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In a special run of the LHC with 𝛽★ = 2.5 km, proton–proton elastic-scattering events
were recorded at

√
𝑠 = 13 TeV with an integrated luminosity of 340 μb−1 using the ALFA

subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the
Mandelstam 𝑡 variable in the range from −𝑡 = 2.5 · 10−4 GeV2 to −𝑡 = 0.46 GeV2 using 6.9
million elastic-scattering candidates. This paper presents measurements of the total cross
section 𝜎tot, parameters of the nuclear slope, and the 𝜌-parameter defined as the ratio of the
real part to the imaginary part of the elastic-scattering amplitude in the limit 𝑡 → 0. These
parameters are determined from a fit to the differential elastic cross section using the optical
theorem and different parameterizations of the 𝑡-dependence. The results for 𝜎tot and 𝜌 are

𝜎tot(𝑝𝑝 → 𝑋) = 104.7 ± 1.1 mb, 𝜌 = 0.098 ± 0.011.

The uncertainty in 𝜎tot is dominated by the luminosity measurement, and in 𝜌 by imperfect
knowledge of the detector alignment and by modelling of the nuclear amplitude.
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1 Introduction

Measurements of elastic scattering at hadron colliders give unique experimental access to non-perturbative
dynamics, which cannot be calculated from first principles. Of particular importance are the total hadronic
cross section, 𝜎tot, and the ratio of the real part to the imaginary part of the elastic-scattering amplitude
(𝜌-parameter), which probes Coulomb–nuclear interference (CNI). These observables are related by
dispersion relations derived from foundational unitarity and analyticity arguments for scattering amplitudes.
Dispersion relations connect the 𝜌-parameter at a certain energy to the energy evolution of 𝜎tot both below
and above this energy. The 𝜌-parameter at the LHC energy has recently received significant interest
because of a measurement at

√
𝑠 = 13 TeV by the TOTEM experiment [1] which measured a lower value

of the 𝜌-parameter than would be expected assuming a ln2 𝑠 rise of the total cross section, 𝑠 being the
centre-of-mass energy squared.

The 𝜌-parameter is sensitive not only to the high-energy evolution of the total hadronic cross section but
also to the fundamental structure of the elastic-scattering amplitude. Traditionally, the elastic-scattering
amplitude at energies well above 100 GeV has been thought to be dominated by an exchange of Pomerons
in the 𝑡-channel (see e.g. Ref. [2]). In QCD the Pomeron is represented by a two-gluon colourless state
with spin–parity–charge quantum numbers JPC = 0++. The additional possible presence of a three-gluon
colourless state with JPC = 1−−, the so-called Odderon, can also influence the value of the 𝜌-parameter.
Thus, measurements of the 𝜌-parameter at the highest energy of the LHC are essential.

The 𝜌-parameter is defined as the ratio of the real part to the imaginary part of the elastic-scattering
amplitude in the limit 𝑡 → 0, i.e.

𝜌 =
Re[ 𝑓el(𝑡)]
Im[ 𝑓el(𝑡)]

����
𝑡→0

,

where 𝑓el(𝑡) is the elastic-scattering amplitude and where 𝑡 stands for the four-momentum transfer in the
reaction.

Normally, the 𝜌-parameter is determined by measuring the differential elastic cross section at such small
values of |𝑡 | that the amplitude is sensitive both to the Coulomb amplitude and the strong amplitude, and
thus also to the interference between the two. The phase of the Coulomb amplitude is known, and therefore
the value of 𝜌 can be extracted from the measured size of the interference term.

The ATLAS experiment has previously measured elastic scattering at 7 and 8 TeV [3, 4] using the ATLAS
Roman Pot system ALFA [5]. However, those measurements did not extend to the region of very small
|𝑡 |-values where the differential cross section is sensitive to the 𝜌-parameter. Such small |𝑡 |-values require
measurements of angles in the microradian range, which in turn need even smaller divergence of the
beam at the interaction point (IP). Moreover, they require that the vertically movable Roman Pot detectors
approach to within millimetres of the beam.

This paper presents a new measurement using 𝑝𝑝 collision data at
√
𝑠 = 13 TeV, corresponding to an

integrated luminosity of 340 μb−1. For the first time, the ATLAS measurement is extended, by an order of
magnitude lower in −𝑡, to such small scattering angles that the Coulomb interaction starts to play a role.
Here, the differential elastic cross section is measured down to −𝑡 = 2.5 · 10−4 GeV2. The acceptance for
elastic events is very small for such low values of |𝑡 | and if an acceptance greater than 10% is required, the
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lower limit is −𝑡 = 4.5 · 10−4 GeV2. The needed small divergence of the beam at the IP is achieved by using
very high-𝛽★ optics1 (𝛽★ = 2.5 km), producing a large beam spot size but very small beam divergence.

The measurements rely upon the very accurate luminosity determination that ATLAS provides for all
cross-section measurements [6]. The TOTEM experiment has a different approach, using the so-called
luminosity-independent method for the normalization of the differential cross section. The main uncertainty
in using this method comes from the Monte Carlo estimate of the non-measurable forward diffractive
cross section. In addition, ATLAS has introduced data-driven methods to constrain the parameters of
the detector alignment. The alignment uncertainty and the luminosity uncertainty together constitute the
dominant uncertainty in the measurement of the differential elastic cross section.

The optical theorem connects the hadronic component of the total cross section 𝜎tot to the imaginary part
of the scattering amplitude in the forward direction,

𝜎tot = 4𝜋 Im [ 𝑓el (𝑡)] |𝑡→0 . (1)

In the same manner as in the ATLAS measurements at 7 TeV and 8 TeV, the optical theorem is also used in
the present analysis to determine 𝜎tot by extrapolating the differential cross section to 𝑡 → 0. The total
hadronic elastic cross section, in turn, is obtained from an integration of the measured differential elastic
cross section. Using the trivial relation, 𝜎inel = 𝜎tot − 𝜎el, the total inelastic cross section can also be
calculated.

Another aspect of interest is whether the differential elastic cross section can be described by a simple
exponent in the region where the strong interaction dominates or if higher-order corrections are needed (for
an overview of the experimental situation, see the introduction of Ref. [7]). Such tendencies were already
observed at the Intersecting Storage Rings (ISR) but the sample size was insufficient to draw a definite
conclusion. With the large sample available here at 13 TeV, ATLAS has an opportunity to establish such
a non-exponential behaviour. TOTEM has reported observations of non-exponential behaviour at both
8 TeV [7] and 13 TeV [8].

The paper is organized in the following way. Section 2 presents the experimental set-up and includes a
brief description of the ALFA subdetector. The data sets and the data-taking conditions are discussed in
Section 3, where the measurement method and detector alignment are also explained. The theoretical
framework and simulation tools for the description of elastic scattering are presented in Section 4. The
main points of the data analysis are discussed in Section 5. Section 6 is devoted to the determination of the
differential elastic cross section and the physics parameters. The interpretation of the results is discussed in
Section 7. The conclusions are given in Section 8.

2 Experimental set-up

The ALFA detector is a specific part of the ATLAS experiment [9] designed to measure the elastic scattering
of protons. Because the protons are elastically scattered at very small angles the tracking detectors need to
be placed close to the beam and far from the IP. For this purpose two stations with tracking detectors are
located on both sides of the central ATLAS detector.

1 The 𝛽-function determines the variation of the beam envelope around the LHC ring and depends on the focusing properties of
the magnetic lattice. 𝛽★ is the value of the 𝛽-function at the IP. The beam divergence at the IP is about 0.3 μrad for 𝛽★ = 2.5 km.
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The conceptual layout of the detectors in the two stations on one side of the ATLAS detector is shown in
Figure 1. In each station, two main tracking detectors (MDs) measure the trajectory of scattered protons in
the upper or lower half of the station. Overlap detectors (ODs) are placed on the right and left sides of
each MD. They are used to measure the vertical distance between the upper and lower MDs by recording
halo protons passing through the left-side or right-side ODs on the two MDs. The MDs and ODs are
supplemented by trigger counters made of 3 mm scintillator tiles. The detectors are housed in so-called
Roman Pots (RPs), an upper one and a lower one, which are movable and can approach the circulating
beam in the vertical direction to within 1 mm. Due to the layout of the LHC accelerator, with two parallel
beam pipes close to each other in the horizontal plane, a choice of vertically moving RPs was natural.

Each MD consists of 10 modules with 64 scintillating fibres of 0.5 mm size glued on both the front and
back sides of a titanium support plate. The fibres on both sides are arranged orthogonally in a 𝑢𝑣-geometry
at ±45◦ to the 𝑦-axis. The module layers are staggered in steps of a tenth of the fibre size. The spatial
resolution of the MDs is measured to be about 32 μm. The ODs consists of only three layers of 0.5 mm
fibres. A detailed description of the ALFA detector can be found in Ref. [5].

MD
upper

lower
MD

OD– OD+

MD
upper

lower
MD

OD– OD+

Inner station

Outer station

IP

Figure 1: The layout of the ALFA detectors on one side of ATLAS: the main tracking detectors MD and the overlap
detectors OD+ and OD− on their right and left sides, respectively. The blue-coloured MDs and ODs are housed in
the upper RPs, while the green-coloured ones are in the lower RPs.

The schematic layout of the ALFA stations in the LHC is shown in Figure 2. Two stations at distances of
237 m and 245 m on each side of the interaction point ensure the reconstruction of the scattered proton’s
trajectory. The stations on the right side of ATLAS measure the scattered protons along the outgoing LHC
beam 1 line (C-side), while stations on the left side cover the outgoing LHC beam 2 line (A-side). The
eight MDs form two independent spectrometer arms. Arm 1 consists of the upper detectors in the two
stations on the left side combined with the lower detectors in the two stations on the right side of the IP.
Arm 2 consists of the two lower detectors on the left side combined with the two upper detectors on the
right side. The preselection of elastic-scattering events requires triggers to have fired in at least one MD on
either side of a spectrometer arm.

In the LHC Long Shutdown period from 2013 to 2014 (known as LS1) some major technical investments
were made to ensure data taking with ALFA in Run 2. Dangerous heating of the fiber detectors up to
damage level was observed at higher beam intensities in Run 1. To protect the detectors, all stations
were equipped with an active air cooling system and additional passive cooling components. Another
modification was necessary to reach the high-𝛽∗ value of 2.5 km: two additional water-cooled power cables
were installed to allow more flexible quadrupole operation.
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237 m
245 m

237 m0
245 m

Figure 2: A sketch of the experimental set-up, not to scale, showing the positions of the ALFA Roman Pot stations in
the outgoing LHC beams, and the quadrupole (Q1–Q6) and dipole (D1–D2) magnets situated between the IP and
ALFA. The ALFA detectors are numbered A1–A8, and are combined into inner stations A7R1 and A7L1, which are
closer to the IP, and outer stations B7R1 and B7L1. The arrows in the top panel indicate the beam directions and in
the bottom panel the scattered proton directions. The stations A7R1 and B7R1 measure the scattered protons along
the outgoing LHC beam 1 line (C-side) while stations A7L1 and B7L1 cover the outgoing LHC beam 2 line (A-side).

For physics analysis the most relevant modification was the relocation of the outer stations B7L1 and B7R1.
The new positions increased the distance between inner and outer stations from 4 m to about 8 m. As a
consequence the track angular resolution improved significantly.

3 Experimental method

3.1 Measurement principle

The data were recorded with special beam optics characterized by a 𝛽★ of 2.5 km [10] at the IP resulting in
small beam divergence and providing parallel-to-point focusing in the vertical plane. In parallel-to-point
beam optics the betatron oscillation has a phase advance Ψ of 90◦ between the IP and the RPs, such that all
particles scattered at the same angle are focused to the same position in the detector, independent of their
production vertex position. This focusing is only achieved in the vertical plane.

The beam optics parameters are needed for the reconstruction of the scattering angle 𝜃★ at the IP. In elastic
scattering at high energies the four-momentum transfer 𝑡 is calculated from 𝜃★ by:

− 𝑡 =
(
𝜃★ × 𝑝

)2
, (2)

where 𝑝 is the nominal LHC beam momentum of 6.5 TeV [11] and 𝜃★ is reconstructed from the proton
trajectories in ALFA. The trajectories are measured in the beam coordinate system, where the transverse
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positions 𝑥 and 𝑦 are determined relative to the nominal orbit. A formalism based on transport matrices
relates the positions and angles of particles at two different points of the magnetic lattice.

The trajectory (𝑤(𝜉), 𝜃𝑤 (𝜉)), where 𝑤 ∈ {𝑥, 𝑦} is the transverse position at a distance 𝜉 from the IP and
𝜃𝑤 is the angle in the 𝑤 direction between the particle trajectory and the nominal orbit, is given by the
transport matrix M and the coordinates at the IP (𝑤★, 𝜃★𝑤 ):(

𝑤(𝜉)
𝜃𝑤 (𝜉)

)
= M

(
𝑤★

𝜃★𝑤

)
=

(
𝑀11 𝑀12
𝑀21 𝑀22

) (
𝑤★

𝜃★𝑤

)
. (3)

Here the elements of the transport matrix can be calculated from the optical function 𝛽 and its derivative
with respect to 𝜉 and Ψ. The transport matrix M must be calculated separately in 𝑥 and 𝑦 and depends
on the longitudinal position 𝜉; the corresponding indices have been dropped for clarity. The focusing
properties of the beam optics in the vertical plane enable a reconstruction of the scattering angle with
good precision using only 𝑀12, but in the horizontal plane the phase advance is close to 180◦ and different
reconstruction methods are investigated.

The ALFA detector was designed to use the ‘subtraction’ method, exploiting the fact that for elastic
scattering the particles are back-to-back, so that the scattering angles on the A-side and C-side are the
same in magnitude and opposite in sign, and that the protons originate from the same vertex. The beam
optics was optimized to maximize the lever arm 𝑀12 in the vertical plane to access the smallest possible
scattering angle. The positions measured with ALFA on the A-side and C-side of ATLAS have the same
magnitude to within 50–100 μm but opposite signs, and in the subtraction method the scattering angle is
calculated according to:

𝜃★𝑤 =
𝑤A − 𝑤C

𝑀12,A + 𝑀12,C
. (4)

The measurements from inner and outer stations are averaged in 𝑦 to obtain the final value of 𝜃★. The
subtraction method is the nominal method in both planes and yields the best 𝑡-resolution. In contrast to
previous analyses using 90 m optics [3, 4], the lever arm 𝑀12 in the horizontal plane at the inner stations is
so small that its contribution to the scattering angle determination introduces an unacceptable degradation
of the resolution. Therefore, a method named ‘subtraction light’ is used instead, which uses 𝑦 everywhere
in the 𝜃★-reconstruction but ignores the 𝑥-measurement at the inner stations and only uses 𝑥 at the outer
stations. However, the 𝑥 measurement is used for event selection purposes and for the local track angle
used in the method described below.

