affect beam operations. To avoid re-simulating the same type of388
background, the simulation can be shared with the experiment as a list of particles that enter the interaction389
region [56], though this is still a large number of low-momentum particles to simulate. Experiments thus390
also use randomly-triggered collision events for the background estimation, while also being affected by391
the threshold effects.392

5.2 Optimal strategy for future colliders393

During the development stage of the future experiments, detailed simulation of all types of beam394
backgrounds is of utmost importance. Simulation provides estimates of the physics impact of backgrounds395
and helps to optimize the detector design to minimize them as much as possible [57]. Some backgrounds396
can be parametrized or even completely neglected. One such example is that of cavern background neutrons397
at hadron colliders. In most cases their contribution is orders of magnitude smaller than that of pileup,398
although outer muon chambers would require a detailed description, if high precision is required. As low399
momentum neutron simulation is very slow, it can be performed only once and used to derive parametrized400
detector responses, which can then be injected at the digitization stage.401

As discussed earlier in this section, separate simulation of beam backgrounds and pre-digitization saves402
computing resources and has a negligible impact on physics performance when reused randomly between403
samples. With the increased background rates expected in future colliders, iterative mixing and merging404
of background contributions will become an essential technique. Detector readout thresholds must be set405
sufficiently low to allow merging of digital signals multiple times with negligible degradation of accuracy.406
This would allow iterative pileup pre-sampling, where multiple events with a low number of interactions407
could be merged to give an event with a high number of interactions. It would also allow to merge different408
types of backgrounds that would be prepared independently. Furthermore, a special set of lower background409
thresholds could be setup in the actual detector to enable the use of real data events as background sources.410
The latter would yield a reduced performance degradation as compared to current detectors.411

Most of all the beam background simulation strategy depends on physics accuracy requirements. As412
mentioned in Sec. 1, current experiments are moving towards a more frequent use of fast simulation413
methods, either based on parametrized detector responses or on machine learning technologies. The latter414
could be used to choose the precision of the simulation algorithm depending on the event properties, or to415
fully generate the background on the fly. Regardless of the choice of the strategy used to simulate large416
volumes of physics samples, a detailed modeling as provided by full simulation will always be needed, if417
nothing else to derive and tune the faster methods.418

6 ELECTRONIC SIGNAL MODELING

The ambitious physics program at future accelerator-based experiments requires detectors which can419
perform very accurate measurements and handle high occupancy at the same time. To achieve these goals,420
it is of paramount importance to collect as much information from each individual detector channel as421
possible, including the three spatial coordinates, time and energy.422
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For simplicity, this section focuses on two main classes of detectors that pose the most challenges from a423
computational point of view: tracking detectors and calorimeters. Those are the ones that usually employ424
the largest number of electronic readout channels, thus their behavior needs to be simulated in detail.425

New generation calorimeters are designed as tracking devices as well as providers of energy deposition426
information in the form of the five-dimensional measurement referred to in the first paragraph. These427
extended capabilities beyond traditional calorimetric observables present challenges to the simulation428
effort, since modeling must achieve accurate descriptions of all these observables simultaneously.429
Additionally, calorimeters will often operate in a high-occupancy environment in which sensor and430
electronics performance degrade fast as a consequence of radiation damage.431

The digitization step of simulation takes as input the Geant4-generated analogue signals from the detector.432
The first step of the digitization process accumulates this input and groups it for individual read out433
elements. This is done in a number of time slots which define the integration time for the detector. Beyond434
this step, modeling is highly detector dependent. It is driven by detailed descriptions of readout electronics435
including the noise component, cross-talk, and the readout logic which involves the shaping of the signal436
and the digitization of the pulse. Finally, a digit is recorded when the signal is above a predefined threshold.437

6.1 Tracking detectors438

Various types of tracking detectors are currently employed in HEP experiments at colliders [49],439
with the most widely used being silicon, gaseous (RPC, MDT, Micromegas, etc), transition-radiation,440
and scintillation detectors. Of these, silicon-based detectors are among the most challenging and441
computationally expensive to simulate, given the large number of channels and observables involved.442

Silicon detectors give rise to electron-hole pairs which are collected with a certain efficiency, amplified,443
digitized, and recorded. When biased by a voltage difference, the response of the sensor to the passage444
of ionizing particles is characterized by its charge collection efficiency (CCE) and its leakage current445
(Ileak). As the sensors are operated well above its full depletion voltage, the CCE is expected to be high.446
The current digitization models for silicon detectors are mostly based on a bottom-up approach, where the447
overall energy deposit is used to generate multiple electron-hole pairs that are then propagated through a448
detailed simulation of the electric field and used to compute the expected signal generated at the electrodes.449
Several models are employed for how the overall deposited energy is split. They range from simple models450
performing an equal-splitting along the expected trajectory to more complex models [58], each giving451
different increasing levels of accuracy at the price of being computationally more expensive.452

