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Abstract: We compute the complete set of two-loop beam functions for the transverse
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a fully numerical calculation with exact R dependence, and find that it agrees with our
analytic expansion at the permyriad level or better. Our calculation allows us to define a
next-to-next-to-leading order slicing method using the leading-jet pT as a slicing variable.
As a check of our results, we carry out a calculation of the Higgs and Z boson total
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1 Introduction

Precision measurements at hadron colliders often rely on jet vetoes to reduce the impact
of background due to QCD radiation. This is done by rejecting events containing jets with
a transverse momentum exceeding some cutoff value pveto

T that is often much smaller than
the large momentum transfer of the hard scattering process Q. This strategy finds common
applications in the field of Higgs physics, as well as in a number of electro-weak and QCD
measurements at the Large Hadron Collider (LHC), and has therefore motivated a large
number of studies [1–15]. For instance, the state-of-the-art prediction for the jet-vetoed
Higgs production cross section involves the resummation of the large logarithms ln(pveto

T /Q)
up to next-to-next-to-leading logarithmic (NNLL) order [3, 5, 6]. These references also
include non-logarithmic terms relative to the Born at O(α2

s) (often referred to as NNLL′),
numerically extracted from fixed-order calculations. The above results are matched to
fixed order calculations up to next-to-next-to-next-to-leading order (N3LO) [7]. The above
numerical extractions of the non-logarithmic corrections are, to the best of our knowledge,
not entirely publicly available and only encode information about the final convolution

– 1 –



J
H
E
P
0
4
(
2
0
2
3
)
1
2
7

of such non-logarithmic corrections with the parton densities. Conversely, in order to
access their perturbative dependence on the longitudinal momentum fraction prior to the
convolution, a dedicated computation becomes necessary.

In this article, we directly compute the complete set of O(α2
s) non-logarithmic terms

at high precision as a function of the jet radius R, making them readily available for the
resummation of the jet-vetoed cross-section at NNLL′ for all color singlet production pro-
cesses. They are also a critical ingredient for the N3LL resummation, with the only missing
ingredient being the three-loop rapidity anomalous dimension. This level of theoretical ac-
curacy is demanded by the outstanding experimental precision foreseen at the LHC in the
coming years. Specifically, we consider the calculation of the two-loop beam functions en-
tering the factorisation and resummation of the jet-vetoed cross section. Beam functions
describe the dynamics of radiation collinear to the beam direction in high-energy hadron
collisions. Together with our recent calculation of the two-loop soft function in ref. [16],
the results presented here can be used to efficiently calculate the leading singular terms of
the jet-vetoed cross section at small values of the veto scale (i.e., up to power corrections
in pveto

T /Q) at the next-to-next-to-leading order (NNLO). This importantly allows us to
construct a slicing method for NNLO calculations in QCD using the leading-jet transverse
momentum as a slicing variable.

We work in the framework of soft-collinear effective field theory (SCET) [17–21]. More
specifically, the jet-veto cross section belongs to the class of SCETII problems, which are
affected by the so-called factorisation (or collinear) anomaly [22], connected to the presence
of rapidity divergences [22, 23] in the ingredients of the factorisation theorem. Such diver-
gences are not regulated by the standard dimensional regularisation scheme and therefore
an additional (rapidity) regulator must be introduced. Here we use the exponential regulari-
sation scheme [24], consistently with our recent calculation of the two-loop soft function [16].

The validity of SCET factorisation for this observable at arbitrary logarithmic order
has been the subject of debate in the literature [5, 6, 25]. Indeed, particular attention
must be paid to the presence of O(R2) soft-collinear mixing terms that might violate the
factorisation theorem for this observable. In particular, ref. [5] presents an argument as
to why such terms should cancel if one performs a consistent multipole expansion of the
measurement functions. On the hand, refs. [6, 25] suggest that such O(R2) terms are
not captured by the conventional SCET factorisation structure and therefore it is unclear
how to perform their resummation beyond NNLL order. Following the observation of
ref. [5], we explicitly show here that within the exponential regularisation scheme such a
multipole expansion of the jet-clustering measurement function leads to the cancellation
of the factorisation breaking terms, in the regime in which the jet radius R is treated as
an O(1) parameter.1 This explicitly confirms the validity of the factorisation theorem at
NNLO, and constitutes an important step towards the resummation at the N3LL order.