An alternative method for the reconstruction of the horizontal scattering angle uses the ‘local angle’ 𝜃𝑤 of
the tracks measured between the inner and outer stations on the same side:

𝜃★𝑤 =
𝜃𝑤,A − 𝜃𝑤,C

𝑀22,A + 𝑀22,C
. (5)

Another method performs a ‘local subtraction’ of measurements at the inner station at 237 m and the outer
station at 245 m, separately on the A-side and C-side, before combining the two sides:

𝜃★𝑤,𝑆 =
𝑀245

11,𝑆 × 𝑤237,𝑆 − 𝑀237
11,𝑆 × 𝑤245,𝑆

𝑀245
11,𝑆 × 𝑀237

12,𝑆 − 𝑀237
11,𝑆 × 𝑀245

12,𝑆
, 𝑆 = A, C.

Finally, the ‘lattice’ method uses both the measured positions and the local angle to reconstruct the
scattering angle by the inversion of the transport matrix(

𝑤★

𝜃★𝑤

)
= M−1

(
𝑤

𝜃𝑤

)
,
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and from the second row of the inverted matrix the scattering angle is determined to be

𝜃★𝑤 = 𝑀−1
21 × 𝑤 + 𝑀−1

22 × 𝜃𝑤 .

The lattice method yields a scattering angle measurement at each station, and the average value is taken for
the 𝑡-reconstruction. All methods using the local angle suffer from limited resolution due to a moderate
angular resolution of about 5 μrad. These alternative methods are nevertheless used to cross-check the
subtraction method and determine beam optics parameters.

For all methods, 𝑡 is calculated from the scattering angles as follows:

−𝑡 =

(
(𝜃★𝑥 )2 + (𝜃★𝑦 )2

)
𝑝2, (6)

where 𝜃★𝑦 is always reconstructed with the subtraction method, because of the parallel-to-point focusing in
the vertical plane, while the four methods are used for 𝜃★𝑥 .

3.2 Data taking

Since the high-𝛽★ runs are very different from the standard LHC runs, a few test fills were performed
to find acceptable beam parameter settings. The minimum accessible value 𝑡min is influenced by three
parameters: the 𝛽-function, the distance of the detectors from the beam trajectory, and the beam emittance.
It is expressed in the following formula:

|𝑡min | =
𝑝2 · 𝑛2 · 𝜖𝑁

𝛽★
,

with the beam momentum 𝑝, the detector transverse position as a multiple 𝑛 of the beam width 𝜎 =
√
𝜖 · 𝛽,

the (normalized) emittance 𝜖 (𝜖𝑁 and the value of the 𝛽-function at the IP, 𝛽★.

To achieve a |𝑡min | value of a few times 10−4 GeV2 for the given beam momentum of 6.5 TeV and
𝛽★ = 2.5 km, the detectors need to be placed at a distance of 3𝜎 from the beam trajectory. The target value
for the emittance was about 1 μm.

To achieve acceptable conditions for recording physics data, several collimator settings were tested. The
tight collimator positions induced shower particles by interactions with halo particles. The main challenge
in the data taking was the handling of the rapid increase of background for elastic triggers.

The final procedure was to scrape the beam with the primary vertical collimators to 2𝜎 of the beam width
and position the RPs at 3𝜎. The collimators were then retracted to 2.5𝜎 to reduce the impact of shower
particles from their edges. In addition the secondary vertical and horizontal collimators were used to
optimize the background conditions.

Due to LHC machine protection requirements, the total beam intensity in the high-𝛽★ runs is limited to
3 · 1011 protons per beam. A filling scheme of five bunches with 6 · 1010 protons each was used in all fills.
For background studies in the first fill, one pair of non-colliding bunches was used.

After the LHC was filled, the energy was ramped up to 6.5 TeV and 𝛽★ was de-squeezed to 2.5 km. The
next step was the beam-based alignment (BBA). In this procedure, the RP windows scrape the beam edge
and the resulting signals in the beam loss monitors [12] are used to determine the beam trajectory. All RP
and collimator positions are given in terms of the beam width 𝜎 relative to the measured beam trajectory.
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When the BBA procedure was finished, the collimators were moved to their final positions and the RPs
were set at the 3𝜎 positions, corresponding to a distance between the RP window facing the beam and the
beam orbit of about 0.5 mm. The detectors themselves were about 0.3 to 0.4 mm further away from the
beam orbit due to the RP window thickness and the gap towards the detector edge.

The evolution of the background fraction was monitored by the ratio of background to elastic trigger rates.
If the background rate reached the level of the elastic rate the RPs were retracted slightly and a re-scraping
to a beam width of 2𝜎 was performed. Depending on the beam intensity, this procedure was repeated after
30 to 90 minutes. The fill was dumped when the elastic rate fell below 1 Hz.

In four fills (5313, 5315, 5317, 5321), which each lasted between 10 and 24 hours, a total integrated
luminosity of about 340 μb−1 was collected. The luminosity and the recorded number of elastic-scattering
candidates for the individual fills and runs are given in Section 5.1.

The emittance was regularly measured by wire scans and a dedicated synchrotron light monitor. After
injection, typical values of the horizontal and vertical emittances were below 1 μm. After ramp-up and
de-squeezing, these values grew to about 1.1 μm for the vertical emittance and about 2.5 μm for the
horizontal emittance. The measured emittance and its time evolution are taken into account in the event
simulation model described in Section 4.2.

A dedicated trigger menu was used to record the sample of elastic interactions, and also the various
diffractive and background samples needed for systematic studies. The collection of elastic events is based
on conditions which require in each spectrometer arm a trigger signal in at least one detector in the stations
at opposite sides of the central ATLAS detector. For background studies, a similar trigger pattern was used
but it combined all upper or lower detectors of all stations, which excludes elastic events by construction.
The trigger efficiency was derived from a minimum-bias sample, which is based on a single trigger signal
from any ALFA detector. For the selected data sample, the data acquisition dead time was below 0.3% and
the trigger efficiency was above 99.97%. An extensive software suite [13] is used in the reconstruction of
data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3.3 Track reconstruction and alignment

The tracks of the elastically scattered protons are reconstructed in the ALFA main detectors. The tracks
are reconstructed individually in each ALFA detector. The reconstruction method takes advantage of the
fact that the tracks left by the elastically scattered protons are almost parallel to the beam. Then, one can
neglect the slope of the trajectory and focus on the determination of its position only. Because the layers
are staggered, the position is constrained by the geometrical overlap of the fired fibres projected separately
on the 𝑢 and 𝑣 directions. A track is required to consist of hits in at least three overlapping fibres in each
direction (an elastically scattered proton typically fires 18–19 fibres in a detector).

Reconstruction of the event kinematics requires knowledge of the transverse position of the tracks relative
to the beam. A transformation from the detector-related 𝑢 and 𝑣 coordinates to the 𝑥 and 𝑦 coordinates
relative to the beam requires a good understanding of the detector position: the rotation of the detector
around the beam axis,2 the horizontal offset between the centre of the detector and the centre of the beam,
and the vertical distance between the detector and the beam.

2 Other possible rotations only affect track positions at the level of rotation angle squared and are neglected.
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Table 1: The results of the first step of the alignment analysis. The ranges of values and uncertainties obtained for
different detectors and data-taking periods are presented.

Alignment parameter Rotation angle Horizontal offset Vertical distance Vertical offset
Range of values −2 to +4 mrad −300 to +600 μm 1.64 to 1.93 mm −90 to +70 μm
Range of uncertainty 0.2 to 0.6 mrad 2 to 13 μm ∼30 μm 10 to 60 μm

Information about the horizontal offset and the rotation angle is obtained from the analysis of distributions
of elastically scattered protons (see Section 5.1 for details of the event selection). The (𝑥, 𝑦) distribution of
the positions of these protons at a given RP station has an elliptical shape centred around the beam and is
elongated in the 𝑦 direction. The two detectors of the station, upper and lower, measure fragments of this
ellipse. For a correctly calculated horizontal offset, the average value of the 𝑥 position, 〈𝑥〉, should be zero.
For a correctly determined rotation of the detector, no correlation should be observed between 𝑥 and 𝑦.
The alignment procedures are based on measurements of 〈𝑥〉 and how 〈𝑥〉 depends on 𝑦. The resulting
alignment corrections are applied iteratively until the detectors are fully aligned.

The information about the vertical distance between each detector and the centre of the beam is obtained
from several sources. First, the distance between the upper and lower detectors is measured using data
collected by the ALFA overlap detectors, which are placed on the sides of the main detectors and extend
below the beam for the upper RP and above the beam for the lower RP [5]. A simultaneous measurement
of traversing particles by the upper and lower detectors allows the determination of their relative position in
the vertical direction.

The measurement using the overlap detectors provides the vertical distance between the upper and lower
detectors, i.e. the sum of their distances to the beam centre. The determination of the position of the beam
between the detectors is again based on a basic property of the (𝑥, 𝑦) distribution of elastically scattered
protons, namely that it has an up–down mirror symmetry. Part of the alignment procedure is to search for
a vertical beam offset that equalizes the 𝑦 distributions (corrected for the reconstruction efficiency, see
Section 5.3) in the upper and lower detectors.

The alignment analysis presented above was performed separately for different detectors and data-taking
periods, resulting in a range of values and corresponding uncertainties for each parameter. Table 1
summarizes the obtained results.

The dominant systematic uncertainty for the rotation angle originates from ignoring the underlying fibre
structure of the detectors. This structure can induce a bias in the reconstructed hit pattern at a scale
comparable to the spatial resolution. The magnitude of this effect is estimated by varying the fiducial
volume in which the alignment analysis is performed. The statistical uncertainty is at a similar level. The
total uncertainty of the horizontal offset is dominated by the systematic component, evaluated by changing
the method of extracting the centre of the distribution.

The uncertainty for the vertical distance is dominated by the systematic component originating from our
imperfect knowledge of how the overlap detectors are positioned relative to the main detectors, from the
choice of statistical method used to extract the distance value, and from the event selection. The dominant
source of systematic uncertainty for the vertical offset is related to the choice of method for testing the
compatibility of the distributions, and this uncertainty is similar in size to the statistical uncertainty.

The next step of the alignment analysis exploits the fact that the kinematics of an elastic-scattering event
are fully described by only two parameters, meaning that a measurement of the proton position in one
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detector fully constrains the kinematics. This measurement can then be extrapolated to all other detectors
of the same elastic arm. The properties of the LHC optics used for these measurements, especially its
parallel-to-point focusing in the vertical plane, make this extrapolation very precise in the 𝑦 coordinate.
Comparing the extrapolated position with the measured one provides further constraints on the vertical
alignment. The analysis showed a need for distance corrections at different stations of up to 55 μm, which
is larger than the estimated distance uncertainties, suggesting that they are underestimated. One possible
explanation is a non-zero average angle of the particles traversing the overlap detectors, which would lead
to a bias in the distance measurement.

The above steps of the alignment analysis are based on the same principles and techniques as used in the
previous ALFA measurements [3, 4]. However, the final analysis presented in this paper is very sensitive to
the distance uncertainties. Therefore, additional steps for vertical alignment were introduced to ensure
sufficient precision. Once the relative positions of all detectors within each elastic arm are fixed using
the precise extrapolations discussed above, the two remaining parameters are the global vertical distance
between the two arms and the global vertical position of the beam between them.

The global vertical distance is found by performing the complete analysis presented in this paper (see
Section 5) assuming different values of the global vertical distance. A fit to the differential elastic cross
section is performed using only statistical uncertainties. The 𝜒2 of the fit, considered as a function of the
global vertical distance, has a clear minimum whose position determines the final vertical distance used in
the analysis. This correction is found to be 86 μm. It is added to the distance determined by averaging the
distance measurements from individual stations. The uncertainty is evaluated to be 22 μm, with the largest
contribution originating from the variation of the luminosity within its uncertainty (see Section 5.6).

It is worth noting that the sensitivity of the 𝜒2 value to distance originates from the very good acceptance
of the ALFA detectors down to the region dominated by the Coulomb interaction, which is well understood.
Performing the analysis with misaligned detectors affects the measured distribution, making it incompatible
with our knowledge of the physics that governs the behaviour of the 𝑡-spectrum in this range, thus increasing
the 𝜒2.

As the final step of the alignment, the vertical position of the beam between the elastic arms is fine-tuned
by equalizing the 𝑡-spectra measured in the two arms. The principle is similar to that for the measurement
per station discussed above, but when performed at the arms level the resulting uncertainty is improved to
4–15 μm, with corrections of the order of 12–27 μm (depending on the data-taking period). The uncertainty
is dominated by two systematic components of similar size related to the details of testing the compatibility
of the distributions and to the uncertainty of the reconstruction efficiency in the two arms.

4 Simulation model for elastic scattering

4.1 Theoretical predictions

Elastic scattering is related to the total cross section through the optical theorem (Eq. (1)) and the differential
elastic cross section is obtained from the scattering amplitudes of the contributing diagrams:

d𝜎
d𝑡

=
1

16𝜋

��� 𝑓N(𝑡) + 𝑓C(𝑡)ei𝛼𝜙 (𝑡)
���2 . (7)
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Here, 𝑓N is the purely strong-interaction amplitude, 𝑓C is the Coulomb amplitude, 𝛼 is the fine-structure
constant, and a phase 𝜙 is induced by long-range Coulomb interactions [14, 15]. In the simplest model
elaborated in Ref. [15] the individual amplitudes are given by

𝑓C(𝑡) = −8𝜋𝛼ℏ𝑐
𝐺2(𝑡)
|𝑡 | , (8)

𝑓N(𝑡) = (𝜌 + i) 𝜎tot

ℏ𝑐
e
−𝐵 |𝑡 |

2 ,

where 𝐺 is the electric form factor of the proton and 𝐵 is the nuclear slope. The value of 𝑓N(0) follows
from the optical theorem, while the 𝑡-dependence is the simplest parameterization, which is valid only
at small |𝑡 |. A possible generalization of Eq. (8) that incorporates a 𝑡-dependent slope consists of the
introduction of additional terms 𝐶 proportional to 𝑡2 and 𝐷 proportional to |𝑡 |3

𝑓N(𝑡) = (𝜌 + i) 𝜎tot

ℏ𝑐
e
−𝐵 |𝑡 |−𝐶𝑡2−𝐷 |𝑡 |3

2 , (9)

parameterizing the curvature of the 𝑡-spectrum at large |𝑡 |. Their effect is most visible in between
−𝑡 = 0.05 GeV2 and −𝑡 = 0.2 GeV2. At smaller |𝑡 |, the slope of the 𝑡-spectrum is essentially constant
and well parameterized by exp (−𝐵|𝑡 |/2), and at very large |𝑡 | beyond 0.2 GeV2 the form of the spectrum
changes when approaching the diffractive dip, which is a local minimum in the 𝑡-spectrum generated by the
interference of diffractive amplitudes. It is located around 0.5 GeV2 in 13 TeV 𝑝𝑝 collisions and followed
by a local maximum, called the bump. At yet larger |𝑡 |-values the spectrum continues to fall steeply.