Exposure to radiation induces displacements in the lattice and ionization damage, liberating charge453
carriers. These effects contribute to a reduction of the CCE and and increase in the Ileak. The increase454
in instantaneous luminosity projected at the HL-LHC collider challenged experiments to implement455
simulation models able to predict the reduced CCE expected in the presence of radiation damage. A456
detailed simulation of the electric field is used with more refined models describing the probability of457
charge-trapping and reduced CCE [59, 60, 61]. Those models tend to be heavy on computing resources,458
prompting parametric simulation approaches to be developed as well.459

Detectors designs for future colliders differ substantially depending on the type of environment they will460
have to withstand. Detectors at moderate to high-energy e+e� colliders will see a clean event and moderate461
rates of radiation. For such detectors, a detailed simulation strategy is crucial for high precision physics462
measurements; however, the demand for large simulated samples makes a hybrid approach including463
parametrizations most likely. Silicon-based tracking detectors are also the technology of choice at muon464
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colliders. The radiation environment within this machine poses unique challenges due to the high level of465
beam-induced backgrounds (BIBs). Real-time selection of what measurements are most likely to come from466
the interaction point rather than from BIBs is likely to rely on detailed shape analyses of the neighboring467
pixels that give signals as well as possible correlation across closely-spaced layers [62]. A hybrid approach468
will likely be needed, consisting of a detailed simulation of the detector layers where the raw signal469
multiplicity is the highest and needs to be reduced, together with a fast simulation approach for the rest of470
the tracking detector. For detectors at future hadron colliders, the extreme radiation environment near the471
interaction point will make it mandatory to implement radiation damage effects in the simulation. For this,472
a parametrized approach would also be the most realistic path to keep computational costs under control.473

6.2 Calorimeters474

Traditional calorimeters utilize photons generated through the process of scintillation, Cerenkov radiation,475
or transition radiation to measure particle energy depositions. Photons are detected by a photo-transducer476
where the photons first give rise to electrons and then go through successive steps of amplification477
and digitization. Modeling photon transport to the photo-transducers is CPU intensive and traditionally478
implemented as a parametrization tuned to predictions obtained from a specialized simulation package [31,479
63]. Nowadays, simulation of optical photons is offloaded to GPUs to mitigate computing costs, taking480
advantage of the high levels of parallelism achievable for electromagnetically interacting particles’ transport.481
The photon transmission coefficient is affected by radiation damage due to formation of color centers in the482
medium, thus an assumption is made on the distribution of color centers in the medium. The light output,483
L(d), after receiving a radiation dose d, is described by an exponential function that depends on the dose:484

L(d) = L0 exp(µ · d) ,

where the parameter µ is a property of the material and depends on the dose rate. The radiation damage485
parametrizations are typically calibrated from data coming out of a monitoring system. The radiation dose486
and the neutron fluence (flux over time) are estimated using an independent simulation of the detector487
setup.488

The next step in the simulation chain for calorimeters is the treatment of the photo transducer, the most489
commonly used type being silicon photo-multipliers. These devices also suffer time-dependent effects490
related to the radiation exposure: decrease of photo-statistics (fewer photons reaching the device) and491
increase of the noise coming from dark currents. The noise increases with the square root of the fluence,492
which in turn is proportional to the sensor’s area. Signal simulation in silicon photo-multipliers involves:493
emulation of photo-statistics using a Poisson distribution, description of the distribution of the photo494
electrons according to pulse shape, adjustmentment of the signal arrival time, as well as the modeling of495
the dark current (thermal emission of photo-electrons), the cross-talk among the channels induced in the496
neighbors of the fired pixels, the pixel recovery time after being fired, and the saturation effect for large497
signals when several photo-electrons fall on the same pixel. An exponential function describes accurately498
the re-charge of the pixel as a function of time, while cross-talk can be modeled using a branching Poisson499
process. The Borel distribution [64, 65] analytically computes the probability of neighboring cells to fire.500

Finally, the simulation of the readout electronics includes: the readout gain, adjusted to get an acceptable501
signal to noise ratio throughout the life time of the detector); the electronics noise, with contributions502
from the leakage current in the detector, the resistors shunting the input to the readout chip, and the503
implementation of the so-called common mode-subtraction; and the ADC pulse shape, which decides the504
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fraction of charge leaked to the neighboring bunches. Zero suppression is also modeled, keeping only the505
digits which cross a threshold in the time bunch corresponding to sample of interest.506

In future colliders, simulation of silicon-based calorimeters will face similar challenges than those507
described in the previous section for tracking devices. Parametrizations of time consuming photon transport508
may be replaced with detailed modeling and processed on computing devices with hardware accelerators.509
Radiation damage will be more pronounced in high-background environments such as high-energy hadron510
colliders and muon colliders, introducing a time-dependent component all through the signal simulation511
chain which will need to be measured from data and modeled in detail.512

