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coupling theory with the localized wake force showed a strong head-tail instability, which 
has been seen in strong-strong beam-beam simulations. 
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 Introduction 

FCC-ee is a double-ring e+e− collider which will work in the wide energy range from 
Z-pole (45.6 GeV) to ttbar (up to 185 GeV). At such high energies, beam-beam effects 
can get an extra dimension due to beamstrahlung (BS) – radiation in the field of the 
oncoming bunch [1, 2]. FCC-ee apparently will be the first collider where BS plays a 
significant role in the beam dynamics. For this to happen, two conditions must be 
fulfilled: high energy and high charge density in the bunches. For example, the energy in 
LEP was large enough, but the charge density too small, so the effect was negligible. BS 
increases the energy spread (and hence the bunch length) and creates long non-Gaussian 
tails in the energy distribution, that can limit the beam lifetime due to a possible ingress 
of particles beyond the energy acceptance. 

Next, we will only consider the optimization process associated with the beam-beam 
effects. The actual table of parameters can be found in [3]. The collider has a two-fold 
symmetry and two IPs with a horizontal crossing angle and crab waist collision scheme 
[4, 5]. The luminosity per IP for flat beams (σy << σx) can be written as: 
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where Itot is the total beam current which in our case is determined by the synchrotron 
radiation power 50 MW. Therefore L can be increased only by making ξy larger and βy

* 
smaller while keeping Rhg reasonably large. We assume that ξy can be easily controlled 
by Np (number of particles per bunch), that implies adjusting the number of bunches Nb 
to keep Itot unchanged. 

The hour-glass factor Rhg depends on Li /βy
* ratio, where Li is the length of interaction 

area which in turn depends on σz and Piwinski angle φ : 
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Here θ  is the full crossing angle, and expressions after arrow correspond to φ  >> 1 and 
θ  << 1, see Fig. 1. 

 
Figure 1: Collision scheme with large Piwinski angle. 

The beam-beam parameters for σy << σx and θ ≠ 0 become [6]: 
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In particular, ξx ∝ 1/εx (in head-on collision) transforms to ξx ∝ βx
*/σz

2 when φ  >> 1, and 
ξy dependence on σx vanishes. Further, because of the symmetry, we consider a model 
with one IP (that is a half ring of the real collider). 

 Luminosity Optimization at the Top Energy 

At 175÷185 GeV the beam lifetime is determined mainly by single high-energy BS 
photons [2], that imposes another limitation on the luminosity. For the beamstrahlung 
lifetime we have [7]: 
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where α is a fine structure constant, η is the energy acceptance (which should be 
maximized), and ρ is the bending radius of particle's trajectory in the field of oncoming 
bunch. Evidently, ρ is inversely proportional to the absolute value of transverse electro-
magnetic force acting on the particle. Its dependence on the transverse coordinates for 
flat beams is shown in Fig. 2. The lifetime is determined by the minimum values of ρ 
which correspond to the particles with |x| < σx /2 and |y| > 2σy. However, during collision 
particles traverse the opposite bunch horizontally because of the crossing angle. This 
means that the maximum force depends mainly on the vertical coordinate, and ρ is 
inversely proportional to the surface charge density in the horizontal plane: 
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These relations are valid for both head-on and crossing angle collisions; the last 
transformation is based on (1) and assumption that Li ≈ βy

*. 

 
Figure 2: Absolute value of transverse force for flat beams, in relative units. 

Our goal is to increase L while keeping the lifetime (and therefore ρ) large enough. It 
follows that εy (i.e. both the betatron coupling and εx) should be minimized, and βy

* 
should be increased. For example, increase in βy

* (together with Li) by a factor of k may 
result in the luminosity gain by k1/2 with ρ unchanged. In fact, as is seen from (5), τBS is 
inversely proportional to Li provided that ρ = const. Therefore, to keep τBS = const when 
Li is increased, we need to slightly increase ρ. However, τBS dependence on Li is much 
weaker than the dependence on ρ (because the argument of exp is >> 1), so the gain in 
luminosity will be “almost” k1/2. All these manipulations mean an increase in σx and Np, 
but other than that, ξy will also rise by k3/2. Consequently, we may perform such 
optimization only as long as ξy remains below the beam-beam limit. 

This can be formulated in a different way. If there are multiple limiting factors, the 
maximum performance is achieved when all limits are reached simultaneously. In our 
case it means that βy

* (together with Li) should be adjusted in such a way that both τBS 
and ξy achieve their limits. This implies that if the balance shifts towards ''limit by the BS 
lifetime'' (e.g. decrease in η or increase in γ, εy), the luminosity optimization will require 
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some increase in Li (together with βy
*), and vice versa. But we should not forget that the 

condition Li ≈ βy
* is not very strict. 