Depending on the number of terms included in the exponential function, three different models are
considered for parameterization of the nuclear amplitude; they are referred to as the 𝐵-model with validity
up to −𝑡 = 0.04 GeV2, the 𝐵𝐶-model with validity up to −𝑡 = 0.1 GeV2 and the full 𝐵𝐶𝐷-model with
validity up to −𝑡 = 0.2 GeV2. The validity ranges are approximate and were empirically determined by
studying the quality of a fit to the data.

The theoretical form of the 𝑡-dependence of the cross section is obtained by evaluating the square of the
complex amplitudes, following Eqs. (7), (8), and (9):

d𝜎
d𝑡

=
4𝜋𝛼2(ℏ𝑐)2

|𝑡 |2
× 𝐺4(𝑡) (10)

− 𝜎tot ×
𝛼𝐺2(𝑡)

|𝑡 | [sin (𝛼𝜙(𝑡)) + 𝜌 cos (𝛼𝜙(𝑡))] × e
−𝐵 |𝑡 |−𝐶𝑡2−𝐷 |𝑡 |3

2

+ 𝜎2
tot

1 + 𝜌2

16𝜋(ℏ𝑐)2 × e(−𝐵 |𝑡 |−𝐶𝑡2−𝐷 |𝑡 |3) ,

where the first term corresponds to the Coulomb interaction, the second to the Coulomb–nuclear interference
(CNI), and the last to the hadronic interaction. This parameterization is used to fit the differential elastic
cross section to extract the physics parameters 𝜎tot and 𝜌, and the terms 𝐵, 𝐶 and 𝐷 relevant to the nuclear
slope, depending on the model. This simple parameterization of the differential elastic cross section has
been criticized by the authors of Ref. [16]. The criticism is based upon the fact that the formula has only
been derived for a constant 𝐵-slope and is thus in principle not valid when the curvature terms 𝐶 and 𝐷 are
introduced. However, in Ref. [17] it is shown that the formula is still valid at a level of 10−3 in 𝜌 given this
kind of 𝑡-dependence of the slope.
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The theoretical prediction given by Eq. (10) also depends on the Coulomb phase 𝜙 and the form factor
𝐺. This analysis uses a conventional dipole parameterization of the proton electric form factor from
Ref. [18]

𝐺 (𝑡) =
(

Λ

Λ + |𝑡 |

)2
,

where Λ = 0.71 GeV2. The uncertainty in the electric form factor is derived by comparing the simple
dipole parameterization with more sophisticated forms [19], which better describe the high-precision
low-energy electron–proton elastic-scattering data [20]. An expression for the Coulomb phase was initially
derived in Ref. [15]

𝜙(𝑡) = − ln
𝐵|𝑡 |
2

− 𝜙C , (11)

where the model-dependent Coulomb phase shift 𝜙C was taken to be 𝛾E = 0.577. Further corrections,
primarily from the form factor, were calculated in Ref. [18] and the expression nominally used in this
analysis is

𝜙(𝑡) = −
(
𝛾E + ln

𝐵|𝑡 |
2

+ ln
(
1 + 8

𝐵Λ

))
+ 4|𝑡 |

Λ
· ln

Λ

4|𝑡 | −
2|𝑡 |
Λ

. (12)

Uncertainties in the Coulomb phase are estimated by replacing the parameterization in Eq. (12) by the
simple form in Eq. (11). This change has only a minor impact on the cross-section prediction. Replacing
the dipole by other forms also has a negligible impact on the determination of the physics parameters.

In the present theoretical framework, a constant nuclear phase is assumed between the real and imaginary
parts of the nuclear amplitude. In Ref. [17], various alternative 𝑡-dependent nuclear phase models are
discussed which would entail a 𝑡-dependence of the 𝜌 parameter. The models suggested in Ref. [17] are
considered for systematic uncertainty purposes, excluding an extreme model featuring a peripheral phase.
The model with the largest impact is a simple model in which the 𝜌-value vanishes at −𝑡 = 0.1 GeV2

arg 𝑓N(𝑡) =
𝜋

2
− arctan

(
𝜌(0)

(
1 + 𝑡

0.1

))
. (13)

4.2 Simulation model

Monte Carlo (MC) simulated events are used to calculate acceptance and unfolding corrections. A fast
simulation is used in which the detector resolution is parameterized and tuned to data and the elastically
scattered protons are passed through the LHC lattice by means of the beam transport 2× 2 matrix according
to Eq. (3). The detector geometry is described by a set of simple requirements. The fast simulation offers
convenient methods to tune the relevant detector and beam parameters, in terms of resolution and beam
divergence, to measured control observables. The generation of elastic-scattering events is performed with
a simple ‘toy’ MC simulation. For each event, a 𝑡-value is randomly drawn from a probability density
function representing the theoretical model. The nominal model, named 𝐵𝐶𝐷, includes the small-|𝑡 |
parameterization in Eq. (10) with three slope parameters 𝐵, 𝐶 and 𝐷. The parameters of the event
generation model are summarized in Table 2. The values of the slope parameters, and also 𝜎tot and 𝜌, were
iteratively adjusted in the analysis and are close to the final results. The validity of this model is limited to
relatively small −𝑡 values, |𝑡 | < 0.2 GeV2, which is of relevance for the physics parameter determination in
this analysis.

The acceptance of the present data set does not cover the dip, but a parameterization based on the model
introduced by Ref. [21] to describe this region is used for |𝑡 | > 0.2 GeV2.
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Table 2: Event generation parameters used in the elastic-scattering simulation model.

Parameter Value
𝜎tot 105 mb
𝐵 21.13 GeV−2

𝐶 −6.5 GeV−4

𝐷 17.4 GeV−6

𝜌 0.096
Λ 0.71 GeV2

𝜙C 0.577

The simulation model also includes the relevant LHC beam parameters that describe the width of the
production vertex distribution, the intrinsic beam energy spread, and the beam divergence at the IP. The
last is of particular importance, as the angular divergence contributes to the scattering angle resolution.
The divergence is inferred from a combination of measurements of the beam emittance from wire scans
performed by the LHC beam instrumentation, from the beam width measured by the ATLAS inner detector,
and in the vertical plane directly from ALFA angular measurements. The resulting beam divergence is
implemented per plane, per beam, and per run and, in addition, the time-dependent emittance growth
during the runs is incorporated.

A fast parameterization of the detector response is used for the detector simulation, with the spatial resolution
tuned to the measured resolution. The resolution is measured by extrapolating tracks reconstructed in
the inner stations to the outer stations using beam optics matrix-element ratios and comparing predicted
positions with measured positions. Thus, it is a convolution of the resolutions in the inner and outer stations.
The fast simulation is tuned to reproduce this convolved resolution. A full Geant4 [22] simulation is used
to set the resolution scale between detectors at the inner and outer stations, which cannot be determined
from the data.

5 Data analysis

5.1 Event selection

All data used in this analysis were recorded in September 2016 with a beam optics of 𝛽★ = 2.5 km in
four fills of the LHC resulting in seven ATLAS runs. An event preselection consisting of data quality,
trigger and reconstruction requirements was applied, resulting in a sample of elastic-scattering candidates.
Data quality requirements were applied to ensure that the ALFA detector was fully operational. Only data
recorded outside of the scraping periods are taken into account. Furthermore, only periods of the data
taking where the dead-time fraction was below 5% are used. The luminosity-weighted average dead-time
fraction is below 0.3%. These requirements eliminate less than 5% of the data.

Events are required to pass the trigger conditions for elastic-scattering events, and have a reconstructed
track in all four detectors of the arm which fired the trigger. Events with additional tracks in detectors
of the other arm arise from the temporal overlap of halo protons with elastic-scattering protons and are
retained. If halo and elastic-scattering protons overlap in the same detectors, which happens typically only
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on one side, a track-matching procedure [3] between the detectors on each side is applied to identify the
elastic track.

Fiducial cuts to ensure good containment inside the detection area are applied to the vertical coordinate.
Tracks must be at least 60 μm away from the edge of the detector nearer the beam, where the full detection
efficiency is reached. The cut at the detector edge determines the smallest accessible value of |𝑡 |. At large
vertical distance, the vertical coordinate must be at least 1 mm away from the shadow of the beam screen,
a protection element of the quadrupoles, in order to minimize the impact from showers generated in the
beam screen.

Further geometrical cuts on the left–right acollinearity are applied, exploiting the back-to-back topology of
elastic-scattering events. Figure 3 shows the correlation between left-side (A-side) and right-side (C-side)
positions measured in the vertical plane.
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Figure 3: The correlation of the 𝑦 coordinate measured in the inner stations on the A-side and C-side. Elastic-scattering
candidates after preselection and fiducial cuts but before acceptance and background rejection cuts are shown.
Identified elastic events are required to lie between the red lines. Only data from one run are shown.

The elastic-scattering candidates are observed in a narrow region along the diagonal, and events are selected
in a band of 2 mm width, as indicated by the red lines in Figure 3. In the horizontal plane the position
difference between the left and right sides must be within 3.5𝜎 of its resolution determined from simulation.
An efficient cut against non-elastic background is obtained from the correlation of the local angle between
two stations and the position in the horizontal plane, as shown in Figure 4, where elastic-scattering events
appear inside a broad ellipse with positive slope, whereas background is concentrated in a narrow ellipse
with negative slope or in the band in the top-right quadrant. A similar selection is also applied in the
vertical plane, where elastic events are selected in a band in the local angle of 40 μrad width. The selection
requirements are summarized in Table 3, alongside the number of events that meet the requirements at each
step of the event selection for the longest run. A total of 6.9 million events were selected. The selection
efficiency relative to the preselection is about 94%. The fraction of elastic pile-up events, where two elastic
events from the same bunch crossing are observed in two different arms, is about 0.2h. The numbers of
selected elastic-scattering candidates per run are summarized in Table 4.
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Figure 4: The correlation between the coordinate and the local angle in the horizontal plane. Elastic-scattering
candidates after preselection and fiducial cuts but before acceptance and background rejection cuts are shown.
Identified elastic events are required to lie inside an ellipse corresponding to a 3.5𝜎 selection, represented by a thin
red line. The vertical band corresponds to badly reconstructed tracks, the narrow almost horizontal band represent
the main halo contribution and the structure extending to the upper right quadrant contains off-momentum protons.

Table 3: Numbers of events after each stage of the selection for run 309039. The fractions of reconstructed events
with an elastic trigger that survive each event selection cut are shown for each criterion.

Selection criterion Numbers of events
Preselection 2 558 637

Arm 1 Fraction Arm 2 Fraction
Reconstructed tracks 1 289 282 1 269 355
Cut on 𝑥 A vs C (3.5𝜎) 1 254 738 97.32% 1 235 792 97.36%
Cut on 𝑦 A vs C (2 mm) 1 249 888 96.95% 1 231 251 96.99%
Cut on 𝑥 vs 𝜃𝑥 (3.5𝜎) 1 248 597 96.84% 1 230 084 96.91%
Beam-screen cut 1 243 941 96.48% 1 225 375 96.53%
Edge cut 1 231 848 95.55% 1 210 759 95.38%
Cut on 𝑦 vs 𝜃𝑦 (40 μrad ) 1 214 717 94.22% 1 195 251 94.16%
Total selected 2 409 968

5.2 Background determination

A small fraction of the background is expected to be inside the fiducial volume defined by the event
selection cuts. The background contributions can be clearly observed e.g. in Figure 4, where the elastic
core populates the interior of the elliptical contour, whereas distinct patterns seen as narrow or wide bands
constitute background from different sources. A fraction of the background extends into the selected area
and thus constitutes an irreducible component that needs to be subtracted from the reconstructed 𝑡-spectrum.
The fraction of background events is very small and its subtraction has little impact on the results.

Two types of background are considered: non-elastic physics background processes from central diffraction,
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Table 4: Fill and run numbers as well as delivered integrated luminosity, number of selected events for the 𝛽★ = 2.5 km
campaign and reconstruction efficiency per arm (see Section 5.3).

Fill Run Luminosity [μb−1] Selected elastic Reconstruction efficiency
event candidates Arm 1 [%] Arm 2 [%]

5313 308979 21.38 423 862 84.82 ± 0.56 83.11 ± 0.87
5313 308982 6.81 136 499 85.84 ± 0.54 84.44 ± 0.55
5314 309010 41.27 846 581 87.11 ± 0.51 85.00 ± 0.64
5317 309039 120.08 2 409 968 85.45 ± 0.49 83.23 ± 0.52
5317 309074 44.31 887 373 85.55 ± 0.39 83.48 ± 0.48
5321 309165 55.87 1 149 499 87.08 ± 0.40 85.41 ± 0.44
5321 309166 50.17 1 043 576 88.28 ± 0.38 86.43 ± 0.45
Total 339.89 6 897 358

also known as double-Pomeron exchange (DPE) 𝑝𝑝 → 𝑝𝑝 + 𝑋 , and accidental coincidences of either
halo protons on both sides or a halo proton on one side and a proton from single diffraction (SD) on the
other side. Other combinations involving double diffraction or protons from non-diffractive processes in
conjunction with a halo proton are not considered, given the overall small level of background. The strategy
for the determination of the background is to use a data-driven template method for the halo+halo and
halo+SD estimation and a MC simulation for DPE. The DPE simulation is based on the MBR model [23],
which predicts a total DPE cross section of 0.82 mb at 13 TeV. The event generation for DPE is done with
nominal MBR settings as implemented in Pythia 8.303 [24].

In the data-driven method used to calculate the contribution from accidental coincidences, events with
tracks only on one side of the experiment are selected, and those with activity on the opposite side are
vetoed. The veto suppresses contributions from elastic events and the sample composition is thus dominated
by halo and SD events. Then a background template is constructed by randomly mixing uncorrelated
single-sided events from the left side and right side, corresponding to the background from accidental
coincidences. The absolute normalization of the templates is obtained by comparing the number of events
in the data and the template in control regions, before applying the event selection cuts. The procedure is
illustrated in Figure 5, where the correlation between the horizontal track position and the local angle is
shown in data, in DPE simulation and in the templates. The normalization region is depicted in Figure 5(a)
showing the correlation in data between the horizontal position and local angle in the horizontal plane.
The events are counted outside of the shaded area in the upper right corner and the elliptical elastic signal
region. The non-shaded normalization region is dominated by background from accidental coincidences
of halo protons and free of elastic events. Simulated DPE events shown in Figure 5(b) contribute very
little to this area, but a large fraction of accidental coincidences from the event-mixing templates shown in
Figure 5(c) lie in the normalization region. The templates are scaled such that the number of events in this
region equals the number of events in the data. The irreducible background for selected events is then
calculated by applying the nominal event-selection cuts to the properly scaled template events.