7 COMPUTING

Non traditional, heterogeneous architectures, such as GPUs, have recently begun to dominate the design513
of new High Performance Computing centers, and are also showing increasing prevalence in data centers514
and cloud computing resources. Transitioning HEP software to run on modern system is proving to be a515
slow and challenging process, as described in Sec. 7.3. However, in the timescale of future colliders, this516
evolution in the computing landscape offers tremendous opportunity to HEP experiments. The predicted517
increase in compute power, the capability to offload different tasks to specialized hardware in hybrid518
systems, the option to run inference as a service in remote locations in the context of a machine learning519
approach, open the field of HEP simulation to a world where simulation data could grow severalfold in520
size, while preserving or improving physics models and detector descriptions.521

7.1 Projection of hardware architecture evolution522

For example, the U.S. Department of Energy (USDOE) will be standing up three new GPU-accelerated,523
exascale platforms in 2023–2024 at the Oak Ridge Leadership Computing Facility (OLCF [66]), Argonne524
Leadership Computing Facility (ALCF [67]), and Lawrence Livermore National Laboratory. Additionally,525
the National Energy Research Scientific Computing Center (NERSC [68]) is deploying an NVIDIA-526
based GPU system for basic scientific research. Figure 2 shows peak performance in Flops for machines527
deployed at the OLCF between 2012 and 2023. In addition to the projected ⇠ 55⇥ increase in computing528
performance from 2012 to 2022, the percent of peak provided by GPUs has increased from ⇠ 91% to529
greater than 98% over that period. This situation is reflected in computing centers around the world such530
as Piz Daint in Swizterland [69], Leonardo in Italy [70], and Karolina in Czechia [71] that heavily use531
NVIDIA GPUs, LUMI in Finland [72] that will use AMD GPUs, and MareNostrum 4 in Spain [73] that532
uses both NVIDIA and AMD GPUs. Japan’s Fugaku [74], the current leader of the Top 500 supercomputers533
list [75], has a novel architecture with very wide registers that behave very much like a GPU. We see534
similar heterogeneous computing center designs in smaller institutional clusters, and grid computing sites.535
Thus, in order to take advantage of the massive increases in computing capability provided at the HPC536
centers, optimizing existing and future simulation codes for GPUs is essential. The other HPCs at the head537
of the current Top500 List which do not explicitly use GPUs, such as Fugaku, have hybrid architectures538
that have very wide vector processors that offer much the same functionality as traditional GPUs.539

The primary driver of this evolution is the power requirements driving high-performance computing.540
Figure 3 shows power consumption for OLCF machines from 2012 to 2022. Here, we see that for a 3⇥541
increase in total power consumption there is a 17 fold increase in Flops per MW.542

It is difficult to predict the exact nature of the hardware landscape beyond 5 years or so, but undoubtedly543
we will see evolutionary changes of current hardware rather than revolutionary ones - a failed product544
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can now cost billions of dollars due to design and fabrication costs. Core counts will continue to go up,545
as transistor feature sizes decrease, with increasing use of multi-chip and 3D stacked solutions needed546
to avoid overly large silicon sizes. It is also likely that vendors will devote larger sections of silicon to547
specialized functions, such as we see with Tensor and Ray Tracing cores in current GPUs. FPGA and ASIC548
vendors are now offering specialized component layouts for domain specific applications, and this level of549
customization will likely increase. We are also beginning to see the combination of multiple different types550
of cores, such as high and low power CPUs and FPGAs into the same silicon die or chiplet array, leading551
to more integrated heterogeneous architectures with faster communication channels between the various552
components and much quicker offload speeds.553

7.2 Description of heterogeneous architectures554

Heterogeneous architectures such as GPUs and FPGAs are fundamentally different from traditional CPU555
architectures. CPUs typically possess a small number of complicated cores that excel at branch prediction556
and instruction prefetching. They have multiple levels of large, fast caches, and typically have very low557
access latencies. GPUs, on the other hand, have a very large number of simple cores (hundreds of thousands558
for modern GPUs), that do not handle branch mis-predictions gracefully. GPU cores that are grouped in559
a block must operate in lockstep, all processing the same instruction. Branch mis-predictions and thread560
divergence will cause a stall, greatly decreasing throughput. GPUs often have much more silicon devoted561
to lower and mixed precision operations than they do for double precision calculations, which are heavily562
used in High Energy Physics. GPUs are optimized for Single Instruction Multiple Data (SIMD) style of563
operations, where sequential threads or cores access sequential memory locations - randomized memory564
access causes significant performance degradation. Finally, GPUs have very high access latencies compared565
to CPUs - it can take tens of microseconds to offload a kernel from a host to a GPU. The combination of566
massive parallelism, memory access patterns, and high latencies of GPUs require a fundamentally different567
programming model than that of CPUs.568

