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Renormalization group equations for the physical ¢ matrix are written for quan-
tum scattering with some potentials singular at the origin in two and three dimen-
sions. The momentum-space perturbative treatment of these scattering problems ex-
hibits ultraviolet divergences and permits renormalization ieading to a scale. These
equations yield the correct asymptotic behavior and some low-energy properties of
the t matrix. Illustrations are made for the Dirac delta potential in two and three
dimensions.

PACS Numbers 11.10.Hi, 03.80.+r, 11.10.Gh, 11.55.Bq

To Appear in Physical Review Letters

Renormalization group (RG) equations [1, 2] are very practical for handling a host of
divergent problems in physics. In particular, these equations are easily derived in quan-
tum field theory in dealing with ultraviolet divergences in perturbative expansion, and have
proved to be extremely useful in applications to quantum electrodynamics and quantum
chromodynamics. The ultraviolet divergences in perturbative quantum field theory can be
eliminated by renormalization to yield a scale [1-3). Except in some simple cases the renor-
malized perturbative series can not be sumined and this makes it difficult to draw conclusions
about the full solution. The RG equations on the other hand yield many general properties
of this solution.

Ultraviolet divergences also appear in the nonrelativistic quantum mechanical scattering
problem for potentials with certain singular behavior at short distances [4-9] in two and three
dimensions. Renormalization of these potential models leads to a scale and finite physical
observables [5]. In one dimension these divergences are absent.

Recently, there have been discussions on renormalization in configuration [7,8] and mo-
mentum [4, 5, 9] spaces for potential scattering with Dirac delta, contact, or zero-range
potential. This potential is simple, local and separable at the same time, and has been used
in atomic, particle [9, 10}, nuclear, and surface physics {7,8].

In this Letter, RG equations are wrillen for potential scattering with the Dirac delta
potential in two and three dimensions. In both cases there are ultraviolet divergences. In
the two dimensional case the ultraviolet divergence is logarithmic in nature, where as in the
three dimensional case it is linear in nature. In both cases, however, the renormalization can
be carried out in a similar fashion and the RG equations written.

The one dimensional delta potential has been frequently used to model many physical
systems. Because of the above-mentioned ultraviolet divergences, the same is not true for
two and three dimensional quantum scattering with delta potentials. However, the renormal-
ization and RG equations of the present Letter for these problems will allow one to use these
potentials to model actual physical systems, which are mostly two and three dimensional.

There is another interest to study the nonrelativistic scattering with delta potential in
two dimensions. This problem can be considered to be a good model of the ultraviolet

structure and high energy behavior of A9' field theory (2,7,9] in 3 + 1 dimensions. This



is because both problems have ultraviolet logarithmic divergences, require regularization,
are perturbatively renormalizable, collapse for attractive interaction but are asymptotically
free, etc. However, there is an important difference between 3 + 1 dimensional quantum
field theory and nonrelativistic potential scattering with delta potential. In the simplest field
theoretical model, because of creation and destruction of particles one cannot go beyond few
lowest orders of perturbation theory. The nonrelativistic scattering problem with the delta
potential in two dimensions, on the other hand, can be solved analytically. We shall also
study the nonrelativistic scattering problem with the three dimensional delta potential. Both
these studies will allow one to understand most of the subtleties of renormalization and RG
equations.

We discuss potential scattering with the delta potential. This potential exists only in
S-wave, as the centrifugal barrier washes it out in all other partial waves. The partial-wave

Lippmann-Schwinger equation for the scattering amplitude T'(p,q,k?) in D dimensions at

c.m. energy k? is given by

T, p k) =V(,p) + [ daV(r,a)
x G(q; k)T (q,p,k*), (1)

with the free Green function G(g; k?) = (k% — ¢* +i0)7", in units h = 2m = 1, where m is
the reduced mass. The integralsin Eq. (1) and in the following are over the relevant S-wave
phase space, e.g., we take d°q = (2/m)q*dg and d*q = qdgq with g varying from 0 to oo. For
the delta potential V(p',p) = A, and

T(p,p,k*) = D' = I(R)] 7, (2)

with I(k) = [ dPqG(g; k?). The integral I(k) possesses ultraviolet divergence for D > 1. For
D = 3 (2) this divergence is linear (logarithmic) in nature. Finite result for the ¢ matrix
of Eq. (2) can be obtained only if A-1 also diverges in a similar fashion and cancels the
divergence of I{k). In Eq. (2) AI(k) is the trace of the kernel of ihe integral equation (1)
and possesses ultraviolet divergence for D > 1. The kernel of Eq. (1) is noncompact and it
does not have scattering solution.