Also, the normalization for simulated DPE events is determined from the data by counting events in a
region of the correlation between the vertical coordinate on the A-side and C-side (not shown). The
selected normalization region is mostly populated by DPE events. About 10% of the data events in the
normalization area originate from accidental coincidences, which are subtracted before calculating the
DPE scaling factor.
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Figure 5: Correlation plots before cuts, showing regions used to normalize the event-mixing templates for the
background estimate of accidental coincidences between two halo protons or a halo proton and an SD proton. The
normalization region is the area in the bottom and left part of the figure. The shaded region surrounded by the black
lines and ellipse is excluded from the normalization. The templates in (b) and (c) have been normalized to show the
expected number of background events present in the data sample.

The resulting background estimate is illustrated in Figure 6 for Arm 1, which shows that the overall level of
background is very small and dominated by DPE, except at small |𝑡 | where the accidental coincidences
prevail. In previous analyses at 𝛽★ = 90 m [3, 4] a procedure called the ‘anti-golden’ method was applied,
in which events collected in all upper or all lower detectors were used to estimate the irreducible background
in the sample of elastic-scattering candidates. This method is not used in the present analysis because the
detectors are much closer to the beam and even small vertical beam offsets (up to 80 μm, see Section 3.3)
introduce an asymmetry between the arms that is not reproduced by the anti-golden method.

The resulting background level is 0.75h on average with very small differences between the different runs.
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Figure 6: The counting rate d𝑁/d𝑡 in Arm 1, before corrections, as a function of 𝑡 compared to the background from
accidental coincidences and DPE.

Systematic uncertainties are estimated by changing the normalization regions, the template composition,
and the parameters of the DPE simulation. The nominal normalization region for accidental coincidences
shown in Figure 5 in the plane of 𝑥 and 𝜃𝑥 is changed to a region in the plane of 𝑥 on the A-side and C-side,
which exhibits a different type of correlation. The template composition is varied by imposing a veto on
minimum-bias triggers from the central ATLAS detector, thereby depleting the SD content of the templates.
The normalization regions for the DPE background are varied in a similar way. In addition, the DPE
background shape is changed by varying the value of the Pomeron intercept in the simulation from 0.02
to 0.15. Varying this MBR parameter was found to have the largest impact on the DPE shape. The total
background uncertainties are dominated by systematic uncertainties and range from 10.4% to 14.8%.

5.3 Reconstruction efficiency

The reconstruction efficiency accounts for the elastic events which cannot be fully reconstructed because
of the following effects and which therefore need to be excluded from the analysis. The development
of a hadronic shower in the Roman Pot may lead to configurations where the proton track cannot be
reconstructed in one or more of the four detectors. Also, an overlap with a halo proton or SD proton can
lead to reconstruction failures, particularly if these background protons have initiated a shower either in the
Roman Pot material or upstream as a result of a collimator scattering or beam–gas interaction. The large
majority of failed reconstructions are thus related to events with a hit multiplicity that is too large, in which
no meaningful tracks can be determined. The probability of reconstruction failing because of too few hits
is in contrast very low, since for the regular reconstruction only three good layers out of ten in 𝑢 and 𝑣 are
required and the single-layer efficiency is about 90% [5].

The number of elastically scattered protons that are lost is estimated by a data-driven tag-and-probe method.
This method exploits the back-to-back topology of elastic events, allowing a proton to be tagged on one
side of the spectrometer and probe the reconstruction on the other side. The probability that an elastic
event is fully reconstructed is given by the reconstruction efficiency:
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𝜀rec = 𝑁reco/(𝑁reco + 𝑁fail),

where 𝑁reco is the number of fully reconstructed elastic-scattering events, which have at least one
reconstructed track in each of the four detectors of a spectrometer arm, and 𝑁fail is the number of not
fully reconstructed elastic-scattering events that have reconstructed tracks in fewer than four detectors.
Events are grouped into several reconstruction cases, for which different selection criteria and corrections
are applied, to determine if an event is from elastically scattered protons, but was not fully reconstructed
because of inefficiencies.

Both the fully reconstructed and failed events need to have an elastic trigger signal present and need to
be inside the acceptance region. The efficiency is determined separately for the two spectrometer arms.
Based on the number of detectors with at least one reconstructed track, the events are grouped into six
reconstruction cases called topologies named 4/4, 3/4, 2/4, (1+1)/4, 1/4 and 0/4. The first number in this
notation indicates the number of detectors with at least one reconstructed track. In the 2/4 case, both
detectors with tracks are on one side of the IP and in the (1+1)/4 case they are on different sides.

Elastic events for all cases are selected with the event selection described in Section 5.1, using the subset of
cuts available to each particular topology. The tag-and-probe method relies on the very high efficiency of
the trigger scintillator (𝜀trig > 99.9%) to tag the activity of events in the four detectors of an arm. The
activity is quantified by the number of hits, which must be more than five. Then selection cuts are applied to
detectors with reconstructed tracks to accept events as elastic or reject them as background. Not all cuts can
be applied to every case because limitations may make them impossible to apply, e.g. left–right correlation
cuts in the 2/4 case. This results in an overestimation of the elastic event yield and a reduced background
rejection efficiency, which is accounted for by a phase-space correction derived from simulation. Because
of the reduced set of cuts available for topologies with failed reconstructions, the background rejection is
less efficient and more background is present, particularly in the 2/4 topology.

The background strategy follows the method applied to ‘golden’ 4/4 events and described in Section 5.2:
two background contributions from DPE events and accidental halo+SD events are considered, where both
are normalized in control regions specific to the topology. The single-side templates for the accidental
coincidences are extended to also include events where only one detector has a reconstructed track. For the
cases where only two or fewer detectors have reconstructed tracks, particularly the 2/4 case, the background
from accidental coincidences becomes important, with a similar contribution from the DPE background.
For the cases with only one or no detector with reconstructed tracks, the tracking information is not sufficient
for event classification, and the expected yields are calculated with a probabilistic method [3] based on
cases with reconstructed tracks in two or more detectors. Taking into account background subtraction
and phase-space corrections, the final reconstruction efficiency calculation can be cast in the following
equation:

𝜀rec =
𝑁4/4 − 𝐵4/4(

𝑁4/4 − 𝐵4/4
)
+ 𝑁3/4−𝐵3/4

PS(3/4) + 𝑁2/4−𝐵2/4
PS(2/4) + 𝑁(1+1)/4−𝐵(1+1)/4

PS( (1+1)/4) + 𝑁lower
, (14)

where 𝐵 𝑗/4 denotes the background, PS the phase-space correction and 𝑁lower merges the background-
subtracted topologies calculated by the probabilistic method. The 𝑡-spectra after background subtraction
and with phase-space corrections are shown for different topology classes in Figure 7. The shape of the
spectra for topologies with failed reconstruction is in good agreement with the shape of 4/4 cases, except
for the 2/4 case where at large |𝑡 | values the background, mostly from DPE, is slightly overestimated. This
leads to a bias, which is taken into account in the systematic uncertainty (see Figure 10).
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The final reconstruction efficiency calculated per run and per arm according to Eq. (14) is shown in Figure 8.
The values are around 85%, and are typically about 2% higher for Arm 1 than for Arm 2 because of a
slightly different material distribution [3]. The results are summarized in Table 4 for both arms. The
systematic uncertainties range between 0.4% and 0.9% and are dominated by the composition of the
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templates for accidental coincidences and uncertainties in the background subtraction. The former are
evaluated by applying different veto conditions and by increasing and decreasing the SD fraction in the
template; the latter are calculated by varying the background normalization regions; and in both cases the
procedure described in Section 5.2 is followed.

The reconstruction efficiency has a time dependence, both within a run and between runs. This time
dependence is correlated with the number of halo protons overlapping in time with protons from elastic
scattering. Every proton, be it from elastic scattering, an SD event or the beam halo, has a certain
probability to develop a hadronic shower; thus in events with overlapping protons the shower probability
is approximately twice as high as in events with only one proton per detector. The correlation between
the reconstruction efficiency and the number of overlapping halo events is illustrated in Figure 9, where
𝜀rec is plotted as a function of the fraction of multi-track events. Each point in Figure 9 corresponds to
a data-taking period between beam scrapings. Multi-track events are defined as events with a selected
elastically scattered proton in each detector and an additional reconstructed track in any of the four detectors.
Different sources can create additional tracks, such as cross-talk, but these are time-independent, whereas
additional tracks from the halo exhibit a strong time dependence. Therefore, the time-variation of the
multi-track fraction is dominated by the halo overlap, which induces the clear correlation with 𝜀rec, shown
in Figure 9. The reconstruction efficiency is nominally assumed to be independent of the 𝑡-value because of
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Figure 9: The correlation between the reconstruction efficiency in data for Arm 1 and the fraction of multi-track
events. Each point corresponds to a data-recording period between beam scrapings; data from all runs are combined.

the uniform material distribution across the detection surface. However, a possible 𝑡-dependent bias could
be introduced, through deficiencies in the background subtraction method for the 2/4 topology. A model of
this possible 𝑡-dependence, shown in Figure 10, is used to assess an additional systematic uncertainty.
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5.4 Acceptance and unfolding

The acceptance is defined as the ratio of events at particle level passing all geometrical and fiducial
acceptance cuts defined in Section 5.1 to the total number of generated events, and is calculated as a
function of 𝑡. The differential elastic cross section is corrected for acceptance losses. The calculation is
carried out with the simulation model described in Section 4.2. The acceptance is shown in Figure 11 for
each arm. The shape of the acceptance curve can be understood from the contributions of the vertical and
horizontal scattering angles to 𝑡 (see Eq. (6)). The smallest accessible value of |𝑡 | is obtained at the detector
edge and set by the vertical distance of the detector from the beam. Close to the edge, the acceptance is
small because a fraction of the events are lost due to the beam divergence, i.e. events inside the acceptance
on one side but outside on the other side. At small |𝑡 |, up to −𝑡 ∼ 0.15 GeV2, vertical and horizontal
scattering angles contribute about equally to a given value of 𝑡. Larger |𝑡 |-values imply larger vertical
scattering angles and larger values of |𝑦 |, and with increasing |𝑦 | the fraction of events lost in the gap
between the main detectors decreases. The maximum acceptance is reached for events occurring at the
largest possible values of |𝑦 | within the beam-screen cut. Beyond that point the acceptance decreases
steadily because the events are required to have larger values of |𝑥 |, since these 𝑡-values are dominated
by the horizontal scattering angle component. The difference between the two arms is mainly related to
the vertical beam offset, which brings the detectors of Arm 2 closer to the beam, thereby increasing the
acceptance. Meanwhile, events at large |𝑦 | are shadowed by the beam screen, decreasing the acceptance for
Arm 2 at large |𝑡 |.

The measured 𝑡-spectrum is distorted by detector resolution and beam smearing effects, including angular
divergence, vertex smearing and energy smearing. These effects change the shape of the reconstructed
𝑡-spectrum, particularly at small |𝑡 | as shown in Figure 12, which also shows how detector resolution
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acceptance of 10% required for the extraction of the physics parameters.

effects depend strongly on the reconstruction method. The magnitude of the matrix elements used in the
𝑡-reconstruction relative to the detector spatial and angular resolutions determines the performance of a
method. While the subtraction method receives only small contributions from the detector resolution,
which is good for the space coordinate measurement, all other methods suffer from a sizeable degradation
once detector resolution is included. The degradation arises from the local angle being poorly measured,
given that the 8 m distance between the two stations is too small to obtain good precision.

After background subtraction, the measured 𝑡-spectrum in each arm is corrected for migration effects using
an iterative, dynamically stabilized unfolding method [25]. MC simulation is used to obtain the migration
matrix shown in Figure 13 that is used in the unfolding. The superior resolution of the subtraction method
means the migration almost ends only one or two bins away from the diagonal, whereas a few more
non-diagonal elements are populated for the local angle method. For the subtraction method the impact
on the 𝑡-spectrum is very small and confined to the first few bins, whereas for the local angle method
the corrections are slightly larger and flat for −𝑡 > 10−3 GeV2. Overall, the impact of the resolution on
the reconstructed 𝑡-spectrum is negligible, except for very small |𝑡 | at the detector edge, where the beam
divergence is important. The very first bin at smallest |𝑡 | is dominated by divergence effects. The events
that contribute to this bin have a small vertical scattering angle and would, in the absence of divergence, be
outside of the acceptance defined by the vertical cut close to the detector edge. The divergence-induced
angular smearing folded with the steeply falling scattering angle distribution causes many more events to
migrate into that bin than out of it.

The results are cross-checked using an unfolding method based on the singular value decomposition
method [26]. The unfolding procedure is applied to the distribution obtained using all selected events,
after background subtraction in each elastic arm. A data-driven closure test is used to evaluate any bias in
the unfolded data spectrum shape due to mis-modelling of the reconstruction-level spectrum shape in the
simulation. The simulation is reweighted, according to a polynomial function parameterizing the data/MC
difference, at particle level such that the reconstruction-level spectrum in simulation matches the data. The
modified reconstruction-level simulation is unfolded using the original migration matrix, and the result
is compared with the modified particle-level spectrum. The resulting bias is considered as systematic
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uncertainty; it is very small.

The unfolding procedure introduces a statistical correlation between the bins of the 𝑡-spectrum, which is
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incorporated in a covariance matrix included when fitting the data.

5.5 Beam optics

The reconstruction of the 𝑡-value requires knowledge of the elements of the transport matrix. The transport
matrix can be calculated from the design of the 2.5 km beam optics, which consists of a sequence of
the beam elements including the alignment parameters of the magnets, the magnet currents and the field
calibrations. This initial set of matrix elements is referred to as the ‘design optics’. Small corrections,
allowed within the range of the systematic uncertainties, need to be applied to the design optics for the
measurement of the physics parameters, following a procedure developed in Refs. [3, 4]. Constraints on
beam optics parameters are derived from the ALFA data, exploiting the fact that the reconstructed scattering
angle must be the same for different reconstruction methods using different transport matrix elements. The
beam optics parameters are determined from a global fit, using these constraints, with the design optics as
a starting value. The tuned parameters are the field strengths of the quadrupoles, quantified by the k-values,
located between the IP and ALFA, and named Q1–Q6 (see Figure 2), in beam 1 and beam 2. For the 2.5 km
beam optics, the following k-values are tuned to fulfil the ALFA constraints: a single k-value correction for
Q1 and Q3, because they are connected to a common power line, and independent k-values for Q5 and Q6.
In the fit, the k-values for beam 1 and beam 2 are treated as independent parameters, resulting in a total of
six fitted parameters.

Reconstructed tracks from elastic-scattering events are used to derive two classes of data-driven constraints
on the beam optics:

• Correlations between A-side and C-side measurements of positions or angles, and between positions
or angles measured in the inner and outer stations of ALFA on the same side. These are used to infer
the ratio of matrix elements in the beam transport matrix. The resulting constraints are independent
of any optics input.

• Correlations between the reconstructed scattering angles. These are calculated using different
methods to derive further constraints on matrix elements as scaling factors. These factors indicate
the amount of scaling needed for a given matrix element ratio to equalize the measurements of the
scattering angle. These constraints depend on the given optics model. The design beam optics with
quadrupole currents measured during the run is used as a reference to calculate the constraints.