7.3 Challenges for software developers569

All of the GPU manufacturers support programming only with their own software stack. NVIDIA uses570
CUDA, AMD promotes HIP, and Intel employs oneAPI. Other heterogeneous architectures such as FPGAs571
also use unique programming languages such as Verilog and HLS. The vast majority of current HEP572
software is written in C++, and supported by physicists who are usually not professional developers.573
Typical HEP workflows encompass millions of lines of code, with hundreds to thousands of kernels, none574
of which dominate the computation. In order to target the current diverse range of GPUs and FPGAs,575
we would have to rewrite a very large fraction of the HEP software stack in multiple languages. Given576
the limited available workforce, and the extremely challenging nature of validating code that executes577
differently on multiple architectures, experiments would have to make very difficult choices as to which578
hardware they could target, ignoring large amounts of available computing power. Fortunately, we have579
seen a number of portability solutions start to emerge recently, such as Kokkos, Raja, Alpaka, and SYCL,580
which are able to target more than one hardware backend (see Figure 4). Furthermore, hardware vendors581
have seen the benefits of cross platform compatibility, and are working to develop standards which they are582
trying to incorporate into the C++ standard. Ideally, a single language or API that could target both CPUs583
and all available heterogeneous architectures would be the preferred solution.584

Currently, mapping computational physics and data codes to GPU architectures requires significant effort585
and profiling. Most HEP code bases are not easily vectorizable or parallelizable, and many HEP applications586
are characterized by random memory access patterns. They tend to follow sequential paradigms, with many587
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conditional branch points, which make them challenging to adapt to GPUs. Even tasks such as particle588
transport, which in high luminosity environments such as the HL-LHC seemingly offer very high levels of589
parallelism, are in fact very difficult to run efficiently on GPUs due to rapid thread divergence cause by590
non-homogeneous geometrical and magnetic field constraints.591

One avenue that offers some hope for easier adoption of GPUs is the use of Machine Learning592
(ML) techniques to solve physics problems. We are seeing increasing acceptance of ML algorithms593
for pattern recognition and feature discrimination tasks in HEP, as well as for more novel tasks such as594
generative models for energy depositions in calorimeter simulations. ML backends for all GPU and other595
heterogeneous architectures already exist, and are often supported directly by the hardware manufacturers,596
which greatly eases the burden for HEP developers.597

8 SOFTWARE TOOLKITS

The evolution of simulation software toolkits will depend greatly on the hardware, whose evolution on the598
timescale of 10 years is uncertain as discussed in Section 7. Today’s leading toolkit, the Geant4 toolkit [3]599
used by most large experiments’ detector simulation, and also the particle transport tools FLUKA [5] and600
MARS15 [6] used in the assessment of radiation effects, are large, complex, and have evolved over thirty601
years of CPU-centric computation.602

8.1 Computing hardware accelerator usage603

Whether current simulation toolkits can be adapted to profit adequately from a variety of computing604
hardware accelerators, principally GPUs, or whether new accelerator-centric codes can be created and then605
interfaced into existing toolkits is a key research question. The profitability of the conversion also involves606
the effort required for the development of the production level code, and the cost to create GPU-capable607
applications. The latter is under active exploration.608

The research into GPU usage is inspired by efforts in related particle transport applications in HEP and609
other fields. As discussed in Secs. 3 and 6, the Opticks project [31] offloads simulation of optical photons610
to NVidia GPUs and demonstrates methods to deal with complex specialised geometries on these devices,611
specifically ones that have many repetitive structures. MPEXS, a CUDA-based application for medical612
physics [76] using Geant4-derived physics models, also demonstrated efficient use of GPU resources for613
regular ’voxelised’ geometries. However, the general problem of modeling a large range of energies for614
particles combined with the full complexities of modern detector geometries has not been tackled yet.615
Solving these general problems is the domain of two ongoing R&D efforts, the Celeritas project [42] and616
the AdePT prototype [26]. Both are starting by creating CUDA-based proof-of-concept implementations617
of electromagnetic physics, and particularly showering, in complex detector geometries on GPUs. Key618
goals of the projects include identifying and solving major performance bottlenecks, and providing a619
first template for efficiently extracting energy deposits, track passage data, and similar user-defined data.620
Initially, both are targeting the simulation of electron, photon, and positron showers in complex geometrical621
structures currently described by deep hierarchies with many repetitions of volumes at different levels.622
They have identified the need for a geometry modeller adapted for GPUs and accelerators, and sufficiently623
capable to handle these complex structures (see Sec. 3). They are in the process of defining and developing624
solutions for such a geometry modeller.625

The limitations of the bandwidth and latency for communication between the CPU and accelerator are an626
important constraint in the utilization of GPUs and other accelerators for particle transport simulation, and627
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for the overall application. Minimising the amount of data exchanged, such as input particles and output628
hits, between the CPU and accelerator, is an important design constraint for GPU-based particle transport.629
The types of detectors for which it is suitable may depend on this. The contention for this resource may630
also constrain the overall application which integrates the particle transport and showering with event631
generation, generation of signal, and further reconstruction.632

Existing prototypes such as AdePT and Celeritas strongly focus on keeping computation inside the633
accelerator, and moving back to the CPU only the absolute minimum of data and work. When only a634
selected region of a geometry is accelerated, a particle which escapes that region must be returned - as must635
particle tracks which undergo (rare) interactions not currently simulated in GPU code, e.g. photo-nuclear636
interactions. Of course the largest and critical data transferred out of the accelerator are the experiment hit637
records (or processed signal sum values) and other user information such as truth information.638