The article is organised as follows. In section 2, we review the factorisation theorem for
the production of a colour-singlet with a veto on the transverse momentum of the leading jet

1The resummation of small-R logarithms in the regime R � 1 was performed in ref. [7] for Higgs
production and found to have a small numerical impact.
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and we discuss the definition of the beam functions in the presence of a rapidity regulator.
Section 3 contains a discussion of our analytic computation of the two-loop beam functions
as a small-R expansion, as well as the details related to the zero-bin subtraction and the
cancellation of the soft-collinear mixing terms. Section 4 reviews our numerical calculation
of the beam functions that retains the full-R dependence, and compares the results obtained
by the analytic and numerical computations, finding good agreement between the two.
Finally, in section 5 we construct a phase-space slicing scheme based on the leading-jet
transverse momentum for fully differential NNLO calculations of the production of colour-
singlet systems. We test the scheme, and our results, by calculating the NNLO total cross
section for Higgs and Z boson production at the LHC. Finally, our conclusions are given
in section 6.

2 Factorisation of leading-jet transverse momentum in SCET

We begin by recalling the factorisation theorem for the jet-vetoed cross-section. We con-
sider the production of an arbitrary colour-singlet system of total invariant mass Q in
proton-proton collisions. The cross section, differential in the system’s kinematics dΦBorn
and with a veto on the transverse momentum of the leading jet pjet

T < pveto
T , factorises in

the limit pveto
T � Q as (dσ(pveto

T ) ≡ dσ(pveto
T )

dΦBorn
) [2, 5, 6, 25]

dσ(pveto
T ) ≡

∑
F=q,g

|AFBorn|2HF (Q;µ) (2.1)

× BFn (x1, Q, p
veto
T , R2;µ, ν)BFn̄ (x2, Q, p

veto
T , R2;µ, ν)SF (pveto

T , R2;µ, ν) ,

where AFBorn is the Born amplitude for the production of the colour-singlet system, and µ
and ν denote the renormalisation and rapidity scales, respectively. The index F indicates
the flavour configuration of the initial state, i.e. either qq̄ (F = q) or gg (F = g), and for
simplicity we will drop it from now on when referring to the ingredients of the factorisation
theorem (2.1). The hard function H describes the dynamics at the hard scale, i.e. with
virtuality µ ∼ Q. This scale is integrated-out in the SCET construction. Therefore,
the hard function contains purely virtual contributions, and it is defined as the squared
matching coefficient of the leading-power two-jet SCET current, i.e.

HF (Q;µ) = |CF (Q;µ)|2 . (2.2)

The soft function S describes the dynamics of soft radiation off the initial-state partons
and is defined as a matrix element of soft Wilson lines. Lastly, the beam functions are
denoted by Bn and Bn̄. Their two-loop calculation is the main focus of this paper. They
are defined by matrix elements of collinear fields in SCET and describe the (anti-)collinear
dynamics of radiation along the light-cone directions nµ and n̄µ of the beams.