For each constraint, the bias induced by the measurement method because of resolution or acceptance
effects is estimated by evaluating the constraint in simulation and comparing the value with that from the
design optics. An additive correction is then applied to the constraint values obtained from data before
comparison with beam optics calculations. These corrections are generally small and at the level of a few
per mille.

A stringent constraint from the second class is illustrated in Figure 14. This example shows the comparison
of the scattering angle in the horizontal plane reconstructed with the subtraction method, Eq. (4), which is
based on the position and 𝑀12,𝑥 , and the local angle method Eq. (5), which is based on the local angle and
𝑀22,𝑥 . Figure 14 shows the difference in scattering angle between the two methods as a function of the
scattering angle determined with the subtraction method. The slope is extracted using a linear fit in the
central region (red line). This slope is used as the scaling factor for the matrix element ratio 𝑀12/𝑀22. Its
value of about 1% indicates that the design optics ratio 𝑀12,𝑥/𝑀22,𝑥 needs to be increased by 1% to obtain
the same scattering angle, on average, from both methods using data.
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A total of 21 constraints were determined from the ALFA data. A sub-set of 17 constraints with the best
precision are normally included in the 𝜒2 calculation of the fit, four constraints with larger experimental
uncertainties and less constraining power are not included but kept for control. All ALFA constraints are
treated as uncorrelated in the fit, but coherent changes in the constraints observed under experimental
variations of the analysis are taken into account in the systematic uncertainty. In the minimization procedure,
the beam optics calculation program MadX [27] is used to extract the optics parameters and to calculate the
matrix element ratios for a given set of magnet strengths. The ALFA system provides precise constraints
on the matrix element ratios, but cannot probe the deviations of single magnets. There are, therefore,
several sets of optics parameters which minimize the 𝜒2, arising from different combinations of magnet
strengths. The chosen configuration, called the effective optics, is one solution among many. Different sets
of quadrupoles are included in the fit, and a variation of the choice of set represents the main contribution to
the systematic uncertainty. Figure 15 shows the pull of the ALFA constraints after the minimization, which
resulted in magnet strength corrections ranging from 0.1% to 0.6%, with rather large differences between
beam 1 and beam 2, most notably for Q6 with a negative correction of −0.62% in beam 1 and a positive
correction of 0.13% in beam 2. The 𝜒2 of the fit includes the systematic uncertainties of the constraints
and is of good quality with 𝜒2/𝑁dof = 0.45. The resulting change in the transport matrix elements most
important for 𝑡-reconstruction is up to 1%.

Systematic uncertainties for the k-values and matrix elements include the coherent change of constraints
under experimental variations. A total of 13 variations, including the nominal constraints obtained from
the average of the arms and the constraints from individual arms, are taken into account and the standard
deviation of the resulting distribution is assigned as an uncertainty. The dominant systematic uncertainty
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with the largest impact on the 𝑡-reconstruction is obtained when treating only the k-values of Q5 and Q6 as
free parameters in the fit, which still results in an acceptable fit quality.
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marked with an asterisk are excluded from the calculation of the 𝜒2. The red lines indicate pull values of ±3.

5.6 Luminosity

The general methods for luminosity determination in ATLAS are described in Ref. [6]. However, a
dedicated measurement is required due to the special 𝛽★ = 2.5 km optics resulting in different conditions
shown in Table 5. The ATLAS general strategy to provide a reliable luminosity determination and to
properly assess the systematic uncertainties is to compare the measurements of different detectors and
algorithms. This section describes the luminosity determination for this run and its systematic uncertainty
using LUCID (LUminosity measurement with a Cherenkov Integrating Detector) [28] as the baseline
alongside approaches using the Beam Conditions Monitor (BCM) [29] and the Inner Detector (ID) [9] of
ATLAS. Each detector and each algorithm is calibrated in special van der Meer (vdM) scans [30], except
the track counting algorithm, which is cross-calibrated to LUCID in parts of the vdM scan run with head-on
collisions. Table 5 summarizes the differences between high-𝛽★ runs, high-luminosity runs and vdM scans.
Such differences are due to the number of colliding bunches and the average numbers of interactions per
bunch crossing (pile-up parameter 𝜇), leading to an instantaneous luminosity in the high 𝛽★ regime which
is up to seven orders of magnitude lower than in high-luminosity running, and three orders of magnitude
lower than in the vdM scans.

The algorithms listed in Table 6 were used in the final analysis. They were chosen as having the sensitivity
needed for high-𝛽★ runs and at the same time exhibiting the most favourable background conditions. Both
LUCID and the BCM have detectors on both the A-side and C-side of the ATLAS IP. The A-side detectors
were not used in OR-mode due to high background on the A-side. The track-counting algorithm using
ID data is independent of LUCID and the BCM. The track-counting algorithm obtains the per-bunch
visible interaction value 𝜇vis from the mean number of reconstructed tracks per bunch crossing averaged
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Table 5: Main parameters for high-𝛽★ runs, vdM scans and high-luminosity runs [6].

Parameters 2016 high-𝛽★ runs 2016 vdM scan High-luminosity runs
Number of colliding bunches 4–5 32 2208
Average pile-up parameter 𝜇 0.002–0.006 0.5 41

Instantaneous luminosity (1027 cm−2 s−1) ∼ 1.4–4 2.6 · 103 13 · 106

𝛽★ (m) 2500 19 0.4

Table 6: The luminosity determination algorithms used for the high-𝛽★ analysis. For LUCID the activity is defined
by at least one hit in a tube. BI and BI2 correspond to two different sets of photomultipliers used by LUCID. For the
BCM the activity is defined by at least one hit in one of the four sensors. The total integrated luminosity and relative
deviation from the nominal LUCID_EventORC_BI algorithm is given for the algorithms available for all runs. Only
statistical uncertainties are shown.

Algorithm Definition 𝐿int [μb−1] Deviation [%]
LUCID_EventORC_BI Activity on the C-side in LUCID 339.9 ± 0.1 –
LUCID_EventAND_BI Activity on both sides in LUCID – –
LUCID_EventORC_BI2 Activity on the C-side in LUCID 341.1 ± 0.1 +0.4
LUCID_EventAND_BI2 Activity both sides in LUCID 341.2 ± 0.2 +0.4
BCM_T_EventAND Activity on both sides in the BCM 337.2 ± 0.2 −1.8
TightModLumi Track counting using the Inner Detector – –

over a luminosity block, which corresponds to a period of about one minute with approximately constant
luminosity. The track measurements used in this analysis are based on the TightModLumi3 working
point [6]; they are available for only two of the ALFA runs (308979 and 309165).

LUCID_EventORC_BI, being the most stable algorithm with favourable background conditions, was
chosen as the reference algorithm and the other algorithms are used to evaluate the systematic uncertainties.
The percentage differences with respect to the reference algorithm are shown in Figure 16 for all runs as a
function of the run number. This is a key plot in the context of evaluating the systematic uncertainties. The
main sources of systematic uncertainty are the vdM calibration uncertainty, calibration transfer uncertainty,
long-term stability uncertainty and background uncertainty.

vdM calibration uncertainty: This source of uncertainty is the same as for the standard luminosity
analysis, and in 2016 it was evaluated to be 1.1% [6], while the central value of the calibration was updated
for this analysis, applying the techniques described in Ref. [6].

Calibration transfer uncertainty: This arises because the vdM scans are performed at a luminosity
103 times higher than the luminosity during the ALFA data taking (see Table 5). Any non-linearity between
the vdM-scan and ALFA-run luminosity regimes would appear as systematic deviation between algorithms
in the stability plot shown in Figure 16. It is therefore included in the deviations of the various independent
algorithms from the reference one.

Long-term stability uncertainty: Unlike the standard data taking, the period with high-𝛽★ runs was very
short, lasting only a few days. Nevertheless, these runs were acquired four months after the vdM-scan
session and about one month before a vdM-like scan, the so-called MD1814 scan. The stability of the
detectors and algorithms from the time of the vdM-scan session was evaluated through the comparison

3 The TightModLumi working point is named 2017 selection in Ref. [6].
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Figure 16: Percentage deviation of the integrated luminosity with respect to the reference algorithm LU-
CID_EventORC_BI as a function of the run number. The very last point refers to the MD1814 run. All the
algorithms were calibrated in the vdM run.

between these two scans, and it is reflected in the stability plot of Figure 16. Thus, no additional uncertainty
is needed to account for the long-term stability.

Background uncertainty: The single-beam background to the luminosity signal, as estimated from
unpaired bunches, appears negligible for all LUCID and BCM algorithms used in this analysis. There is
no sign of collision background for the chosen algorithms. A more quantitative constraint on collision
background can be inferred from the internal consistency, over the entire ALFA running period, of
measurements reported by five independent luminosity algorithms with very different intrinsic background
sensitivity. Therefore, the internal consistency of the measurements displayed in Figure 16 implicitly sets
an upper limit on the possible impact of collision backgrounds on the reported integrated luminosity.

The total systematic uncertainty of the luminosity measurement can be obtained from the absolute calibration
uncertainty of the vdM scan and from the stability and consistency among the various algorithms. Figure 16
shows the deviation of the luminosity from the value given by the reference algorithm run by run. However,
the run-integrated luminosity is most relevant for the determination of 𝜎tot. The run-integrated luminosity
measured by the various algorithms is compared with the reference LUCID_EventORC_BI value. This
provides the uncertainty related to all listed effects: calibration transfer, long-term stability and background.
The biggest deviation in the run-integrated luminosity is found to be −1.8% for the BCM_T_EventAND
algorithm. Unfortunately, the TightModLumi track-counting algorithm was only available in two runs. The
TightModLumi run-integrated luminosity in these two runs deviates from the value given by reference
LUCID algorithm by 1.85%. This number is therefore taken as the stability and consistency uncertainty.
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Adding in quadrature the uncertainty in the absolute calibration (1.1%) and that associated with the
stability and consistency of the available independent luminosity measurements (1.85%), a total systematic
uncertainty of 2.15% is obtained for the integrated luminosity delivered during the seven high-𝛽★ runs.

The final value of the integrated luminosity is therefore:

𝐿int = 339.9 ± 0.1 (stat.) ± 7.3 (syst.) μb−1.

6 Results

6.1 The differential elastic cross section

Several corrections are applied to calculate the differential elastic cross section. The corrections are made
individually per run and per arm before combining all runs and the two arms in the final differential elastic
cross section. In a given bin 𝑡𝑖 , the cross section is calculated according to the following formula:

d𝜎
d𝑡𝑖

=
1
Δ𝑡𝑖

× M−1 [𝑁𝑖 − 𝐵𝑖]
𝐴𝑖 × 𝜖rec × 𝜖trig × 𝜖DAQ × 𝐿int

,

where Δ𝑡𝑖 is the bin width, M−1 represents the unfolding procedure applied to the background-subtracted
number of events 𝑁𝑖 − 𝐵𝑖 , 𝐴𝑖 is the acceptance, 𝜖rec is the event reconstruction efficiency, 𝜖trig is the trigger
efficiency, 𝜖DAQ is the dead-time correction and 𝐿int is the integrated luminosity used for this analysis. The
binning in 𝑡 is chosen to be appropriate for the experimental resolution and statistical uncertainty. At small
|𝑡 | the selected bin width is two times the resolution. At larger |𝑡 | the bin width is increased to compensate
for the lower number of events from the exponentially falling distribution. The resulting differential elastic
cross section obtained using the subtraction method is shown in Figure 19 and numerical values with
uncertainties are summarized in Tables 12 and 13 in the Appendix.

Experimental systematic uncertainties

Several variations of the analysis are performed under different experimental conditions in order to assess
the systematic uncertainties. For certain sources, several variations potentially probing the same effect are
considered. From these variations, the largest deviation from the nominal cross section is retained as the
systematic uncertainty. A total of 20 sources of uncertainty are propagated to the differential elastic cross
section as follows:

• For the alignment, separate uncertainties are calculated for different components of the alignment
procedure. The dominant uncertainty is related to the global correction to the distance parameter
determined by the procedure described in Section 3.3, and the correction is varied by its total
uncertainty. For the vertical beam offset, the uncertainties are assumed to be fully correlated between
inner and outer stations but anti-correlated between the left and right sides, and thus systematic shifts
preserve the internal consistency of the data. Uncertainties related to the horizontal offset and to the
rotation are propagated directly to the differential cross section, where both the full-correlation and
anti-correlation assumptions were tested. The resulting uncertainties are rather small and similar for
the two correlation assumptions, and the larger one is retained as the nominal uncertainty.
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• The nominal effective optics model with corrections to the strength of Q1, Q3, Q5 and Q6 is replaced
by a simplified model in which only Q5 and Q6 are tuned (see Section 5.5). This alternative optics
model yields by far the largest cross-section difference with respect to the nominal beam optics.
Several other uncertainties related to the input optics constraints, to the inclusion of Q2 and Q4 in
the fit and a variation of their strength by its uncertainty, to the quadrupole alignment and to the
propagation of the intrinsic effective optics fit are considered as a stability test. These gave rise to
very small changes in the cross section which were not included in the systematic uncertainty.

• The beam transport in the simulation nominally achieved with the transport matrix is replaced by the
symplectic PTC transport module in MadX [27], where the quadrupole strengths of the effective
optics were fed into a MadX strength file. The difference between PTC-tracking and matrix transport
also accounts for the simplification in the effective optics fit where a beamline set-up was used, as
opposed to the multi-turn ring set-up nominally used in MadX for LHC simulations.

• The nominal crossing angle for the 2.5 km campaign was zero, but the measurement of the crossing
angle by the beam position monitors around IP1 has a limited precision estimated to be 10 μrad. A
residual non-compensated crossing angle in the vertical plane with parallel-to-point focusing beam
optics would cause a shift of the beam position at ALFA. Such a shift would trivially be corrected
by the alignment procedure. In the horizontal plane, a crossing angle would also shift the beam
centre and, in addition, broaden the beam distribution. The latter effect is assessed by applying a
crossing angle in the MadX beam transport simulation and then used for acceptance and unfolding
corrections in the analysis.

• The nominal beam energy value of 𝑝 = 6500 GeV is varied by its uncertainty of 0.1% [11]
simultaneously in the data for 𝑡-reconstruction according to Eq. (2), and in the simulation both at the
generator level and again in the 𝑡-reconstruction.

• The emittance model used to calculate the angular divergence in the simulation is varied by its
uncertainty of the order of 10%, and the time dependence of the emittance is replaced by a
luminosity-weighted average.

• In the simulation the nominal model for the 𝑡-spectrum with three slope parameters 𝐵, 𝐶, 𝐷 (see
Section 4.1) is replaced by a model with a constant exponential slope 𝐵.

• The value of the 𝜌-parameter in simulation is varied by ±0.01, corresponding to its uncertainty (see
Section 6.2.

• The detector resolution in the simulation is varied, replacing the resolution determined from the
collision data with values 3–4 μm smaller, as predicted from the Geant4 simulation, and 4–5 μm
larger, as measured using test-beam data. Additionally, a small 𝑦-dependence (10%) of the resolution
observed in the data is parameterized and used instead of the nominal constant value.