If the bunch population is less than the nominal value, BS for the counter (strong) 
bunch weakens and its length decreases accordingly. Therefore, BS for the weak bunch 
becomes stronger and its lifetime decreases. Top-up injection can provide an asymmetry 
within ± 3%, while the lifetime should be ≥ 15 minutes. For safety margins, we chose the 
nominal Np to get a lifetime of ∼25 minutes for Np

w = 0.97 ∙ Np and Np
s = 1.03 ∙ Np. 

Hereinafter the superscripts w and s mark the weak and the strong beams, respectively. 
To find the optimum beta-functions we tested several options, and assume for now 

that η does not depend on β 
*. The results for 182.5 GeV are presented in Table 1. As we 

see, a decrease in βx
* requires smaller Np in order to keep the lifetime unchanged. 

Accordingly increase in βx
* helps to rise up the luminosity. Comparing the last two 

columns, note that the luminosity increases by only 10% when βy
* halves; the reason is 

the hour-glass which is just optimal for the rightmost column. Then, taking into account 
that in fact dynamic aperture and energy acceptance are larger for relaxed β 

*, the values 
in last column (βx

* = 100 cm, βy
* = 2 mm) should be considered closest to the optimal. 

Table 1: Luminosity at 182.5 GeV for different β 
*. 

Parameter βx* = 50 cm βx* = 100 cm 
εx / εy [pm] 1450 / 2.9 
σz (SR / BS) [mm] 2.5 / 3.3 
η  0.025 
Asymmetry ± 3% 
τ BS [min] ∼25 
φ  (with BS) 1.84 1.3 
Li  [mm] 1.6 2.0 
Np [1011] 2.1 2.8 
Nb 52 39 
βy

*  [mm] 1 2 1 2 
L  [1034 cm–2c–1] 1.5 1.3 1.65 1.5 

 Beam-Beam Interaction at Low Energies 

When energy decreases, the lifetime limitation due to BS weakens. This is easy to 
understand from the following considerations. Assuming that the lattice is not changed, 
emittances drop quadratically and σx, Li – linearly with energy. If we keep ξy and βy

* 
unchanged then, as follows from (6) and (5), ρ remains constant and τBS grows 
significantly because its dependence on γ  is very strong. Hence at low energies we may 
allow some reduction of η, and for higher luminosity we need to decrease βy

* and ρ. 
Consequently, since the bending radius in dipoles remains unchanged, the relative 
contribution of BS to the energy spread grows and the bunch lengthening becomes larger. 
For example, σz increases due to BS almost 3.5 times at 45.6 GeV and only 1.3 times at 
182.5 GeV. Why then we do not see this effect in low energy colliders? Because they 
have much higher magnetic field in the dipoles or, which is the same, much smaller 
bending radius in the arcs. 
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Reduction of βy
* has also limitations related to its maximum value in the nearest to IP 

quadrupole QD0: βy
max depends on L* (distance from IP to the quad’s edge) and its 

strength. If QD0 is divided longitudinally into several sections, as shown in Fig. 3, then 
at low energy we can use only the first section – with larger gradient. This moves the 
azimuth of βy

max towards IP and helps to reduce βy
*. In addition, the following sections 

can be turned in the opposite polarity and used as QF1. 
 

 
Figure 3: Longitudinal slicing of QD0. 

Next we will consider the beam-beam effects at 45.6 GeV, where βy
* = 0.8 mm can 

be obtained [3]. Decreasing σx and increasing σz leads to φ >> 1, so we can take full 
advantage of crab waist collision scheme. On the other hand, in collisions with φ >> 1 
new phenomena were recently discovered in simulations: 3D flip-flop [8] and coherent 
X-Z instability [9, 10]. It is these effects that now limit the collider performance, and 
further optimization was aimed at finding such parameters with high luminosity at which 
these instabilities do not arise. 

 3D Flip-flop 

Flip-flop instability is a well-known effect. For flat beams, where the perturbations 
occur mainly in the vertical direction, the same applies to flip-flop: it is actually 1D. In 
FCC-ee we have another kind of flip-flop, which is essentially 3D; beamstrahlung makes 
the difference. The threshold depends on asymmetry in population of colliding bunches, 
which causes a positive feedback in the following chain: 

1) Asymmetry in the bunch currents leads to asymmetry in the bunch lengths (due 
to beamstrahlung). 