Within the SCET formalism, the resummation of the logarithms ln pveto
T /Q appearing

in eq. (2.1) is achieved by evolving each of the functions in the factorisation theorem from
their canonical scales to two common µ, ν scales. The hard matching coefficient obeys the
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renormalisation group equation (RGE)

d

d lnµ ln CF (Q;µ) = ΓFcusp(αs(µ)) ln −Q
2

µ2 + γFH(αs(µ)) , (2.3)

where ΓFcusp and γFH are the cusp and hard anomalous dimensions of the quark (F = q)
or gluon (F = g) form factors, renormalised in the MS scheme. The hard function’s
canonical scale is the hard scale µ = Q. The beam functions Bi depend, in addition to the
renormalisation scale µ, on the rapidity regularisation scale ν. They satisfy a system of
coupled evolution equations (see e.g. refs. [5, 6]). The RGE is given by

d

d lnµ lnBFi (x,Q, pveto
T , R2;µ, ν) = 2 ΓFcusp(αs(µ)) ln ν

Q
+ γFB(αs(µ)) , (2.4)

and the rapidity evolution equation reads

d

d ln ν lnBFi (x,Q, pveto
T , R2;µ, ν) = 2

∫ µ

pveto
T

dµ′

µ′
ΓFcusp(αs(µ′))−

1
2γ

F
ν (pveto

T , R2) , (2.5)

where γFν denotes the observable-dependent rapidity anomalous dimension. The boundary
condition for the {µ, ν} evolution is set at the canonical scales µ = pveto

T and ν = Q.
Finally, the evolution equations for the soft function read

d

d lnµ lnSF (pveto
T , R2;µ, ν) = 4 ΓFcusp(αs(µ)) ln µ

ν
+ γFS (αs(µ)) ,

d

d ln ν lnSF (pveto
T , R2;µ, ν) = −4

∫ µ

pveto
T

dµ′

µ′
ΓFcusp(αs(µ′)) + γFν (pveto

T , R2) , (2.6)

with canonical scales µ = ν = pveto
T . The dependence on the rapidity anomalous dimension

cancels between the evolution of the soft and beam functions in the framework of the rapid-
ity renormalisation group [26, 27]. The soft (γFS ) and collinear (γFB) anomalous dimensions
are related to the hard anomalous dimension γFH by the invariance of the physical cross
section under a change of the renormalisation scale, that is

2γFH + γFS + 2γFB = 0 . (2.7)

The resummation of the jet-vetoed cross section at NkLL requires the cusp anomalous
dimension ΓFcusp up to k + 1 loops, and the anomalous dimensions γFH , γFS , γFB , γFν up to k
loops. The boundary conditions (non-logarithmic terms) of the evolution equations need
to be known up to k − 1 loops. Achieving N3LL accuracy for the jet-vetoed cross section
requires the knowledge of the non-logarithmic terms in C(Q;µ) at two loops, which is given
by the QCD on-shell form-factor [28] and has been known for a long time [29, 30]. The
two loop computation of the S function was presented in our earlier article [16]. Below,
we focus on the evaluation of the two-loop beam functions. While the two-loop anomalous
dimensions are known, the non-logarithmic terms are computed here for the first time.
Moreover, since the anomalous dimensions featuring in eq. (2.7) are known up to three
loops [31–33], with the results presented in this work, the only missing ingredient for the
N3LL computation is the three-loop rapidity anomalous dimension γFν .
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2.1 The beam functions

The quark and gluon beam functions are defined as matrix elements of non-local collinear
operators between the proton states |P (p)〉 carrying large momentum p. Specifically, we
have [2, 5, 6, 25]

Bqn(x,Q,pveto
T ,R2;µ,ν) = 1

2π

∫
dte−ixtn̄·p

〈
P (p)

∣∣χn(tn̄)
/̄n

2 M(pveto
T ,R2)χn(0)

∣∣P (p)
〉
, (2.8)

Bgn(x,Q,pveto
T ,R2;µ,ν) =−xn̄ ·p2π

∫
dte−ixtn̄·p

〈
P (p)

∣∣Aµ,a⊥ (tn̄)M(pveto
T ,R2)Aa⊥,µ(0)

∣∣P (p)
〉
,

where the collinear-gauge invariant collinear building blocks are defined in terms of the
fields

χ(x) = W †ξ(x), Aµ,A⊥ = 2tr
[
W †

[
iDµ
⊥W

]
(x)tA

]
. (2.9)