• The uncertainty in the background from accidental coincidences is calculated from a variation of the
normalization regions and template composition. For DPE the normalization region is also varied
and the shape is changed in the simulation, as explained in Section 5.2.

• The intrinsic unfolding uncertainty is determined from the data-driven closure test explained in
Section 5.4.

• The event reconstruction efficiency is varied by its uncertainty discussed in Section 5.3. Furthermore,
a possible 𝑡-dependence of the reconstruction efficiency is taken into account.
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• The luminosity uncertainty of 2.15% is propagated to the cross section (see Section 5.6).

• For the tracking efficiency, the minimum number of fibre layers in both 𝑢 and 𝑣 required to reconstruct
a track is varied between three and four (see Section 3.3).

The systematic uncertainties related to the sources above are calculated using the offset method. In this
method, the nominal value of a certain parameter in the analysis chain is varied according to the assigned
uncertainty. The shift in bin 𝑡𝑖 for systematic uncertainty source 𝑘 , 𝛿𝑘 (𝑡𝑖) = d𝜎𝑘 (𝑡𝑖)/d𝑡 − d𝜎nominal(𝑡𝑖)/d𝑡
is recorded, keeping track of the sign and thereby accounting for correlations across the 𝑡-spectrum.
Systematic shifts are included in the fit used to determine the physics parameters, as outlined in Section 6.2.
The systematic 𝑡-dependent shifts for the differential elastic cross section are shown in Figures 17(a), 17(b),
18(a), and 18(b) for the entire range of the 𝑡-spectrum. The dominant systematic uncertainties at small |𝑡 |
are related to the vertical alignment, detector resolution and possible 𝑡-dependent reconstruction efficiency;
the second and third effects are also important at large |𝑡 |.
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Figure 17: Relative systematic shifts of d𝜎/d𝑡 as a function of 𝑡 resulting from uncertainties in the (a) alignment and
effective optics and (b) beam properties. For cases where two-sided uncertainties are available the larger one was
retained and assigned as a symmetric uncertainty.

6.2 Fitting procedure

The physics parameters, total cross section, 𝜌-parameter and the slope parameters are obtained from
a fit of the theoretical spectrum (Eq. (10)), including the CNI term, to the measured differential cross
section. Both the statistical and systematic uncertainties as well as their correlations are taken into
account in the fit. The statistical correlations are included in the covariance matrix calculated in the
unfolding procedure. The correlations of systematic uncertainties are taken into account by using a profile
minimization procedure [31], where nuisance parameters corresponding to all 20 systematic shifts are
included, and the 𝜒2 is given by:

𝜒2 =
∑︁
𝑖, 𝑗

[(
𝐷 (𝑖) −

(
1 +

2∑︁
𝑙=1

𝛼𝑙

)
× 𝑇 (𝑖) −

18∑︁
𝑘=1

𝛽𝑘 × 𝛿𝑘 (𝑖)
)
×𝑉−1(𝑖, 𝑗)

×
(
𝐷 ( 𝑗) −

(
1 +

2∑︁
𝑙=1

𝛼𝑙

)
× 𝑇 ( 𝑗) −

18∑︁
𝑘=1

𝛽𝑘 × 𝛿𝑘 ( 𝑗)
)]

+
18∑︁
𝑘=1

𝛽2
𝑘 +

2∑︁
𝑙=1

𝛼2
𝑙

𝜖2
𝑙

,
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Figure 18: Relative systematic shifts of d𝜎/d𝑡 as a function of 𝑡 resulting from uncertainties in the (a) simulation,
detector resolution, background and (b) reconstruction efficiency, luminosity and tracking. For cases where two-sided
uncertainties are available the larger one was retained and assigned as a symmetric uncertainty.

Table 7: Results of the profile fit to the differential elastic cross section.

𝜎tot [mb] 𝜌 𝐵 [GeV−2] 𝐶 [GeV−4] 𝐷 [GeV−6]
Central value 104.68 0.0978 21.14 −6.7 17.4
Statistical error 0.22 0.0043 0.07 1.1 3.8
Experimental error 1.06 0.0073 0.11 1.9 6.8
Theoretical error 0.12 0.0064 0.01 0.04 0.15
Total error 1.09 0.0106 0.13 2.3 7.8

where 𝐷 (𝑖) is the measured value of the elastic cross section in bin 𝑖, 𝑇 (𝑖) the theoretical prediction and
𝑉 (𝑖, 𝑗) the statistical covariance matrix. For each systematic uncertainty that changes the shape of the
𝑡-spectrum, a nuisance parameter 𝛽𝑘 multiplying the corresponding shift 𝛿𝑘 is fitted as a free parameter,
and a penalty term

∑
𝑘 𝛽

2
𝑘

is added to the 𝜒2. Two scale parameters, 𝛼𝑙 , are used to describe the rescaling
of the normalization of the theoretical prediction due to the 𝑡-independent uncertainties in the luminosity
and the reconstruction efficiency 𝜖𝑙. The sum in quadrature of these two scale factors divided by their
uncertainties results in a second penalty term,

∑2
𝑙=1 𝛼

2
𝑙
/𝜖2

𝑙
. The uncertainties in the physics parameter

values returned by the profile fit account for both the experimental systematic and statistical uncertainties.
In the case of the time-dependent emittance model and the 𝑡-dependent reconstruction efficiency, the fit
could somewhat constrain the nuisance parameters, resulting in slightly reduced systematic uncertainties.

The differential cross section and the fitted theoretical prediction are shown in Figure 19. The fit range is
chosen from 𝑡 = −4.5 · 10−4 GeV2 to 𝑡 = −0.205 GeV2. The lower |𝑡 | value is chosen to be as close as
possible to 𝑡 = 0 to maximize the coverage of the CNI region while having an acceptance above 10%. The
value chosen for the upper limit is motivated by theoretical considerations not to extend the fit into the
region where the shape of the differential cross section is influenced by the approach of the dip. The main
fit results are 𝜎tot = 104.7 ± 1.1 mb and 𝜌 = 0.098 ± 0.011; further details are summarized in Table 7.
Here, the experimental uncertainty is obtained from the profile fit, the statistical component is calculated
from a bootstrap method [32], and the theoretical uncertainties are discussed below.
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reconstructed with the subtraction method. The red full line represents the result of the fit inside the fit range, the
dotted red line shows the extrapolation of the fit outside, including a special model for large |𝑡 | matched to the fitted
function at −𝑡 = 0.2 GeV2. In the lower panel, the points represent the deviation from unity of the ratio of the fit to
the data, the yellow area represents the total experimental uncertainty and the hatched area the statistical component.
The arrows indicate points out of the scale. The inset plot shows a zoom in the small-|𝑡 | region.

6.3 Theoretical uncertainties

The theoretical systematic uncertainty is calculated by changing the assumptions of the model used in the
profile fit (see Section 4.1). The parameterization of the nuclear amplitude, nominally using three slope
parameters 𝐵, 𝐶 and 𝐷 in the exponential term, is reduced to two parameters 𝐵 and 𝐶 and to a single
constant slope 𝐵. In each case the upper end of the fit range is progressively reduced in order to obtain a
good description of the data. Further variations include changes in the parameterization of the electric form
factor of the proton and of the Coulomb phase, as well as the inclusion of a term related to the magnetic
moment of the proton, which induces a spin dependence in the Coulomb amplitude [33]. For the nuclear
phase, several assumptions about the possible 𝑡-dependence were investigated. The systematic uncertainty
is calculated with a simple model of a 𝑡-dependence according to Eq. (13). Other nuclear phase models
suggested in Ref. [17] were also evaluated, but were not taken into account in the uncertainty calculation.
Among these, the largest change is observed when using a peripheral phase, but according to Ref. [17] this
phase model represents an extreme case with a large change increasing with |𝑡 |. The resulting theoretical
uncertainties are summarized in Table 8.

The presence of a 𝑡-dependent slope in the data requiring an extension of the simple exponential
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Table 8: Systematic uncertainties originating from the choice of model fitted to the data. Details of the models for the
nuclear phase can be found in Ref. [17]. The simple phase model is included in the systematic uncertainty calculation,
and the other nuclear phase model results are given for reference.

Variation Δ𝜎tot [mb] Δ𝜌 Δ𝐵 [GeV−2] Δ𝐶 [GeV−4] Δ𝐷 [GeV−6]
𝐵𝐶 0.04 0.0018 – – –
𝐵 0.09 0.0047 – – –
Form factor 0.01 0.0022 0.01 < 0.1 0.1
Spin dependence < 0.01 0.0013 < 0.01 < 0.1 < 0.1
Coulomb phase 0.02 0.0030 < 0.01 < 0.1 < 0.1
Simple phase 0.05 < 0.0001 0.01 < 0.1 0.1
Total theoretical 0.12 0.0064 0.01 0.04 0.15
Peripheral phase 0.21 −0.0060 0.80 7.3 12.2
Durand-Ha phase 0.02 < 0.0001 0.01 < 0.1 0.2
Standard phase 0.02 < 0.0001 < 0.01 < 0.1 0.1
Bailly phase 0.01 < 0.0001 < 0.01 < 0.1 < 0.1

Table 9: Results of a simple fit using only statistical uncertainties.

𝜎tot [mb] 𝜌 𝐵 [GeV−2] 𝐶 [GeV−4] 𝐷 [GeV−6] 𝜒2/𝑁dof
Central value 104.73 0.0926 21.16 −7.6 20.9 55.5/62
Uncertainty 0.07 0.0035 0.08 1.1 4.3

model ∼ exp (−𝐵|𝑡 |) used in previous analyses [3, 4] with less constraining data is illustrated in Figure 20.
The plot shows the differential cross-section data normalized to a reference exponential fit in the range from
−𝑡 = 0.04 GeV2 to −𝑡 = 0.2 GeV2 where the effect is most visible. Other models fitted in the same range
but with a 𝑡-dependent slope are normalized to the same reference and found to describe the data better, with
one additional parameter 𝐶 giving a satisfactory description up to −𝑡 = 0.1 GeV2 and the full 𝐵𝐶𝐷-model
up to −𝑡 = 0.2 GeV2. The regime beyond −𝑡 = 0.2 GeV2 is characterized by the onset of diffractive
interference phenomena leading to the dip, which requires a different type of parameterization [21, 34].

6.4 Stability checks

Several cross-checks of the analysis are performed in order to verify the stability of the results. A test for
possible time dependence is performed by repeating the analysis separately for each run in the campaign.
The results shown in Figure 21 demonstrate that the physics parameters determined per run are compatible
with one another and with results from the time-integrated combined data set. A very basic test probing the
sensitivity to different fitting options consists of a simple fit that uses only the statistical covariance matrix
in the definition of 𝜒2. The result given in Table 9 shows good agreement with the profile fit. There are
small shifts of the central values which originate from different weights of the bins inside the fit range when
systematic uncertainties are omitted, the latter having a different 𝑡-shape than statistical uncertainties.

Independent measurements are performed in each arm of ALFA, and are combined before fitting the
physics parameters. The fits can, however, also be done per arm for the subsample collected in that arm,
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Table 10: Results of the profile fit to the differential elastic cross section measured with different 𝑡-reconstruction
methods. The quoted error includes both the statistical and experimental systematic uncertainties, but not the
theoretical uncertainty.

Method 𝜎tot [mb] 𝜌 𝐵 [GeV−2] 𝐶 [GeV−4] 𝐷 [GeV−6] 𝜒2/𝑁dof
Subtraction 104.68 ± 1.08 0.0978 ± 0.0085 21.14 ± 0.13 −6.7 ± 2.2 17.4 ± 7.8 51/62
Local angle 104.50 ± 1.05 0.1029 ± 0.0081 21.16 ± 0.14 −6.9 ± 2.3 19.3 ± 8.0 82/62
Lattice 104.87 ± 1.03 0.0956 ± 0.0085 21.02 ± 0.13 −4.9 ± 2.2 12.5 ± 7.5 83.1/62
Local subtraction 104.52 ± 1.04 0.0910 ± 0.0091 20.99 ± 0.15 −5.1 ± 2.4 12.3 ± 8.1 76.6/62

in which case the acceptance is reduced roughly by a factor of two. In order to test the consistency of
the measurements in the two arms, the same standard fit range used in the nominal combined analysis is
applied, although the acceptance per arm is below 10% in the first bin. This test is carried out with a fit
including only statistical uncertainties. The difference between the arms is found to be consistent with the
arm-dependent vertical offset and reconstruction efficiency uncertainties.

As outlined in Section 3.1, the 𝑡-value can be reconstructed with four different methods, with the subtraction
method being the nominal method. Different methods use different combinations of the transport matrix in
the reconstruction. Table 10 reveals good consistency among the methods, with the small differences being
within the beam optics uncertainty.

Finally the dependence of the fit results on the choice of fit range was investigated. Both the upper and
lower ends of the fit range were varied. The largest change was found when the lower end of the fit range
was moved to −𝑡min = 1.26 · 10−3 GeV2 where a resulting shift of 0.2 mb for 𝜎tot and of 0.0017 for 𝜌

was observed with negligible changes in the slope parameters. Moving the upper end of the fit range to
−𝑡max = 0.15 GeV2 had little impact on 𝜎tot and 𝜌, but changed the slope parameter 𝐶 by 1.2 GeV−4 and
the slope parameter 𝐷 by 4.7 GeV−6. These changes are significantly smaller than the quoted experimental
uncertainties.

6.5 Elastic and inelastic cross sections, and 𝝈el/𝝈tot

The total elastic cross section measured inside the fiducial volume is obtained by integrating the observed
differential elastic cross section in the available 𝑡 range from −𝑡 = 2.5 · 10−4 GeV2 to −𝑡 = 0.46 GeV2. The
result is

𝜎obs
el = 27.80 ± 0.09 (stat.) ± 0.64 (syst.) mb.

This measurement accounts for both the strong interaction and electromagnetic interaction in the CNI
region. For the extrapolation to the full phase space, a common approach is to use only the nuclear part
of the fit, which in the past typically consisted of only a single exponential term ∼ exp(−𝐵|𝑡 |), and to
integrate from zero to infinity. The Coulomb interaction needs to be disregarded in this approach because
only the hadronic part of elastic scattering is to be integrated. In this analysis, the nuclear amplitude
parameterization is extended to include the curvature parameters 𝐶 and 𝐷 and the integration is carried out
numerically from zero to 1000 GeV2, neglecting the part of the cross section at higher |𝑡 |. The result is

𝜎extr
el = 27.27 ± 1.10 (exp.) ± 0.30 (th.) mb,

where the first uncertainty is propagated from the profile fit and thus includes experimental systematic
and statistical uncertainties and the second uncertainty accounts for the model dependence. The same
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integration can also be restricted to the measurement range and reveals that a contribution of about 0.75 mb
can be attributed to electromagnetic interactions inside the fiducial volume. The fact that the observed
cross section in the fiducial volume is larger than the cross section extrapolated to full phase space is related
to the large contribution from Coulomb scattering in the small-|𝑡 | region of the fiducial volume.

