

ATLAS SemiConductor Tracker: Run 2 Performance and Run 3 Outlook

Elisabeth Schopf on behalf of the ATLAS Collaboration

ICHEP 2022, Bologna

+ The ATLAS Semiconductor **Tracker (SCT)**

- Part of the inner detector
 - Located between silicon pixel detector and transition radiation tracker
 - Located inside a 2T magnetic field
- Silicon strip detector with 6.3 million readout channels
- 4 barrel layers and 18 endcap disks (4088 modules)
- Provides input to charged particle tracking and vertex reconstruction
 - Space point resolution $r\phi \sim 16 \mu m$

+ SCT Roadmap

- Main operational aim: recording the Large Hadron Collider (LHC) proton-proton and heavy ion collisions
 - Collision energy up to 13.6 TeV, instantaneous luminosity 2.10³⁴ cm⁻²s⁻¹

- SCT designed for data taking during all LHC run periods
 - Run 2 concluded end of 2018; Run 3 ramping up in 2022 (now!)
- SCT is aging: observed first serious effects of radiation damage and had to overcome bandwidth limitations during Run 2

+ Operation Conditions

2.6 Pile-up at High Luminosity

The cross-section for inelastic, non-diffractive pp interactions at LHC energies is expected to be 70 mb. At a design luminosity of 1034 cm⁻²s⁻¹ and with a bunch spacing of 25 ns, the mean number of minimum bias events which should be seen by the Inner Detector is 18. However, since approximately 20% of the bunches in the LHC will be empty, the average time between filled bunches is increased and the mean number of collisions is about 23 for these non-empty bunches. This implies that when an interesting event is selected by the trigger, on average, there will be 23 single minimum bias events superimposed - these events are referred to as pile-up. The effect of pile-up can be seen in Colour Figure 2-iii.

Run 2 (156 fb⁻¹): hugely successful data taking period for ATLAS but also challenging for SCT

- Operation conditions far exceeding initial design limits
- Adjustments made in Run 2 to handle massive data flow and mitigate radiation damage impact

+ Operation Conditions

2.6 Pile-up at High Luminosity

The cross-section for inelastic, non-diffractive pp interactions at LHC energies is expected to be 70 mb. At a design luminosity of 10^{34} cm⁻²s⁻¹ and with a bunch spacing of 25 ns, the mean number of minimum bias events which should be seen by the Inner Detector is 18. However, since approximately 20% of the bunches in the LHC will be empty, the average time between filled bunches is increased and the mean number of collisions is about 23 for these non-empty bunches. This implies that when an interesting event is selected by the trigger, on average, there will be 23 single minimum bias events superimposed - these events are referred to as pile-up. The effect of pile-up can be seen in Colour Figure 2-iii.

Run 2 (156 fb⁻¹): hugely successful data taking period for ATLAS but also challenging for SCT

- Operation conditions far exceeding initial design limits
- Adjustments made in Run 2 to handle massive data flow and mitigate radiation damage impact

JINST 17 (2022) P01013

5

+ Data Acquisition Chain

- Formatted data **ATLAS** S-links Central Data SCT Acquisition Clock and modules control **TX** links Readout and control infrastructure Data "busy" **RX** links ATLAS Trigger **System** Trigger, clock and commands
- SCT modules supplied with low voltage (=LV, readout) and high voltage (=HV, sensor)
- Optical links transmit data, clock and control
 - Build-in redundancy used for <2% of links</p>
- Bandwidth limit reached suspends data taking
 - Errors from RX/TX links
 - "busy" signal from S-links
- SCT Run 2 data taking:
 - SCT availability 99.9%
 - 99.85% good data quality efficiency

+ SCT Components: Hardware

>98% of strips still active today!