Here ξ(x) is the collinear quark field and Dµ
⊥ is the covariant ⊥ collinear derivative. Gauge

invariance is achieved by introducing the collinear Wilson line W (x) defined as

W (x) = P exp
[
ig

∫ 0

−∞
ds n̄A(x+ sn̄)

]
. (2.10)

The operator M(pveto
T , R2) acts on a given state of Xc collinear particles |Xc〉 by applying

a veto on the final-state jets of radius R such that pjeti
T < pveto

T

M(pveto
T , R2)|Xc〉 =M(pveto

T , R2)|Xc〉 , (2.11)

with the phase space constraintM(pveto
T , R2) being

M(pveto
T , R2) = Θ(pveto

T −max{pjeti
T })Θcluster(R2) . (2.12)

Here max{pjeti
T } is the transverse momentum of the hardest jet, where jets are defined in the

E recombination scheme [34]. The constraint Θcluster(R2) is the generic clustering condition
on the Xc collinear final state particles, defined for a kT -class of jet algorithms [35] with
jet distance measures

dij = min{k2p
⊥i, k

2p
⊥j}

[
(∆ηij)2 + (∆φij)2

]
, diB = k2p

⊥i . (2.13)

Specific choices of the parameter p correspond to the anti-kT [35] algorithm (p = −1), the
Cambridge-Aachen [36, 37] algorithm (p = 0), and the kT [38] algorithm (p = 1). The
results obtained in this article are valid for any of these choices. In eq. (2.13), k⊥i is the
transverse momentum of particle i with respect to the beam direction, and ∆ηij and ∆φij
are the relative rapidity and azimuthal angle between particles i and j, respectively. The
particles are clustered sequentially with respect to the above distance measure, as specified
by the clustering condition Θcluster(R2).

Since the definition (2.8) involves matrix elements between proton states, the beam
functions are in general non-perturbative objects. However, for pveto

T � ΛQCD, it is possible
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to perturbatively match them onto the standard parton distribution functions (PDFs)
fF/P (x, µ) as follows [2, 5, 6, 25],

BF (x,Q, pveto
T , R2;µ, ν) =

∑
F ′

∫ 1

x

dz

z
IFF ′(z,Q, pveto

T , R2;µ, ν)fF ′/P (x/z, µ) +O
(

ΛQCD
pveto
T

)
,

(2.14)
where the standard proton PDFs are defined as

fq/P (x, µ) = 1
2π

∫
dte−ixtn̄·p

〈
P (p)

∣∣χn(tn̄)
/̄n

2 χn(0)
∣∣P (p)

〉
, (2.15)

fg/P (x, µ) = −xn̄ · p2π

∫
dte−ixtn̄·p

〈
P (p)

∣∣Aµ,a⊥ (tn̄)Aa⊥,µ(0)
∣∣P (p)

〉
,

for the quark and the gluon, respectively.
The perturbative matching kernels IFF ′(z,Q, pveto

T , R2;µ, ν) are short-distance Wilson
coefficients, whose computation is the focus of this article. At the LO, the collinear partons
do not radiate and we have IFF ′(z,Q, pveto

T , R2;µ, ν) = δFF ′δ(1 − z). The computation of
radiative corrections to this relation up to the two-loop order will be the subject of section 3.

The formal definition of the matching in eq. (2.14) requires splitting the generic
collinear fields into the perturbative collinear modes with the virtuality of the order of
pveto
T and the PDF-collinear modes with virtuality ΛQCD. The non-perturbative PDFs are

then defined in terms of the matrix elements of the PDF-collinear modes only, while the
perturbative collinear modes are integrated out from the theory. This distinction can often
be ignored in practice at the leading power in SCET. Hence, in the rest of this article, we
will refer to both types of collinear fields as simply collinear modes.