Early phase exploration of the potential of FPGAs for particle transport is being conducted for medical639
physics simulation [77]. Yet the challenges involved appear more daunting, due to the need to compile640
a complex tool into hardware. It seems likely that this approach would be investigated only after641
implementations are built using ’simpler’ building blocks on GPUs. Potentially these will profit from642
leveraging implementations created for portable programming frameworks.643

Based on current trends, except situations where ultimate performance is required for time critical644
applications, we expect the established vendor-specific libraries (CUDA, Hip, DPC++) to be slowly645
supplanted by the emerging portable programming paradigms (Kokkos, Alpaka, SYCL), and within a few646
years a convergence to be established on standard-supported languages and libraries such as C++’s standard647
library std::par execution policy. With the importance of portability between hardware of different vendors,648
it is critical to identify and invest in cross-vendor solutions, and potentially paradigms that can be used to649
investigate alternative hardware platforms, as mentioned above for FPGAs.650

8.2 Opportunities for Parallelism651

We expect applications and future toolkits will need to expose multiple levels of parallelism in order to652
manage resources and to coordinate with other computations, such as reconstruction and event generation.653
Such levels could entail parallel processing of different events as well as parallel processing of multiple654
algorithms or even multiple particles within an event. A detector simulation toolkit cannot assume that it655
controls all resources, but must cooperate with other ongoing tasks in the experiment application. At this656
point, it is unclear how to accomplish this cooperation efficiently.657

Seeking to obtain massive parallelism of thousands or tens of thousands of active particles is challenging658
to develop in detector simulation. The GeantV project [25] explored the potential of SIMD-CPU based659
parallelism by marshalling similar work (‘event-based’ in the parlance of neutron simulation), e.g. waiting660
till many particles entered a particular volume before propagating the particles through that volume. The661
project’s conclusion was that the speedup potential was modest - between 1.2 and 2.0.662

It seems clear that the ability to execute many concurrent, independent kernels on recent GPUs is of663
crucial interest to HEP, as it avoids the need for very fine grained parallelism at the thread level, which was664
the goal of the GeantV project. Given the difficulty of taking advantage of the full available parallelism665
of modern GPUs by a single kernel, being able to execute many kernels doing different tasks will be666
invaluable.667
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8.3 Parametrized Simulation668

In parallel with the need for a full, detailed simulation capability to meet the physics requirements669
of the future colliders, the focus is growing on developing techniques that replace the most CPU-670
intensive components of the simulation with faster methods (so called “fast simulation” techniques),671
while maintaining an adequate physics accuracy. This category includes optimization/biasing techniques672
that aim at tuning parameters concerning simulation constituents such as geometry or physics models and673
which are strictly experiment specific, as well as the possibility of parametrizing part of the simulation674
(i.e. electromagnetic shower development in calorimeters), by combining different machine learning675
techniques. R&D efforts are ongoing in all the major LHC experiments to apply cutting-edge techniques in676
generative modelling with deep learning approaches, e.g., GANs, VAEs and normalizing flows, targeting677
the description of electromagnetic showers.678

We expect the bulk production of Monte Carlo simulation data to be performed with a combination of679
detailed and parametrized simulation techniques. To this end, enabling the possibility to combine fast and680
full simulation tools in a flexible way is of crucial importance. Along these lines, we expect Geant4 to681
evolve coherently by providing tools allowing integration of ML techniques with an efficient and smooth682
interleaving of different types of simulation.683

8.4 Future of Geant4684

Due to its versatility, the large number of physics modeling options, and the investment of many685
experiments including the LHC experiments, we expect an evolved Geant4 to be a key component of686
detector simulation for both the ongoing and the near future experiments well into the 2030s. Over the687
next decade, we expect Geant4’s capabilities to evolve to include options for parameterized simulation688
using machine learning, and acceleration for specific configurations (geometry, particles and interactions)689
on selected hardware, both of which should significantly increase simulation throughput. These enhanced690
capabilities will however come with significant constraints, due to the effort required to adapt user code691
to the accelerator/heterogeneous computing paradigm. Furthermore, there is a need to demonstrate that692
substantial speedup or throughput improvements can be obtained before such an investment in adaptation693
of user applications can be undertaken. Full utilization of accelerators may not be required as offloading694
some work to accelerators should free up CPU cores to do additional work at the same time thereby695
improving throughput. In addition, some HPC sites may require applications to make some use of GPUs in696
order to run at the site. Therefore, some minimum GPU utilization by simulation may make it possible697
for experiments to run on such HPC resources thereby reducing the total time it takes to do large scale698
simulation workflows.699