The total integrated (hadronic) inelastic cross section is obtained by subtracting the extrapolated elastic
cross section from the total cross section. The result is

𝜎inel = 77.41 ± 1.07 (exp.) ± 0.18 (th.) mb,

where again the uncertainty, taking into account correlations, is propagated from the profile fit to the total
and extrapolated elastic cross sections in the first error, and the second error represents the theoretical
uncertainties. This result from ALFA can be compared with the ATLAS measurement of the inelastic
cross section using the MBTS [35], which is 𝜎inel = 78.1 ± 2.8 mb, where the uncertainty is dominated
by the extrapolation to full phase space covering the diffractive region with protons of momentum loss
Δ𝑝/𝑝 < 5 · 10−6. The two measurements are compatible within the uncertainties.

Another derived quantity is the ratio of the elastic cross section to the total cross section,

𝜎el

𝜎tot
= 0.257 ± 0.008 (exp.) ± 0.009 (th.).

The normalization uncertainty between 𝜎el and 𝜎tot is correlated and partly cancels out in the ratio. The
value of this ratio should asymptotically approach 1/2 in the black-disk limit (see Section 7.2), a value that
the present measurement is far below. A study of the ratio’s energy evolution may reveal additional aspects
of strong interactions in low-momentum transfer reactions.

6.6 Absolute luminosity calibration

The initial goal for ALFA was to provide an absolute calibration of the luminosity [36]. The method
requires covering the CNI region of the 𝑡-spectrum to gain sensitivity to the Coulomb interaction, which
is independent of 𝜎tot. In the nuclear regime the normalization is fully correlated with the total cross
section and an independent measurement of luminosity and 𝜎tot is impossible. The good CNI-coverage of
the present data set allows an evaluation of this method, as demonstrated recently in Ref. [1]. Because
the differential elastic cross section normalized by the luminosity from LUCID was used to constrain the
alignment, this absolute calibration test can only be used to assess the achievable precision.

Different fitting strategies were considered for luminosity calibration. In the actual implementation, one
more parameter 𝑥𝐿 is introduced as a multiplicative factor to the nominal luminosity and is fitted together
with the five physics parameters over the nominal fit range. For this study a fit including only statistical
uncertainties is used and the result for 𝑥𝐿 is

𝑥𝐿 = 1.008 ± 0.020 (stat.) ± 0.059 (syst.),

where the first uncertainty is purely statistical and the second accounts for the experimental systematic
uncertainties. For the other physics parameters, values compatible with the nominal values are found. The
experimental systematic uncertainties are obtained by repeating the fit under the same variations of the
analysis that were taken into account for the nominal profile fit, except for the luminosity uncertainty. The
systematic uncertainty of 𝑥𝐿 is dominated by the distance uncertainty (0.038) and the possible 𝑡-dependence
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of the reconstruction efficiency (0.039), whereas all other uncertainties are much smaller and when added
in quadrature amount to 0.027. The dependence on the fit range was also investigated and a variation of its
lower end induces a change of 0.035 in 𝑥𝐿 and the upper-end variation induces a change of 0.014. These
changes are well covered by the quoted uncertainty.

Another fit option consists of a separation of the fits in two steps. In the first step, the slope parameters are
fitted at large |𝑡 | between −𝑡 = 0.01 GeV2 and −𝑡 = 0.2 GeV2 with nominal luminosity in a region where
the data have a negligible sensitivity to 𝜌. The actual value of 𝜌 used in the fit was verified to have no
impact on the slope parameters 𝐵, 𝐶 and 𝐷. In the second step, the values of the parameters 𝐵, 𝐶 and 𝐷

determined in the first step are fixed and a fit is performed in the complementary small-|𝑡 | region from
−𝑡 = 4.5 · 10−4 GeV2 to −𝑡 = 0.01 GeV2 with 𝜎tot, 𝜌 and 𝑥𝐿 as free parameters. The result from this fit
set-up is

𝑥𝐿 = 1.017 ± 0.021 (stat.) ± 0.061 (syst.).

The results are thus rather similar to those from the six-parameter simultaneous fit, with marginally larger
uncertainties. Also, the dependence on the fit range is similar, with the exception of the variation of
the lower end of the fit range, which induces a slightly larger change in 𝑥𝐿 . The alternative absolute
luminosity calibration with ALFA revealed the expected consistency with the nominal luminosity, presented
in Section 5.6, based on the LUCID detector with vdM calibration, but the 2.15% precision of the latter is
far better.

7 Interpretation

7.1 Energy evolution of 𝝈tot and 𝝆

Elastic scattering is a low-𝑝T process, and a perturbative expansion cannot be applied. Therefore, 𝜎tot
and the 𝜌-parameter cannot be calculated from first principles in QCD. Nonetheless, the fundamental
principles of analyticity of the elastic-scattering amplitude, crossing symmetry, and unitarity must be
respected, which are captured by dispersion relations. Dispersion relations connect the energy evolution of
the 𝜌-parameter with the energy evolution of 𝜎tot.

The COMPETE Collaboration [2] provides global fits to elastic-scattering measurements in 𝑝𝑝, 𝑝𝑝 and
other beam-particle collisons from low energies of around 5 GeV to LHC energies and above. The 𝑝𝑝 case
at high energies is of interest here. At high energy, they use a crossing-even amplitude (𝐶+), which implies
that the 𝑝𝑝 and 𝑝𝑝 cross sections converge asymptotically. This amplitude is based upon the Pomeron
concept and a double and triple pole is assumed, leading to an energy evolution of 𝜎tot combining ln 𝑠
and ln2 𝑠 terms. COMPETE does not use a crossing-odd amplitude (𝐶−) corresponding to the so-called
Odderon. Recently, the 𝑡-spectrum measured in 𝑝𝑝 collisions at the LHC by TOTEM was extrapolated
to the Tevatron energy and compared with the direct measurement of the 𝑝𝑝 spectrum by D0 to claim
evidence for the Odderon [37].

Figures 22 and 23 show the world data for 𝜎tot and 𝜌 together with the new result from ALFA. Also shown
in these figures are the predictions of the COMPETE model (black lines), taken from the PDG [38], and of
other models discussed below. The COMPETE prediction corresponds to their latest global fit for 𝜎tot and
𝜌, which includes all data available up to 7 TeV and also the TOTEM point at 8 TeV.

The new ALFA measurement of 𝜌 is compatible within uncertainties with the recent TOTEM meas-
urement [1], but the TOTEM value of the total cross section is about 5.8 mb higher than the ALFA
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Figure 22: Energy evolution of the total cross section compared to different model predictions.

measurement. The difference between ALFA and TOTEM corresponds to a discrepancy of about 2.2𝜎
assuming uncorrelated uncertainties. This trend was already observed at 7 and 8 TeV and is confirmed at
13 TeV. The difference between the ALFA and TOTEM measurements of the differential elastic cross
section is essentially confined to the normalization, whereas the shapes are mostly in good agreement.

ATLAS and TOTEM use quite different methods to obtain the absolute normalization. ATLAS uses the
method outlined in Section 5.6 for a precise luminosity measurement, while TOTEM uses the so-called
luminosity-independent method. The luminosity-independent method requires a simultaneous measurement
of the total inelastic rate including a MC estimation of the non-measurable contribution from low-mass
diffraction, which for TOTEM covers masses below 4.6 GeV.

The COMPETE prediction of 𝜎tot is in good agreement with the ALFA data at 13 TeV but it exceeds the
𝜌 measurements of ALFA and TOTEM by more than 3𝜎. One possible explanation for a lower 𝜌-value
could be that 𝜎tot asymptotically grows slightly slower than the ln2 𝑠 evolution assumed by COMPETE.
In the 1980s, Block and Cahn [39] and Bourrely and Martin (BCBM) [40] suggested the possibility of
a damped ln2 𝑠 amplitude which gives an energy dependence of the form ln2 𝑠/(1 + 𝛼 ln2 𝑠), where 𝛼 is
the damping factor. The proposed amplitude modifies the high-energy behaviour of 𝜌 and 𝜎tot and the
latter will asymptotically approach a constant value. Our global fit to the latest ALFA and TOTEM data
together with lower-energy 𝑝𝑝 data using this amplitude and applying dispersion relations is shown by the
blue dashed lines in Figures 22 and 23. A fair description of the ALFA data is found for a damping factor
𝛼 = 0.0014. The damped-amplitude model was suggested in the context of putting limits on predictions of
𝜎tot at energies beyond the ISR and the amplitude was not derived from an underlying physics model. The
damping factor was thus regarded as a measure of the energy scale where a possible deviation from ln2 𝑠

evolution might set in. Later, there were attempts to explain a slower rise of 𝜎tot in relation to Color Glass
Condensate models [41].
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Figure 23: Measurements of the 𝜌-parameter at different centre-of-mass energies compared to different model
predictions.

An alternative way to generate a low 𝜌-value is to assume the existence of a crossing-odd amplitude. This
would imply that differences between anti-particles and particles would prevail asymptotically. Such an
amplitude generates a lower 𝜌-value for 𝑝𝑝 scattering and a higher value for 𝑝𝑝 scattering relative to the
crossing-even amplitude. This type of amplitude was first proposed in 1973, e.g. in Ref. [42]. Much later,
the 𝐶− amplitude was associated with a three-gluon state in QCD, in contrast to the two-gluon state of the
Pomeron.

The original proposal from 1973 was extreme in the sense that the strong interaction was assumed to be as
strong as allowed by axiomatic field theory. This implies that not only the imaginary part of the scattering
amplitude increases as ln2 𝑠 but also the real part. The corresponding model was named FMO [43] (the
Froissaron Maximal Odderon) and is displayed in Figures 22 and 23 (red lines). This model was tuned to
the TOTEM data, which are well described, whereas the ALFA cross-section data at 7 and 8 TeV were
discarded from the model tuning and are thus not well described. The FMO model generates a shift
Δ𝜌 v −0.04 at 13 TeV, whereas in Ref. [44] the Odderon contribution was estimated to be 𝑂 (1 mb) and
thus Δ𝜌 v −0.01.

Figures 22 and 23 show the result of the model constructed by the KMR group [45] (green dashed lines).
This is a two-channel eikonal model with few parameters and it uses all available high-energy data for 𝜌
and 𝜎tot, as well as the corresponding differential elastic cross sections, and also all available measurements
of low-mass diffraction. The latest TOTEM data at 13 TeV are also included as a constraint. For the
calculation shown, they have only used a 𝐶+ amplitude and yet they get a reasonable description of 𝜌. They
also estimate the contribution of the Odderon (not included in the figure) and find its contribution is only
Δ𝜌 v −0.005.

Figures 22 and 23 also show the results of two other models. The HEGS (High Energy General Structure)
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Table 11: Fit quality of predictions for 𝜎tot and 𝜌 considering the entire data set of 𝑝𝑝 collisions and the individual
contributions from ALFA and TOTEM data on 𝜎tot and 𝜌 to the 𝜒2. The last column indicates the LHC data included
in the tuning of the models (A for ALFA, T for TOTEM, with the energy in TeV).

Model Global 𝜒2/𝑁dof ALFA TOTEM LHC data included
partial 𝜒2/𝑁dof partial 𝜒2/𝑁dof in model tuning

COMPETE HPR1R2 1.42 3.00 3.50 A 7; T 7, 8
FMO 1.61 9.50 0.13 T 7, 8, 13
BCBM 1.03 0.81 2.04 all
KMR 0.85 2.29 A 7, 8; T 7, 8, 13
HEGS 8.10 0.83 A 7; T 7, 8
BJAS 11.90 0.29 A 7; T 7, 8, 13

model [46] (purple dotted lines) is based on reggenized gluon exchange and generalized parton distributions.
Their estimate of the Odderon contribution is small [47]. The description of 𝜌 overshoots the experimental
values of TOTEM and ALFA, but not as much as the COMPETE prediction. In their fit to the data, they
have included all data up to 7 TeV and the point at 8 TeV from TOTEM.

The BJAS model (from the initials of the authors of Ref. [48] and shown by the light blue dotted-dashed
lines) uses both a 𝐶+ amplitude and a 𝐶− amplitude. The 𝐶− amplitude resembles the Maximal Odderon
and thus describes the 𝜌 data points very well at 13 TeV. This model has a distinct feature that the inelastic
profile as a function of the impact parameter 𝑏 has a small dip at 𝑏 = 0, which can be interpreted as
hollowness. All data available up to 13 TeV were used to determine the parameters of this model.

To better quantify the level of agreement between the models and the data, a 𝜒2-comparison is presented in
Table 11, using either all available data from 𝑝𝑝 collisions or the partial contributions from ALFA and
TOTEM. COMPETE provides a good description of the data up to 8 TeV, but it fails to describe the 13
TeV 𝜌 data. The FMO model is overall in poorest agreement with the 𝑝𝑝 data and disagrees with the
ALFA data, but it yields the best description of the TOTEM data, to which it was tuned. The BCBM model
achieves the best overall description and is also in good agreement with the ALFA data but, given the
discrepancy in the total cross-section data, is not in good agreement with TOTEM. For the other models,
only discrete values are provided, and thus the comparison is restricted to the LHC range.

The conclusion drawn from these model comparisons is that it is difficult to separate possible effects from
a flatter energy dependence of 𝜎tot and contributions from a possible 𝐶− contribution in the form of an
Odderon. The fact that the size of the Odderon contribution is subject to large uncertainties complicates
the matter further.

7.2 Evolution of the ratio 𝝈el/𝝈tot

At the highest energies hadron–hadron scattering cross sections may asymptotically approach the geometrical
size of the hadrons, a configuration which is referred to as the black-disc limit. In this case, the elastic
and inelastic cross sections become equal, and thus the ratio 𝜎el/𝜎tot is 1/2. At present energies, this
ratio is closer to 1/4 but an increase from the ISR to LHC energies is clearly observed. The energy
evolution of 𝜎el/𝜎tot is investigated in Figure 24, where the new measurement at 13 TeV is compared with
the values from TOTEM and lower energies. In order to guide the eye, the data are compared with a
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simple parameterization of 𝜎el [3, 4] normalized to the COMPETE prediction of 𝜎tot. A set of consistent
calculations of the ratio using 𝜎el and 𝜎tot calculated in the same framework are also shown in Figure 24.
The prediction from Block and Halzen [49] was derived before the LHC data was available and clearly
overshoots the data as well as the BJAS prediction. The Block and Halzen model is only valid for data
above 100 GeV. This is also true for the KMR model [45]. However, this model is in good agreement with
the ATLAS data and also lower-energy data in the range of applicability.
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Figure 24: Measurements of the ratio 𝜎el/𝜎tot at different centre-of-mass energies compared to model predictions
and for illustrative purposes a conventional parameterization of the elastic cross section divided by the COMPETE
prediction of 𝜎tot.