Even though eq. (2.14) is written as an identity relating specific matrix elements, it
represents an operatorial identity, which does not depend on the specific choice of the
external states. Thus, to compute the matching kernels we can replace the external proton
states by perturbative partonic states. With this replacement, the bare partonic PDF for
finding a parton i inside parton j becomes

fbare
i/j (x) = δijδ(1− x) , (2.16)

which is valid to all orders in perturbation theory and the partonic matrix elements in
eq. (2.8) are then directly equal to the bare perturbative marching kernels. For this reason,
in what follows, we will refer to the IFF ′ coefficients interchangeably as matching coefficients
or beam functions.

3 Analytic computation of the quark and gluon beam functions

In this section, we discuss the computation of the renormalised matching coefficients
IFF ′(x,Q, pveto

T , R2;µ, ν), obtained after the renormalisation of the collinear PDFs and
of the remaining UV divergences. The perturbative expansion of the matching kernels in
powers of the strong coupling constant αs is defined as

IFF ′ =
∞∑
k=0

(
αs
4π

)k
I

(k)
FF ′ . (3.1)

– 6 –
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To efficiently compute the matching coefficients IFF ′(x,Q, pveto
T , R2;µ, ν), we decompose

each beam function into the sum of the beam function for a specifically chosen reference
observable and a remainder term. The reference observable is chosen so that it has the same
single-emission limit. With this choice, the two-loop matching coefficients of the reference
observable have the same divergences in the dimensional regularisation parameter around
d = 4 as those for leading-jet pT , and the remainder term can then be computed directly
in four dimensions. As in our calculation of the soft functions [16], we take the transverse
momentum of the colour singlet system as the reference observable. The associated beam
functions are denoted by I⊥FF ′(x,Q, pveto

T ;µ, ν). These are known up to O(α3
s) [39–46] and

we consider the renormalised O(α2
s) result of refs. [43, 44] as a reference in our calculation

as these are also computed within the exponential rapidity regularisation scheme. The
remainder term ∆IFF ′(x,Q, pveto

T , R2;µ, ν) accounts for the effects of the jet clustering
algorithm. The perturbative matching coefficients are then expressed as

IFF ′(x,Q, pveto
T , R2;µ, ν) = I⊥FF ′(x,Q, pveto

T ;µ, ν) + ∆IFF ′(x,Q, pveto
T , R2;µ, ν) . (3.2)

The functions I⊥FF ′(x,Q, pveto
T ;µ, ν) are obtained from the beam functions of the transverse-

momentum of the colour singlet system [43, 44], and we include the one-loop and two-loop
contributions in the supplementary material.2

We stress here that the decomposition (3.2) is simply a convenient way of organising the
calculation, and the ingredient I⊥FF ′ has different physical properties from the actual beam
functions entering transverse momentum resummation. A first difference is that the latter
are defined in impact parameter space, since they are sensitive to the vectorial nature of
transverse momentum factorisation. A second, related difference concerns the gluon beam
functions, which in transverse momentum resummation receive a correction from different
Lorentz structures including a linearly polarised contribution (see e.g. [41, 44, 47, 48]). This
leads to peculiar azimuthal correlations between radiation collinear to the two initial state
(beam) legs. The above effect is absent in the gluon beam functions defined in eq. (2.8),
which are already integrated over the azimuthal angle of the emitted radiation. A simple
physical explanation for this observation is that, unlike in the transverse momentum case,
the jet algorithms considered in the factorisation theorem (2.1) will never cluster together
emissions collinear to opposite incoming legs, therefore leaving no phase space for the
azimuthal correlations to occur.