2) In collisions with φ >> 1, asymmetry in the bunch lengths enhances synchrotron 
modulation of the horizontal kick for a longer bunch, thus amplifying synchro-
betatron resonances. In addition, ξx

w grows quadratically and ξy
w – linearly with 

decrease of σz
s, so the footprint expands and can cross more resonances. All this 

leads to increase in both emittances of the weak bunch (but mainly εx
w). 

3) An increase in εx
w has two important consequences: a) weakening of BS for a 

strong bunch, which makes it shorter, and b) growth of εy
w due to the betatron 

coupling, which leads to asymmetry in the vertical beam sizes. 
4) As follows from Fig. 2, the greatest BS is experienced by the particles with the 

vertical coordinates |yw| > 2σy
s. When σz

w > σz
s, the number of particles in the 

weak bunch experiencing strong BS increases while the number of such particles 
in the strong bunch decreases. Thus, asymmetry in the vertical beam sizes leads 
to further increase of asymmetry in the bunch lengths. 

5) Now we go back to point 2, and the loop is closed. 
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Figure 4: Example of 3D flip-flop. Density contour plots (√e between successive lines) 
in the space of normalized betatron amplitudes are shown for stable (top) and unstable 

(bottom) cases. 
In the end, we can get very strong blowups in all three directions, an example is shown 

in Fig. 4. Here asymmetry in the bunch currents is ± 5%. The top row corresponds to 
stable situation, though some acceptable blowup of the weak bunch is seen. In the bottom 
row asymmetry is the same, but Np increased by 5%. As a result the strong bunch shrank 
to unperturbed sizes (as without beam-beam), while the weak bunch became swollen in 
all three dimensions. Hence, this instability can limit the maximum allowable Np, and 
consequently the luminosity. 

 Coherent X-Z instability 

This instability develops in the horizontal plane and it is manifested by wriggle of the 
bunch shape. If we imagine that the bunch is sliced longitudinally in many pieces, the 
amplitudes of X-displacement of the slices depend on their Z-coordinates and vary on 
every turn. In Fig. 5 we can see εx evolution with time and coordinates of centers of slices 
at different turns. Red line corresponds to unperturbed state, green – to oblique part of the 
curve on the right, and blue – to the final stage with εx blown up. 
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Figure 5: Example of coherent X-Z instability: the bunch shape at 43, 309 and 1049 turns (left) 

and evolution of the horizontal emittance (right). 

The wriggles disrupt the operation of crab waist scheme, but the main damage is 
associated with a multiple increase in the horizontal emittance. In collision schemes with 
φ >> 1, an increase in εx itself does not have a noticeable impact on luminosity. However, 
this leads to a proportional increase in εy due to the betatron coupling, so eventually the 
luminosity will decrease several times. The instability does not cause dipole oscillations 
and therefore cannot be suppressed by feedback. We need to look for conditions under 
which it does not arise.  

  Parameters optimization at Z 

Both instabilities are associated with the growth of εx, therefore we have to reduce βx
* 

which means a decrease in both the normalized horizontal kick and ξx. One of the features 
of FCC-ee IR design is the absence of local horizontal chromaticity correction sections. 
Because of this, βx

* cannot be made too small, and attempts to do this lead to a decrease 
in the energy acceptance. Nevertheless, βx

* can be reduced to 15 cm while obtaining a 
sufficient η = 1.3% [3]. Longitudinal slicing of QD0 and the use of its part as QF1 (see 
Fig. 3) helps to achieve this. However, this is not enough to suppress the instabilities. 

The next step is to reduce ξx with a given βx
*. In fact ξx is important not itself, but in 

comparison with νs. As we shall see later, the greatest danger arises from synchro-
betatron resonances 2νx – 2m⋅νs = 1, the distance between them is just νs. Our task is to 
make ξx noticeably smaller than νs, then we can put the working point and the whole 
footprint between resonances. Herewith, by decreasing ξx we should preserve the 
luminosity, i.e. ξy. In assumption that βx,y

* and εy were already minimized and therefore 
are not free parameters, from (4) it follows that the only way to reduce ξx/ξy ratio is to 
increase the bunch length. The requirement of keeping ξy unchanged means that Np /σz is 
constant, therefore ξx decreases by the same factor that σz grows (not quadratically as it 
may seem). However, if we simply reduce RF voltage, νs also decreases and the ratio ξx 

/νs does not change. We will return to lowering URF later, but now consider another way 
of the bunch lengthening: an increase in the momentum compaction factor αp [11]. 