9 APPLICATIONS OF HEP TOOLS TO MEDICAL PHYSICS AND OTHER FIELDS

After the initial developments of Monte Carlo (MC) methods for the Manhattan project, the tools became700
available to the wider research community after declassification in the 1950’s. One of the early adapters of701
MC methods were physicists in radiation therapy. Researchers were eager to predict the dose in patients702
more accurately as well as designing and simulating detectors for quality assurance and radiation protection.703
The simulations were done mainly using in-house developed codes, with some low energy codes modeling704
photons up to 20 MeV developed or transferred from basic physics applications [78, 33]. Use of MC705
tools from the HEP domain mainly started with heavy charged particle therapy, first using protons and706
Helium ions and later employing heavier ions such as Carbon ions. Early research here was also done with707
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in-house codes mostly studying scattering in inhomogeneous media. In the early 1990’s more and more708
high-energy physicists entered the field of medical physics and brought their expertise and codes with them.709
Thus started the use of general-purpose MC codes in radiation therapy that were initially developed and710
designed for high energy physics applications, such as Geant4 and Fluka. Fruitful collaborations were also711
established with the space physics field, with HEP-developed toolkits applied to particle detector design as712
well as the similar areas of dosimetry and radiation damage [79].713

9.1 Beam line design and shielding calculations714

Beam line design and shielding calculations are done prior to installing a treatment device. These715
applications of MC are no different to the HEP use case except for the beam energies studied. Beam line716
transport would be done by the machine manufacturers and is often based on specialized codes such as,717
for instance, Beam Delivery Simulation (BDSIM) [33]. On the other hand, shielding calculations aim at a718
conservative estimate with limited required accuracy and would use mostly analytical methods.719

Shielding calculations are also critical in both manned and unmanned space missions to determine the720
radiation environment for humans [80] and instrumentation, as well as detector backgrounds [81].721

9.2 Detector design studies722

Nuclear and HEP physics hardware developments are frequently finding applications in radiation therapy723
and space missions due to similar requirements concerning sensors and real-time data processing. Detectors724
are less complex compared to HEP but the components used in simulations are very similar. Differences725
are in the particles of interest as well as the energy region of interest. As in HEP, MC simulations are726
a powerful tool to optimize detectors and treatment devices [82, 83]. In fact, for radiation therapy or727
diagnostic imaging, MC are not only being employed by researchers but also by vendors to optimize their728
equipment.729

9.3 Dose calculation730

Predicting the dose in patients is arguably the most important task in radiation therapy and has therefore731
been the most active MC topic [84]. It has similar importance in space physics for predicting dose rates for732
astronauts and in materials/electronics [80, 85].733

Despite its accuracy, MC dose calculation has not found widespread use in treatment planning in medicine.734
However, vendors of commercial planning systems have now developed very fast Monte Carlo codes for735
treatment planning where millions of histories in thick targets need to be simulated in minutes or seconds736
in a very complex geometry, i.e. the patient as imaged with CT [86]. Therefore, these specialized codes737
have replaced multi-purpose MC codes that are often less efficient. Multi-purpose codes are however being738
used as a gold standard for measurements that are not feasible in humans. In addition, they are often used739
to commission treatment planning and delivery workflows. As we are dealing with biological samples such740
as patients, scoring functionality often goes beyond about what is typically used in HEP such as scoring741
phase spaces on irregular shaped surfaces or dealing with time-dependent geometries.742

9.4 Diagnostic medical imaging743

MC has long been used in the design of imaging systems such as positron emission tomography (PET) or744
computed tomography (CT) [87]. Like in therapy, HEP codes are being applied either directly or tailored745
to imaging applications, i.e. for low energy applications [88]. Time of flight as well as optical simulations746
are done using MC. In recent years MC is more and more used to also understand interactions in patients.747
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As radiation therapy is pursuing image-guided therapy, imaging devices are also incorporated in treatment748
machines resulting in problems that are being studied using MC such as the interaction between magnetic749
resonance imaging (MRI) and radiation therapy, either conventional (photon based) or magnetically scanned750
proton treatments.751

9.5 Simulation requirements for non-HEP applications752

9.5.1 Physics models and data for energy ranges of interest753

Medical and many space applications typically fall not under high-energy but low-energy physics. HEP754
tools might therefore not simulate some effects accurately or their standard settings are not applicable755
for low energies and have to be adjusted and potentially even separately validated [89]. Measurements of756
fragmentation cross-sections and attenuation curves are needed for MC applications in clinical environments.757
Most cross sections and codes are indeed not very accurate for applications outside HEP because materials758
and energy regions of interest are very different. In fact, cross sections needed for medical physics759
applications go mostly back to experiments done in the 1970’s and are no longer of interest to the760
basic physics community. For instance, considerable uncertainties in nuclear interaction cross sections761
in biological targets are particularly apparent in the simulation of isotope productions [90]. Furthermore,762
the interest of high-energy physics is mainly in thin targets whereas medical physics needs accurate763
representations of thick target physics to determine energy loss in patients or devices including Coulomb764
scattering and nuclear halo. For positively charged particles, the range in tissue materials needs to be765
predicted with mm accuracy and 2 accuracy in energy deposition at mm volumes. Novel approaches to766
verify treatment rely on detecting secondary gamma radiation outside of the patient requiring accurate767
nuclear excitation cross sections in the MeV region.768