7.3 Inelastic cross section

The measurement of the inelastic cross section determined here is compared with the ALFA measurements
in Run 1, direct measurements from ATLAS [35, 50] and other experiments [38, 51–56], together with
generator predictions [57–59] and model calculations by KMR and BJAS in Figure 25. The most precise
measurement in the LHC energy range are the ALFA measurement followed by the TOTEM measurements.
The other measurements, not using Roman Pots, have limited precision due to the fact that the full inelastic
phase space is not covered and they have to rely upon theoretical models to extrapolate beyond the fiducial
volume.

7.4 Nuclear slope 𝑩

In the context of Regge field theory, the energy evolution of the nuclear slope at small |𝑡 | is related to the
slope of the Pomeron Regge trajectory 𝛼′. Taking 𝐵 as the leading slope term at small |𝑡 |, its evolution
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Figure 25: Comparison of inelastic cross-section measurements presented here with other published measurements
and model predictions as a function of the centre-of-mass energy.

with 𝑠 is expected to be

𝐵 = 𝐵0 + 2 · 𝛼′ ln
(
𝑠

𝑠0

)
.

The increase of the 𝐵 slope corresponds to a reduction of the emission cone of elastically scattered particles,
a phenomenon known as the shrinkage of the forward cone. It was verified that this linear relation is quite
accurate at lower energy, where the scattering process is dominated by a single Pomeron exchange but
the energy is still high enough for secondary Regge trajectories to be unimportant. However, at higher
energies, in a situation with multi-Pomeron exchange, the increase of 𝐵 is expected to be faster than linear
and an additional term in ln2 (𝑠/𝑠0) may be needed to describe the evolution. This may be the case at the
LHC, as pointed out in Ref. [60].

In the present analysis the 𝑡-dependence of the nuclear slope is taken into account, but in order to compare
it with previous measurements at lower energy the leading slope parameter 𝐵 is determined in a dedicated
fit at small |𝑡 |, where the slope is approximately constant, without the curvature parameters 𝐶 and 𝐷.

In Figure 26 the LHC data are compared with lower-energy data and with the model in Ref. [60] (red line),
which included only TOTEM data at 7 TeV for the LHC and a restricted selection of lower-energy data,
particularly ISR data. Also shown in Figure 26 is an attempt to repeat the fit with the same parameterization
as in Ref. [60], but including all data (blue solid line). For comparison, a simple fit is also shown using
only the linear term in ln (𝑠/𝑠0) (dashed blue line).

While a quadratic energy evolution appears to be favoured by the data, it must also be concluded that the
selection of lower-energy data has a significant impact on the shape of the evolution, and the fit including
all data does not give a perfect description of the LHC data. A good description of the 7 and 8 TeV data is
obtained with the selection in Ref. [60], but the prediction at 13 TeV is higher than the measurements.
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The prediction of the BJAS model (light blue dashed-dotted line) does not provide a good description of
the nuclear slope’s energy evolution, as can be seen in Figure 26.
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Figure 26: Measurements of the nuclear slope parameter 𝐵 determined at small |𝑡 | compared to different predictions
of its energy evolution.

8 Conclusion

This paper presents measurements of the total cross section, 𝜌-parameter and nuclear slope parameters
using elastic 𝑝𝑝 scattering data at

√
𝑠 = 13 TeV recorded by the ALFA subdetector of ATLAS in 2016 in a

special LHC run with 𝛽★ = 2.5 km optics, corresponding to an integrated luminosity of 340 μb−1. The
analysis introduces dedicated data-driven methods to determine the relevant beam optics parameters, event
reconstruction efficiency, simulation tuning and vertical Roman Pot alignment. The alignment precision
achieved, about 22 μm, is required to determine the 𝜌-parameter, because the main sensitivity is at small |𝑡 |
in the CNI region where the alignment has the largest impact.

From a fit to the differential elastic cross section in the range from −𝑡 = 4.5 · 10−4 GeV2 to −𝑡 = 0.2 GeV2,
the total cross section and 𝜌-parameter are determined to be:

𝜎tot(𝑝𝑝 → 𝑋) = 104.68 ± 1.08 (exp.) ± 0.12 (th.) mb,
𝜌 = 0.0978 ± 0.0085 (exp.) ± 0.0064 (th.),

where the first error accounts for all experimental systematic uncertainties and includes the statistical
component, and the second is related to the model uncertainties. The experimental systematic uncertainty
is dominated by the uncertainty in the luminosity and the alignment. This analysis included a dedicated
luminosity determination for the 𝛽★ = 2.5 km run, which is directly used to normalize the cross-section
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measurements. This new value of the total cross section is about 5.8 mb lower than the measurement
from the TOTEM Collaboration, corresponding approximately to a 2.2𝜎 tension, assuming uncorrelated
uncertainties. A similar difference was already observed at 7 and 8 TeV. The main difference is traced
back to the normalization of the differential elastic cross section measured by ATLAS and TOTEM.

A study of the form of the 𝑡-spectrum revealed the need to introduce a 𝑡-dependent parameterization of the
exponential nuclear slope (see Eq. (9)), assumed to be constant at 7 and 8 TeV. It is found in this analysis
that with two more parameters 𝐶 and 𝐷 in addition to 𝐵 used in previous measurements a satisfactory
description is achieved; they are measured to be:

𝐵 = 21.14 ± 0.13 GeV−2,

𝐶 = −6.7 ± 2.2 GeV−4,

𝐷 = 17.4 ± 7.8 GeV−6.

The new data for 𝜎tot and 𝜌 are compared with lower-energy data, and the energy evolution of these data
is analysed in the context of model studies of the evolution. The widely used COMPETE model yields
a good description of the ATLAS and lower-energy total cross-section data, but fails to describe the 𝜌

measurements at 13 TeV. The FMO model, tuned to the TOTEM data, featuring a maximal Odderon
contribution in the nuclear amplitude, was also investigated and found to be in good agreement with the 𝜌

measurements but it exceeds the ATLAS total cross-section measurement. A simultaneous fit exploiting
dispersion relations was performed to 𝜎tot and 𝜌 data, using the BCBM parameterization of a purely even
but damped amplitude, and was found to give a good description of both 𝜎tot and 𝜌. This study shows that
the commonly accepted energy evolution as implemented in the COMPETE model is in tension with the
13 TeV elastic-scattering data. Nonetheless, further research is needed to understand whether the low value
of 𝜌 can be attributed to the Odderon or other effects in strong interactions.

This analysis also measures the inelastic cross section, and its value is the most precise of the five available
LHC measurements.

The ratio 𝜎el/𝜎tot, a measure of the opaqueness of the proton, continues to grow slowly with energy, and its
evolution is well described by the KMR model. The measurement remains far from probing the black-disc
limit, i.e. a totally opaque proton.

The study of the evolution of the leading nuclear slope 𝐵 confirms the tendency already found at 7 and
8 TeV: in the energy range of the LHC, the shrinkage of the forward cone starts to accelerate relative to
the linear dependence found previously at energies below the LHC range, as expected from the onset of
multi-Pomeron exchange.
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Appendix

Numerical values of the differential elastic cross section are given in the range from −𝑡 = 2.5 · 10−4 GeV2

to −𝑡 = 0.05785 GeV2 in Table 12 and from −𝑡 = 0.05785 GeV2 to −𝑡 = 0.46 GeV2 in Table 13.
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Table 12: The measured values of the differential elastic cross section with statistical and systematic uncertainties.
The central 𝑡-values in each bin are calculated from simulation. This table gives values from −𝑡 = 0.00025 GeV2 to
−𝑡 = 0.05785 GeV2.

Low |𝑡 | edge High |𝑡 | edge Central |𝑡 | d𝜎el/d𝑡 Stat. uncert. Syst. uncert. Total uncert.
[GeV 2] [GeV 2] [GeV 2] [mb/GeV 2] [mb/GeV 2] [mb/GeV 2] [mb/GeV 2]
0.00025 0.00035 0.00029 3662 944 207 966
0.00035 0.00045 0.00040 2136 42 98 107
0.00045 0.00058 0.00051 1401 12 52 53
0.00058 0.00076 0.00067 998 6 31 31
0.00076 0.00098 0.00086 797 4 21 21
0.00098 0.00126 0.00112 680.1 2.8 16.4 16.6
0.00126 0.00161 0.00143 610.6 2.3 14.1 14.3
0.00161 0.00203 0.00182 576.1 2.0 13.1 13.3
0.00203 0.00252 0.00227 552.5 1.7 12.5 12.6
0.00252 0.00308 0.00279 537.2 1.6 12.2 12.3
0.00308 0.00371 0.00339 525.4 1.4 11.9 12.0
0.00371 0.00442 0.00407 518.0 1.3 11.7 11.8
0.00442 0.00521 0.00482 504.8 1.2 11.4 11.5
0.00521 0.00608 0.00564 497.2 1.1 11.2 11.3
0.00608 0.00703 0.00655 487.9 1.0 11.0 11.0
0.00703 0.00805 0.00754 476.4 1.0 10.7 10.7
0.00805 0.00916 0.00860 466.8 0.9 10.4 10.5
0.00916 0.01035 0.00975 456.0 0.9 10.2 10.3
0.01035 0.01162 0.01098 443.0 0.9 9.9 10.0
0.01162 0.01297 0.01229 430.3 0.8 9.7 9.7
0.01297 0.01441 0.01369 418.7 0.8 9.4 9.5
0.01441 0.01592 0.01516 407.9 0.7 9.2 9.2
0.01592 0.01752 0.01672 395.9 0.7 9.0 9.0
0.01752 0.01921 0.01836 383.0 0.7 8.7 8.7
0.01921 0.02099 0.02009 369.5 0.6 8.4 8.4
0.02099 0.02285 0.02191 354.1 0.6 8.0 8.0
0.02285 0.02479 0.02381 340.6 0.6 7.7 7.7
0.02479 0.02681 0.02579 327.9 0.6 7.4 7.4
0.02681 0.02892 0.02786 313.3 0.5 7.1 7.1
0.02892 0.03112 0.03002 299.7 0.5 6.8 6.8
0.03112 0.03340 0.03225 285.9 0.5 6.5 6.5
0.03340 0.03577 0.03458 272.6 0.5 6.2 6.2
0.03577 0.03823 0.03699 259.6 0.5 5.9 5.9
0.03823 0.04078 0.03949 246.5 0.4 5.5 5.6
0.04078 0.04341 0.04208 234.0 0.4 5.3 5.3
0.04341 0.04612 0.04475 220.6 0.4 5.0 5.0
0.04612 0.04892 0.04751 209.8 0.4 4.7 4.7
0.04892 0.05181 0.05035 197.6 0.4 4.4 4.4
0.05181 0.05478 0.05328 185.81 0.34 4.16 4.17
0.05478 0.05785 0.05630 175.05 0.32 3.92 3.93
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Table 13: The measured values of the differential elastic cross section with statistical and systematic uncertainties.
The central 𝑡-values in each bin are calculated from simulation. This table gives values from −𝑡 = 0.05785 GeV2 to
−𝑡 = 0.42 GeV2.

Low |𝑡 | edge High |𝑡 | edge Central |𝑡 | d𝜎el/d𝑡 Stat. uncert. Syst. uncert. Total uncert.
[GeV 2] [GeV 2] [GeV 2] [mb/GeV 2] [mb/GeV 2] [mb/GeV 2] [mb/GeV 2]
0.05785 0.06100 0.05941 164.08 0.31 3.67 3.69
0.06100 0.06424 0.06260 153.67 0.29 3.44 3.45
0.06424 0.06757 0.06588 143.41 0.28 3.21 3.22
0.06757 0.07098 0.06925 134.49 0.26 3.01 3.02
0.07098 0.07448 0.07271 125.04 0.25 2.80 2.81
0.07448 0.07807 0.07625 116.44 0.25 2.62 2.63
0.07807 0.08174 0.07988 107.89 0.23 2.43 2.44
0.08174 0.08550 0.08360 99.64 0.22 2.25 2.26
0.08550 0.08936 0.08741 93.00 0.21 2.11 2.12
0.08936 0.09329 0.09130 85.92 0.21 1.96 1.97
0.09329 0.09731 0.09527 79.35 0.19 1.82 1.83
0.09731 0.10140 0.09933 72.70 0.18 1.67 1.68
0.10140 0.10560 0.10347 66.55 0.17 1.54 1.55
0.10560 0.11000 0.10776 61.35 0.16 1.43 1.44
0.11000 0.11400 0.11198 56.31 0.16 1.32 1.33
0.11400 0.11870 0.11631 51.31 0.15 1.22 1.23
0.11870 0.12330 0.12096 46.96 0.14 1.12 1.13
0.12330 0.12800 0.12561 42.70 0.13 1.03 1.04
0.12800 0.13300 0.13045 38.74 0.12 0.95 0.95
0.13300 0.13800 0.13545 34.99 0.11 0.87 0.87
0.13800 0.14200 0.13998 31.97 0.11 0.80 0.81
0.14200 0.14700 0.14446 29.30 0.10 0.74 0.75
0.14700 0.15200 0.14946 26.39 0.10 0.68 0.68
0.15200 0.16000 0.15589 23.11 0.08 0.60 0.61
0.16000 0.16800 0.16389 19.71 0.08 0.53 0.53
0.16800 0.17700 0.17236 16.45 0.07 0.46 0.46
0.17700 0.18600 0.18136 13.74 0.07 0.39 0.40
0.18600 0.19500 0.19037 11.44 0.06 0.34 0.35
0.19500 0.20500 0.19982 9.40 0.05 0.30 0.30
0.20500 0.21900 0.21168 7.33 0.05 0.24 0.25
0.21900 0.23300 0.22569 5.51 0.04 0.19 0.20
0.23300 0.24900 0.24055 3.938 0.034 0.146 0.149
0.24900 0.26400 0.25606 2.866 0.030 0.115 0.119
0.26400 0.28000 0.27149 1.976 0.026 0.088 0.092
0.28000 0.29800 0.28841 1.369 0.023 0.069 0.073
0.29800 0.31500 0.30597 0.920 0.022 0.052 0.056
0.31500 0.35000 0.33016 0.456 0.014 0.030 0.033
0.35000 0.38500 0.36504 0.196 0.012 0.020 0.024
0.38500 0.42000 0.40012 0.069 0.011 0.013 0.017
0.42000 0.46000 0.43760 0.033 0.018 0.010 0.020
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A HepData material

The HEPData record 128017 contains the following tables:

1. The total cross section

2. The 𝜌-parameter

3. The nuclear slope parameter 𝐵

4. The nuclear slope parameter 𝐶

5. The nuclear slope parameter 𝐷

6. The measured total elastic cross section inside the fiducial volume

7. The nuclear part of the total elastic cross section extrapolated to full phase space

8. The total inelastic cross section

9. The ratio of the elastic to total cross section

10. The differential elastic cross section with statistical uncertainties and 20 experimental systematic
signed relative uncertainties associated to nuisance parameters used in the profile fit

11. The statistical covariance matrix for the differential elastic cross section
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