An advantage is that νs grows together (and by the same factor) with σz and 1/ξx. In 
addition, larger αp increases the threshold of microwave instability to an acceptable level. 
The main drawback of this approach is that εx also grows in the power of 3/2 with respect 
to αp. As we already said, εx is not so important by itself, but εy should be small and it is 
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usually proportional to εx, though at low energy some contribution to εy (0.2÷0.3 pm) 
comes from the detector solenoids. Besides, when the natural emittance is very small, 
various weak effects (feedback noises, etc.) become noticeable. For these and some other 
reasons, the lower limit for εy was set to 1 pm. Since the natural emittance at 45.6 GeV 
in the nominal lattice with small αp is less than 90 pm, even its threefold increase still 
allows to obtain εy = 1 pm with adopted for FCC-ee betatron coupling 0.2%. Thus we 
switched to a lattice where doubling of αp is achieved by reducing the phase advance per 
FODO cell in the arcs from 90°/90° to 60°/60° [3, 12]. At higher energies (80, 120 GeV), 
where instabilities are also present, this approach no longer has an advantage, due to an 
unacceptable increase in εy. 

To select the working point, we performed a scan of betatron tunes in a simplified 
model: linear lattice without explicit betatron coupling. The beam-beam effects were 
implemented in a weak-strong approximation, so there are no coherent instabilities. The 
results are presented in Fig. 6.  

 
Figure 6: Luminosity as a function of betatron tunes. The color scale from zero (blue) to 

2.3∙1036 cm-2c-1 (red). The black narrow rectangle shows the footprint at (0.57, 0.61). 

Since ξx << ξy, the footprint looks like a narrow vertical strip, bottom edge resting on 
the working point. Particles with small vertical betatron amplitudes have maximum tune 
shifts and are in the upper part of the footprint, so the resonances in Fig. 6 seem to be 
shifted down. The good region is reduced to a red triangle bounded by the main coupling 
resonance νx = νy, sextupole resonance νx + 2νy = n, and half-integer resonance 2νx = 1 
with its synchrotron satellites. All other higher-order coupling resonances are suppressed 
by crab waist, and therefore are not visible. From this plot it is also clear that moving the 
working point to the right we should increase νy to keep the distance to the main coupling 
resonance. Both these actions lead to a decrease in the distance between the upper edge 
of the footprint and the resonance νx + 2νy = n. Thus, if we want to have large ξy, the 
range of permissible νx is bounded to the right by the values 0.57÷0.58. 

Then we performed a scan of νx in a quasi-strong-strong model, in which coherent 
instabilities and flip-flop can be observed. The results are presented in Figures 7 and 8, 
where the synchro-betatron resonances are clearly seen. As the order of resonances 
increases their strength weakens, but we cannot move the working point too far to the 
right. Accordingly, for URF = 250 MV there are no regions free from coherent instability 
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in the working range of νx. And here we are helped by the reduction of URF, thereby 
decreasing νs (while ξx /νs not changed) and increasing the order of resonances located in 
the region of interest. In the end, we can now find good working points. Note that Np for 
the green lines in Figs. 7 and 8 was adjusted to get the same ξy as for the red line. 

Here it is appropriate to recall the semi-analytical scaling law obtained from other 
considerations for the threshold bunch intensity [12]:  

 *
x

zp
thN

β
σσα δ∝ , (7) 

where σδ  is the energy spread. In respect that αpσδ  ∝ νsσz  and ξx ∝ Npβx
*/σz

2, this is 
nothing else than a condition on the ratio ξx /νs. We obtained a similar relation from the 
simple requirement to "squeeze" the footprint in between synchro-betatron resonances. 

 
Figure 7: Growth of εx due to coherent X-Z instability, as a function of νx. Red line corresponds 
to URF = 250 MV, Np = 7⋅1010, green and blue lines – URF = 100 MV, Np = 1.1⋅1011 and 1.7⋅1011. 
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Figure 8: Growth of εx

w due to 3D flip-flop, as a function of νx. The colors are the same as in 
Fig. 7. Asymmetry in the bunch currents is ±5% for red and green lines, ±3% for blue line. 

However, as for the threshold, it is not so simple. Indeed, as Np increases, σz will also 
grow. In our range of parameters, where σz is defined mainly by BS, it scales as σz

2 ∝ Np. 
The rationale for this dependence is not so obvious, and we will not go into this, but in 
the simulation it was confirmed with good accuracy. As a result, it turns out that ξx does 
not depend on Np. Thus if we stay in a good area, Np can be increased – and there is simply 
no threshold. This is clearly seen in Fig. 7 comparing the green and blue lines, which 
differ only in Np. The reverse side of this coin is that if we have instability, then getting 
rid of it simply by reducing Np will be quite difficult. To do this, it is necessary to descend 
to the region where the dependence σz

2 ∝ Np is violated, which means a decrease in the 
luminosity several times.  