Hence some regularization is necded to give meaning to Eq. (1). This can be achieved

via the following regularized Green function involving a smooth cut-off A(> k)
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Grig A k) = (K — @ +i0)™ + (AT +¢")7
_ k2 4+ A?
T (K= @ +i0)(A? + )

()

With this Green function there is no ultraviolet divergence. The imaginary part of the Green
function is unaffected by this procedure which guarantees unitarity. However, in the end,
the limit A — oo has to be taken, which will reduce the regularized Green function to the
free Green function. Finite results for physical magnitudes, as A -+ oo, are obtained only if

the coupling X is also replaced by {he so called bare coupling A(A), defined, for example, by

AHA)=~[A+ A, D=3, (4)
=—[In(A/Ao)],D =2, (5)

where Ag is the physical scale of the system and characterizes the strength of the interaction
(compare with Agcp of strong interaction). The renormalized ¢ matrix will be a function of
Ao. The parameter A is positive for D = 2, but can also be negative for D = 3; in both

cases (|Ag| < A). Consequently, for a fixed finite A, the { matrix can now be written as
T(k,A) =" (A) = In(k, A7, (6)

where Ir(k,A) = [ dPqGr(g, A;k?) is a convergent iutegral. As A — oo, however, this
integral develops the original ultraviolet divergence. The quantity AY(A) of Eqs. (4) and
(5) has the appropriate divergent behavior, as A — 2o, and cancels the divergent part
of Ix(k,A). In Eq. (6) the redundant momentum labels p,p’ of the ¢ matrix have been
suppressed, and the explicit dependence of the ¢ matrix on A has been introduced.

Next the limit A = oo has to be taken in Eq. (6). With this regularization procedure

one has for the renormalized ¢ matrix

Tk, Ar(p), ) = R () = I, )] ()

where p is the scale of the problem and emerges as a result of renormalization. The renor-
malization scale p should be contrasted with the physical scale Ag. The renormalized
matrix will be independent of y. In Eq. (7) the explicit dependence of the ¢ matrix on both
yt and the renormalized coupling Agr{p) has been exhibited. The limiting procedure implied

by A = oo in Eq. (6) leads to the following definition for the renormalized coupling An(jt)
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AR () = Jim V) = Tk, A) = Tatko i) (8)

In Bq. (8), if integrals Ip are evaluated and the trivial limit A — oo taken. we get for both

D=3 and 2

)\”(/l) = )\(1\ = /l) (”)

This relation between the renormalized coupling and bare coupling depends on the regular-
ization scheme used. Iquations (1), {5), and (9) lead to the following expressions for the

renormalized couplings

Aplp) =~ + Ao D=3, (1

= —fIn{p/An) D =2 ()
The renormalized coupling for two scales p andl g1y are related by

NG b= AR o) e D=3 (12)

ARt A4 g = AR (o) + e, D =2, (1

Beuatious (12) and (13) celate the renormalized conpling for two different seales poand jig
and are the flow equations. The flow cquations are independent of the regularization scheme.
The presenl scattering model permits analytic solutions for both T = 3 and 2. In these

cases the exact renormalized ¢ matvices of Fa. (7) are given by

Tr(k, Xnlp) p) = [,\f('[/l) 0+ ik D=3 (Hn

=\ 0 =ik D =2 (15)

respectively. Explicitly, using definitions (10) and (11) for the renormalized coupling, these

renormalized ¢ matrices can be written as

Ttk Aply)op) =ik - Ag| D=3 (16)

S elnt=ik AT D =2 (1)

These t matrices depend on the renormalized coupling Ap(ge), hut not on g, that is the
explicit and implicit (through Ar(zt)) dependences of the ¢ matrix on g cancel. Physics is
determined by the value of Ap(j) at an arbitrary value of g2 (7], or the following y independent

quantities

M)+ =—A D=3, (18)

ARG o =Inde, D =2, (19)

as can be seen from Fgs. (11)-(17). The functional dependence of T on the physical scale
Ao depends ou the regularization schere. In the end the physical scale will be identified
with a physical ohservable and once this is done Ty will be independent of the repufarization
schete [5]. Other regularization sehentes can be used in place of . (3)[7.8]. Prrturbative
renovimalization has been carried out in two dimensions for the delta potential [7].

The renormalized { matrix is independent of g so is invariant under the gronp of trans-
formations jr — exp{s)p, which form the RGL 1o the present case. as in the A¢' model, it is

convenent to work in terms of the dimensionless conpling, gr{p). delined by

gry) = pAp(p). D =3, (20)

= A\pl(p), D = 2. 21

The renormalization condition is given by

d .
o Tt i) ) = 0. (22)
l’-/l
or,
d o .
[Il— + /’(gn):—‘] Tk, galp) 1) =0, (23)
(7[! ‘),’/R
where
Ogr(j
Blan) = //M‘)~ (24)
oy

Fqnation (23) is the RG equation.