In total only 46/4088 modules disabled today at the brink of Run 3

→ Modules disabled since start of Run 2: HV stability most common issue

Disabled component	Start of Run 1 (2010)	End of Run 1 (2012)	Start of Run 2 (2015)	End of Run 2 (2018)	Start of Run 3 (2022)
Modules	28	30	38	42	46
Chips	36	55	59	83	85
Strips	10795	11363	11452	14895	24071
fraction of active strips	99.1%	99.0%	98.8%	98.6%	98.3%

+ Bandwidth Limitations

Due to high pile-up in Run 2 improvements were necessary to avoid reaching bandwidth limitations frequently

→ more S-links, better data compression, link re-mapping, masking noisy chips

~70 pile-up events is the absolute maximum SCT can handle

Radiation: 1 MeV neutron eq. fluence per fb⁻¹ of int. luminosity (13 TeV pp)

+ Leakage current in Run 2

- Leakage current (I_L): thermally created electron-hole pairs
- I_L increases if radiation created additional energy levels in sensors
- → Leakage current follows radiation dose pattern

+ Thermal Runaway in Run 3?

Heat generated by leakage current can lead to selfenhancing loop and eventually to fatal thermal runaway

Large increase of leakage current during Run 2 but still within safe levels for Run 3 for most at risk^{*} barrel layers

Option of lower cooling temperature as an additional safety margin

+ Type Inversion in Sensors with n-type Bulk

During Run 2 modules type inverted due to radiation damage

Need to operate in fully depleted mode after type inversion
> set HV >> full depletion voltage (V_{FD})

Generally SCT operated at HV>V_{FD} also before type inversion

V_{FD} from measurements of I_L as function of HV

Hit efficiency vs. HV over time

* What happens if we lose Barrel 3 or Barrel 6?

or

Decrease in track reconstruction efficiency

 \rightarrow However, based on projections it is unlikely we will need to operate without Barrel 3 or Barrel 6

Elisabeth Schopf, ICHEP 2022

Number of tracks

Ratio to nominal

η

Increase in "fake" tracks if

+ Preparing for Run 3: Timing

- Delays to trigger signal needed to compensate for length of optical fibres, delay in electronics and time-of-flight of particles
- → SCT "timed in" for Run 3 operations

+ Run 3 Operations Teaser

Very good hit efficiency (comparable to Run 2)

SCT is ready for 13.6 TeV data taking!

ATLAS Run 3 event displays

- Excellent SCT performance during Run 2 in (pile-up) conditions exceeding initial design limits
 - 98.3% of strips remained active
 - 99.9% data taking efficiency and only 0.15% loss in DQ efficiency
- Effects of radiation damage start to become apparent
 - Increasing leakage current
 - Operation at HV well above full depletion voltage necessary
- We are confident SCT will perform well until end of Run 3
 - Continued careful monitoring and tweaking of operational settings
 → lowering temperature, increasing HV?

Thank you for your attention!

Detailed studies of SCT Run 2 performance documented in: JINST 17 (2022) P01013

SCT DQ Defects During Run 2

JINST 17 (2022) P01013

Table 4: SCT DQ defect summary in Run 2.

Year		2016	2017	2018	Total				
Luminosity recorded by ATLAS (fb ⁻¹)		35.5	46.5	60.2	145.8				
Defect description		Fraction of luminosity affected (%)							
Intolerable defect									
SCT simulation data flag activated		0.0	0.0	0.21	0.09				
SCT bias voltage not ready		0.10	0.04	0.01	0.04				
Major acceptance loss due to ROD exclusion		0.0	0.01	0.0	0.01				
Crate(s) excluded from readout		0.01	0.01	0.0	0.01				
Tolerable defect									
> 40 modules noisy	6.0	13	20	51	31				
Minor acceptance loss due to ROD exclusion		5.1	0.68	0.55	2.0				
Low efficiency		0.0	1.4	1.6	1.2				
> 40 modules with link errors		1.6	0.34	0.0	0.57				
SCT not at standard HV		0.08	0.08	1.2	0.54				
Trip of one PS crate		0.0	0.0	0.06	0.03				

22

- Gain decreased over time and noise increased
- Corrected for by regular calibrations
- \rightarrow Negligible impact on performance

Run 2 Evolution and Run 3 Outlook: Barrel 6

26

Timing Scan: one example module

Scan in steps of 5 ns and measure fraction of hits on tracks that fulfil 01X pattern

01X pattern = readout three bins of 25 ns each

- 0 = nothing in first bin
- 1 = something in second bin
- X = no requirement on third bin

Mean of distribution = timing correction to be applied