Then if we stay at a good point, what limits us? First, the increase in the energy spread 
(due to BS), which becomes comparable with that on the top energy. The non-Gaussian 
tails of the energy distribution are now not so long, but η  has almost halved – as a result 
of a significant decrease in βx

* and damping decrements. Consequently, as Np grows, we 
will encounter a lifetime limitation by the energy acceptance. Secondly, by increasing νx 
(and correspondingly νy) we reduced the allowable ξy and approach the ordinary beam-
beam limit. This is particularly evident in Fig. 8, where the asymmetry causes an 
additional increase in ξy

w which reinforces the flip-flop. And we see how additional odd 
resonances appear to the right – where the top of footprint approaches νx + 2νy = n. It 
means that minimizing asymmetry in the currents of colliding bunches again becomes 
critical. 

In the end we can get high luminosity, but bunches will lengthen ~3.5 times because 
of BS. If we bring into collision so large currents with the “nominal” σz (energy spread 
created only by SR), the beam-beam parameters will be far above the limits and the beams 
will be blown up and killed on the transverse aperture, before they are stabilized by BS. 
To avoid this, we must gradually increase the bunch current during collision, so we come 
to bootstrapping. An example is presented in Fig. 9. We start with approximately one 
quarter of the final bunch population, then adding small portions to e+ and e−  beams by 
turns. In fact, the injection cycle will last about 2 minutes, but in simulations it was 
reduced to ~2 damping times (10000 turns in “half-ring” collider). 
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Figure 9: Simulated bootstrapping for Z-pole operation. 

 Parameters optimization at W and HZ 

As the energy increases, the bunch lengthening and Piwinski angle decrease, while 
the damping decrements grow. Hereby both instabilities weaken, but still continue to be 
determining factors. In connection with this, the procedure for optimizing the parameters 
was similar to that at Z-pole and consisted of the following steps: 
 

1) The RF voltage is made small, but so that RF acceptance still exceeds the energy 
acceptance, and this defines νs. Then νx is selected in the range of 0.565÷0.580 
with a condition νx ≈ 0.5 + νs ∙ (m + 0.5), and νy = νx + 0.03÷0.04. 

2) At this working point, we look for βx
* at which the coherent X-Z instability 

disappears, while Np is set to some reasonable value – as we said above, the 
threshold does not depend on this. The final value of βx

* is selected slightly below 
the threshold (namely, 20 cm at 80 GeV and 30 cm at 120 GeV). In this case, the 
3D flip-flop usually also disappears, and if not, just move νx a little. 

3) The lattice optimization is performed for the selected βx
* (and βy

* = 1 mm) in 
order to maximize the dynamic aperture and energy acceptance [3]; hereby we 
obtain η (namely, 1.3% and 1.5%). 

4) Then quasi-strong-strong simulations are performed with asymmetry ±3% (this is 
determined by the required beam lifetime and the injection cycle time). The bunch 
population Np is scanned, while the restriction is the lifetime of the weak bunch. 
In this way, we determine the maximum Np and luminosity. 

 

Note that at 120 GeV single high-energy BS photons also become important, and they 
impose a limit on Np, but β * should be optimized from other considerations. 

 Conclusion 

FCC-ee is designed for a wide range of energies, so the parameters optimization looks 
different at different points. The biggest problem at low energies is represented by two 
new phenomena found in simulations: 3D flip-flop and coherent X-Z instability. To 
combat them, the following steps were taken: an increase in the momentum compaction 
factor (at Z-peak only), a decrease in βx

* and URF (and thereby in νs), an increase in νx,y 
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by about 0.03 compared to the original design, and a neat choice of νx between synchro-
betatron resonances. Note that an increase in νx,y has one more benefit: the tunes of the 
entire ring move farther from the integer, that facilitates the tuning of linear optics. 

At the top energy, the instabilities are suppressed by very strong damping, but another 
problem becomes dominant: the lifetime limitation by single high-energy beamstrahlung 
photons. Therefore, in contrast to low energies, optimization requires an increase in beta-
functions. It should also be noted that in the entire energy range, beamstrahlung plays a 
decisive role and luminosity is limited by the energy acceptance. 
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