The term ∆IFF ′(x,Q, pveto
T , R2;µ, ν) defined in (3.2) contributes only when two or

more real emissions are present and consequently ∆IFF ′ starts at O(α2
s). At this order it

can be computed directly in d = 4 space-time dimensions and only real emission diagrams
contribute, with the measurement function

∆M(pveto
T , R2) ≡ Θ(pveto

T −max{pjeti
T })Θcluster(R2)−Θ

pveto
T −

∣∣∣∣∣∣
∑
i∈Xc

~k⊥i

∣∣∣∣∣∣
 . (3.3)

2To be precise, following appendix B, we first perform the inverse Fourier transform of the renormalised
beam functions obtained in refs. [43, 44], which are defined in impact parameter space. Then we integrate
them up to pveto

T , obtaining I⊥FF ′ (x,Q, pveto
T ;µ, ν).

– 7 –
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To set-up the calculation, we need to take into account that the phase-space integrals,
as in a typical SCETII problem, exhibit rapidity divergences which require additional regu-
larisation. A consistent computation of the soft and beam functions requires that the same
regulator is used in both calculations. We therefore adopt the exponential regulator defined
in ref. [24], which we also used in our recent calculation of the two-loop soft function [16].
This regularisation procedure is defined by altering the phase-space integration measure
for real emissions, such that

∏
i

ddkiδ(k2
i )θ(k0

i )→
∏
i

ddkiδ(k2
i )θ(k0

i ) exp
[
−e−γE
ν

(n · ki + n̄ · ki)
]
, (3.4)

where ν is the rapidity regularisation scale discussed in section 2. The regularised beam
functions are obtained by performing a Laurent expansion about ν → +∞ and neglecting
terms of O(ν−1). In the rest of this section, we outline the main technical aspects of the
calculation of the matching coefficients and present our results.

3.1 The renormalised one-loop beam functions

At O(αs), the jet algorithm does not play a role and the correction term in eq. (3.2)
vanishes

∆M(pveto
T , R2) = 0. (3.5)

After the renormalisation of the collinear PDFs and of the remaining UV divergences, the
one-loop result reads (see e.g. [43, 44])

I(1)
qq (x,Q, pT ;µ, ν) = 2CFL⊥(4LQ + 3)δ(1− x)− 4L⊥P (0)

qq + 2CF (1− x), (3.6)

I(1)
qg (x,Q, pT ;µ, ν) = −4L⊥P (0)

qg + 4TFx(1− x), (3.7)

I(1)
gq (x,Q, pT ;µ, ν) = −4L⊥P (0)

gq + 2CFx, (3.8)

I(1)
gg (x,Q, pT ;µ, ν) = 8CAL⊥LQδ(1− x)− 4L⊥P (0)

gg + 8L⊥δ(1− x)β0, (3.9)

with L⊥ = ln µ
pveto
T

, LQ = ln ν
p− , and where the space-like splitting functions are

P (0)
qq = CF

(
1 + x2

1− x

)
+
, (3.10)

P (0)
qg = TF

(
x2 + (1− x)2

)
, (3.11)

P (0)
gq = CF

(
1 + (1− x)2

x

)
, (3.12)

P (0)
gg = 2CA

[
x

(1− x)+
+ 1− x

x
+ x(1− x)

]
+ 2β0 δ(1− x) , (3.13)

with β0 = 11
3 CA −

4
3TFnF .
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3.2 The renormalised two-loop beam functions

In this section we outline the procedure used in our computation of the two-loop beam
functions. In particular, we do not discuss further the calculation of the already known
I⊥FF ′(x,Q, pveto

T , R2;µ, ν) component in eq. (3.2), whose expression, after the renormalisa-
tion of the collinear PDFs and of the UV divergences, can be found in refs. [43, 44]. The
following discussion refers to the correction ∆IFF ′ for a generic flavour channel, although
specific channels may present a simpler structure, and some of the contributions discussed
below may vanish in their calculation.