9.5.2 Computational efficiency (variance reduction)769

In the future we may see two types of MC tools in medical physics, i.e. high-efficiency MC algorithms770
focusing solely on dose calculation for treatment planning and multi-purpose codes from high energy771
physics for research and development. The latter can and will be used more and more to replace difficult or772
cumbersome experiments such as detector design studies for dosimetry and imaging. Nevertheless, thick773
target simulations are often time consuming and variance reduction techniques have been developed in774
medical physics [91] that may also be applicable for high-energy physics applications, as discussed in775
Section 8, with cross-fertilization of the two fields.776

9.6 Future role of MC tools outside of HEP777

The main application of high-energy physics tools to other domains will continue to be in detector design,778
quality assurance and dose calculation. Furthermore, not only researchers in medical and space physics but779
also manufacturers of therapy and detector equipment are employing MC methods to develop new devices.780
Whilst these fields may not in general have the extreme requirements on performance and throughput as781
the future experiments discussed in Section 2, the improvements necessary here for HEP will benefit other782
user communities. By delivering higher accuracy physics with a smaller computational resource for a given783
sample size, a commensurate reduction in the costs to research time, money, and environmental impact784
will be possible.785

It is important that collaborations between the many communities utilizing simulation codes are786
maintained to ensure sharing of requirements and methodologies to mutual benefit. Medical physics787
increasingly overlaps with radiation biology, where research promises a higher clinical impact than pure788
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physics studies, a paradigm shift that became apparent in the last decade. Monte Carlo codes will thus789
be applied also in the field of radiation biology and radiation biochemistry [92]. Multiple efforts have790
already started, most notably the extensions of Geant4 (Geant4-DNA) and TOPAS (TOPAS-nBio) [93, 94].791
These extensions require codes to evolve particularly when it comes to physics in small nanometer volumes792
and computational efficiency when using very small step sizes, which may have commonalities with the793
geometry developments discussed in Section 3. Figure 5 shows an an example of the geometries of typical794
size and complexity of molecular structures that are targeted by these simulations. The toolkit/API design795
of codes such as Geant4 have been critical in allowing such extensions, as well as allowing development of796
a wide range of applications for generic use cases [88, 95, 96, 97]. It is vitally important that HEP MC797
codes continue to use this software architecture to allow such innovation and extension. With simulation798
geometries, energy regions, materials, particle tracking and scoring that may be very different from HEP799
applications, continued exchange of ideas from other user communities will be invaluable in maintaining800
and developing HEP simulation codes.801

10 SUMMARY AND CONCLUSIONS

Detector simulation codes such as Geant4, FLUKA, and MARS have played a central part in the802
development and operation of the current generation of HEP experiments and in the analysis and803
interpretation of their physics results. This critical role will continue as physicists design and plan the next804
generation of collider facilities to operate during the mid-21st. These experiments, like their predecessors,805
will push the boundaries of accelerator and detector technology to explore and improve our knowledge806
of fundamental physics. While simulation codes have already been significantly upgraded through the807
LHC era to take full advantage of technologies including multi-core CPUs and machine learning, further808
evolution will be needed for this software to run on future computing architectures and deliver the large809
and accurate data samples demanded by future collider programs.810

The primary challenges for detector simulation posed by future accelerators and detector designs are811
driven by the increased beam luminosities and energies combined with the high granularity (in space and812
time) of the proposed detectors. Higher luminosity naturally means that simulations will need to deliver813
larger sample sizes to reduce statistical uncertainties in, for example, background estimations, driving an814
overall need to increase performance and hence throughput. Corresponding increases in the accuracy and815
precision of models for electromagnetic and hadronic physics processes will thus be required to reduce816
systematic uncertainties, and to extend their domain of validity to cover higher beam energies and novel817
materials. Beam backgrounds will also increase in line with luminosity, and are a especially important818
area to model during the design phase of experiments to optimize physics and instrumental backgrounds819
therefore improving the precision of physics measurements and extending the reach of new particle searches.820
Higher granularity detector systems will challenge current codes for describing their geometries with821
the increased number of volumes, as well as propagating particles over large distances while retaining822
precision of their intersections with small or thin detector elements. R&D programs are already underway to823
explore directions for evolving this critical area of simulation. They are exploring techniques and hardware824
used in the computer graphics industry for ray-tracing and Computer-Aided Design (CAD), a particularly825
promising direction of research. Both high luminosity and detector granularity impact the final simulation826
step of digitization. The increased number of detector readout channels generates a higher computational827
load, especially for bottom-up models of signal creation, while the more intense radiation environment will828
require time-dependent effects measured from data to be modelled.829
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None of these components of the overall simulation toolkit exist in isolation. For example, the accuracy830
of energy depositions in a fine grained tracking calorimeter will be dependent on the interplay between831
the physics models and navigation of particles through the geometry elements under the influence of a832
magnetic field. Balancing physics accuracy against computing performance will be an important aspect for833
experimentalists and simulation code developers to consider. It is clear that employing a hybrid of full and834
fast parametrized or ML-based techniques is a realistic strategy for simulating detectors. Fast simulation835
may well find application in a broader range of cases than at the present time, either as a full generative836
step, or to optimize inputs to, or choice of, full Monte Carlo algorithms. Complete, high throughput, ”full”837
simulation workflows will nonetheless be required to develop, validate, and tune ”fast” methods, as well as838
to retrain or optimize them in response to changes in experiment conditions or physics program.839