As the present problem permits analvtic solution, the constant F{gn) of Eq. (21) can be
exactly calculated. For both D = 3, and 2. 3(gr) is a finite quantity independent of g, and
<o are the different terms of the RU equation (23). Yor T = 3. from Fas. (20) and (24) we

have



B(gr) = gals) + uz%- (25)

With Ag() defined by Eq. (10), we have
,OAR(p
u‘——(%(‘—) = wAg(p)- (26)
Then from Egs. (20), (25), and (26) we have
Blgr) = gr + 9p, D =3. (27)

Similarly, for D = 2, from Eq. (11) we have

ua*glﬁ"’ = X (). (28)

Then Egs. (21}, (24), and (28) lead to

B(gr) = gp, D =2. (29)

Next an equation can be written down expressing the invariance of the ¢ matrix

Tr(k, gr(st), #) under a change of scale:

Tr(vk, gr(p), 1) = ¥~ Ta(k, gr(s), #7™"), (30)

valid for both D = 2 &nd 3, so that

a a . .
[73;+ﬂa—# +(D—2)] Ta(vk, grl), 1) = 0. (31)
Eliminating the partial derivative (0Tr/3u) between FEgs. (23) and {31) we have
8 igr) s + (D~ )| Talrk, gnli), ) = 0 3
15, ~Plar) g 2)| Tr{vk, gr(p), n) = 0, (32)

with B(gr) given by Egs. (27) and (29), for D = 3 and 2, respectively. RG equation (32)
expresses the effect on the t matrix of scaling up momentum by a factor 7.

We now wish to find a condition for solution to Eq. (32). This equation expresses the
fact that a change in 7 can be compensated by a change in gg. So the following functional

form can be postulated for the ¢ matrix [2]

Tr(vk, gr(p), 1) = f(1)TR(K, gr(7), 1), (33)

so that

8 v dfty), Ogr(v) 2 1.
vy t 1 kv 1 = 0. 34
767 () dvy 7 v 9gr(v) n(vk,gr i) (34)
Comparing Eqs. (32) and (34), the coeflicients of 3/0gn lead to
dgr(Y) _ r
Y FR = 3(gr), (35)

where gr(7) is the so called running coupling constant.
Equation (35) can be solved for gn for both D = 3, and 2. For D = 3, we have from
Egs. (27) and (35)

7Bgn(“r)
Y

5 = 9r(7) + gx(7), (36)

Integrating Eq. (36) between v = po and v = ¢ and using Eq. (20), we obtain

Ar(po)

M) = T V) (37
For D = 2, from Eqs. (29) and (35), we have
a
220800 _ ga o) (35)
Y
Integrating Eq. (38) between v = pio and v = y, and using Eq. (21), we obtain
A
)\H(}l) _ R(#o) (39)

" 1= Ar(po)In(pt/po)

Equations (37) and (39) are interesting consequences of the RG equation (32). Equa-
tions (37) and (39) are the previously derived flow equations (12) and (13). The present
consideration of the RG equation yields identical results, as the RG equation contains the
information about the renormalization condition in a subtle fashion. In both two and three
dimensions Ag(y) increases with p. Thus if we start with a small Ap(po) at a given scale j1q,
the effective coupling constant increases with y as in the A¢* model [2]. With the increase of
4 one can reach a large enough Ar(p) where perturbative treatment is not valid. So using the
the RG equation one can go from the case of weak coupling to the case of strong coupling.

In the present problem one can write alternative RG equations equivalent to Eq. (32).
Next we do this for D = 3. The D = 2 case can be worked out similarly. We introduce a

new physical scale a by

a= -—l/Ao (40)
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so that Eq. (16) reduces to
Tr(k,a) = [ik + 1/a]™". (41)

The physical scale a is now recognized to be the scattering length. The name scale is justified
as scattering length is a measure of low energy scattering. This ¢ matrix has a bound-state
pole at k = ifa = —iAg and for positive (negative) a, 1/a? is the bound (virtual) state
energy in this model.

With definitions (20} and (40), one has the identity

J _ ., 0 0
ﬂ(gn)@ =(gr+ gn)é—)?]; = a5, (42)
so that the RG equation (32) becomes
i) 0
[75; — ab; + 1] Tr(vk,a) =0, (43)

Equations (32) and (43) express the fact that the effect of a change in y on Tp can be
compensated by the effect of a change in gn(u) or a, respectively.

In principle, RG equation (32) can be solved to yield the exact renormalized ¢ matrix.
However, it is illustrative to obtain the asymptotic high-energy behavior of this ¢ matrix
from RG equations (32) or {43). At high energies Egs. (32) or (43) reduces to

OTx(xk)
T,

This has the simple solution lim, o0 Tr(7k) ~ 1/+ again consistent with the ¢ matrices of

Lq. (41).

+ Tr(xk) = 0. (44)

In summary, we have derived and studied RG equations for potential scattering with
* delta potential in two and three dimensions. The RG equations yield certain general scaling
properties of the renormalized ¢ matrix. Similar RG equations should be valid in general
for potentials with certain renormalizable singular behavior at short distances. The RG
equations are expected to be very useful in situations where the analvtic solution is not
known, for example, in other few- and many-body problems. The study of RG equations in
these cases will be an intersting topic for future investigation.
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