While the debate here is driven by the requirements of future HEP collider programs, simulation software840
evolves in the context of changes in a broader landscape of developments in hardware and software for High841
Performance Computing in academia and industry. The ever rapid pace of technology development limits842
predictions of how this may impact HEP over the next five years, let alone the 2040-2050 timescale for843
experiments in future collider facilities, but even the current evolutionary trends in GPU, FPGA and other844
new architectures offer many exciting opportunities for greater computational power at lower monetary845
and environmental cost. Equally, a significant challenge for HEP simulation will be in evolving existing846
interfaces and algorithms to effectively utilize this diverse range of emerging architectures. Software847
portability tools to assist targeting multiple hardware backends are developing rapidly, and experience848
in their use is building within the HEP community. HEP-originated simulation codes have permeated to849
other fields requiring modeling of radiation transport, especially in medical, bio-, and space physics. The850
collaborations established through this wide range of use cases have lead to many mutually beneficial851
developments and impact in both research and industry, and this can be expected, and should be encouraged,852
to continue. Though there are differences in energy ranges and detector complexity, increased physics853
accuracy and computational efficiency and throughput will be to the benefit of all. Furthermore, new or854
novel commonalities may be found, for example in modeling and navigating complex geometries whether855
that be a future collider detector or a DNA molecule.856

Predicting the future for any technological or scientific endeavour can only offer a blurred snapshot of857
reality, but it is clear at least that the HEP community will continue to require accurate and computationally858
efficient detector simulation codes to develop and utilize its next generation of facilities. Developing859
software that meets these requirements presents a major, yet exciting, challenge that will foster collaboration860
across fundamental physics, high performance computing and computer science, medical, bio- and space861
physics, both in academia and industry. It is this depth and breadth of expertise across domains that will862
support and drive innovation in HEP simulation, making this human resource the most important to nurture863
and grow to enable the realization of HEP physics programs at future colliders during the second half of864
the 21st century.865
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Collider Particles
p
s Peak lumi. Peak pileup Total lumi.

[1034 cm�2 s�1] [ab�1]
HL-LHC [98, 99] pp 14 TeV 7.5 200 3–4
HE-LHC [100, 99] pp 27 TeV 16 500 15
LHeC [101, 102] ep 1.3 TeV 0.5–2.4 0.1 1
HE-LHeC [101, 102] ep 1.77 TeV 1.5 0.1 2
FCC-ee [103, 104, 105] ee 88–365 GeV 1.5–230 0 1.5–150
FCC-hh [103, 104, 106] pp 100 TeV 30 1000 20
FCC-eh [103, 104, 106] ep 3.5 TeV 1.5 1 2
CEPC [107, 108] ee 90–240 GeV 32–3 0 2.6–16
Muon Collider [109] µµ 3–14 TeV 1.8–40 * 1–20
ILC [110] ee 250–500 GeV 2.7–3.6 0 1
CLIC [111, 112] ee 0.38–3 TeV 1.5–6 0 1–5
CCC [113] ee 250–550 GeV 1.3–2.4 0 2–4

Table 1. The parameters of various future accelerators. * Muon colliders face beam-induced backgrounds,
which have different properties from pileup at ee or pp colliders.

Technology Tracker Calorimeter Muon detector PID
Solid state Planar, 3D, Si LGAD

MAPS, LGAD, CMOS
Gas TPC, DC RPC, MPGD RPC, MPGD, TPC, DC,

DT, MWPC MRPC
Scintillator SciFi, SiPM Tiles, fibers, crystals Panels
Noble liquid LAr
Cherenkov Quartz fibers RICH, TOF,

TOP, DIRC

Table 2. Summary of technologies and applications for future projects.
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Figure 1. Comparison of the average CPU time per event in the standard ATLAS pileup digitization (black
open circles) and the pre-sampled pileup digitization (red filled circles) as a function of the number of pp
collisions per bunch crossing (µ). The CPU time is normalized to the time taken for the standard pileup for
the lowest µ bin. Taken from Ref. [54].
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Figure 2. Peak performance in Flops (A) and fraction of Flops provided by GPU and CPU (B) for
GPU-accelerated systems deployed at the OLCF. The peak performance for Frontier is projected.

Figure 3. Power consumption (A) and Flops per MW (B) for GPU-accelerated systems deployed at the
OLCF. The power requirements for Frontier are projected.
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Figure 4. Portability solutions for heterogeneous architectures.

Figure 5. Molecules from the protein data bank read into TOPAS-nBio with a proton track (blue) and
secondary electrons (red). Two nucleic acids are shown; an RNA strand and a nucleosome.
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