The momenta of the two real particles (either gluons or quarks) are denoted by ki, with
i = 1, 2, and we adopt the following parametrisation for the phase space on the r.h.s. of
eq. (3.4):

kµi = ki⊥ (cosh ηi , cosφi , sinφi, sinh ηi ) , i = 1, 2 , (3.14)

in terms of the (pseudo-)rapidities ηi, the azimuthal angles φi, and the magnitudes of trans-
verse momenta ki⊥ ≡ |~ki⊥|. We then perform a change of variables in the parametrisation
of k2,

{k2⊥, η2, φ2} → {ζ ≡ k2⊥/k1⊥, η ≡ η1 − η2, φ ≡ φ1 − φ2} , (3.15)

in order to express its kinematics relative to that of k1. With this change of variables, the
measurement function (3.3) takes the simple form

∆M(pveto
T , R2) ≡

[
Θ(pveto

T − k1⊥max{1, ζ})−Θ
(
pveto
T − k1⊥

√
1 + ζ2 + 2ζ cosφ

)]
×Θ(η2 + φ2 −R2) , (3.16)

where we used the explicit form of Θcluster(R2) in the variables defined above, namely the
relation

Θ(pveto
T −max{pjeti

T })Θcluster(R2)≡Θ(pveto
T −k1⊥max{1, ζ})Θ(η2 +φ2−R2) (3.17)

+Θ
(
pveto
T −k1⊥

√
1+ζ2 +2ζ cosφ

)
Θ(R2−η2−φ2) ,

followed by the identity

Θ(R2 − η2 − φ2) = 1−Θ(η2 + φ2 −R2) . (3.18)

We now consider the squared amplitudes for the radiation of two collinear partons in
a generic flavour channel |AFF ′ |2, which have been derived in refs. [49, 50]. Without loss
of generality, they can be expressed as

|AFF ′(k1, k2)|2 = Acorrelated
FF ′ (k1, k2) +Auncorrelated

FF ′ (k1, k2) , (3.19)

where Auncorrelated
FF ′ is the contribution that survives in the limit in which the two emissions

k1, k2 are infinitely far in rapidity, while the remaining part Acorrelated
FF ′ encodes configura-

tions in which the two emissions are close in rapidity (see also e.g. refs. [51, 52]). The above
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decomposition is useful in that the two contributions give rise to integrals with a different
structure of rapidity divergences, and as such they require slightly different treatments. In
the parametrisation (3.15) each contribution to the squared amplitude factorises as

Acorrelated/uncorrelated
FF ′ (k1, k2) = 1

k4
1⊥

1
ζ2D

correlated/uncorrelated
FF ′ (ζ, η, φ) , (3.20)

which implicitly defines Dcorrelated/uncorrelated
FF ′ (ζ, η, φ). The calculation of ∆IFF ′ then in-

volves phase-space integrals of the type∫
dk1⊥
k1⊥

dη1
dζ

ζ
dη

dφ

2π e
−2k1⊥

e−γE
ν

[cosh (η1)+ζ cosh (η−η1)] δ(k±1 + k±2 − (1− x)p±)

×DFF ′(ζ, η, φ) ∆M(pveto
T , R2) , (3.21)

with x denoting the longitudinal momentum fraction. We parametrise the light-cone com-
ponents in the delta function by means of eq. (3.15) and the Sudakov parametrisation

kµi = k+
i

2 n̄µ + k−i
2 nµ + κµi,⊥ , (3.22)

where k+
i ≡ ki · n, k

−
i ≡ ki · n̄, and n̄ · n = 2. The large momentum component considered

in the argument of the delta function of eq. (3.21) (either + or −) depends on whether we
consider the beam functions along the n̄µ = (1, 0, 0, 1) or nµ = (1, 0, 0,−1), respectively.
Without loss of generality, we will consider nµ as the hard-collinear direction, but the same
considerations apply to the calculation of the beam functions along n̄µ. In the following,
we will discuss separately the treatment of the exponential regulator for the correlated and
uncorrelated contributions to the beam function.

Rapidity regularisation for the correlated correction. The integrand of the cor-
related contribution vanishes by construction in the limit of large rapidity separation.
Therefore, the only rapidity divergence in the integrals (3.21) arises when x = 1, namely
when the rapidity of both emissions is unconstrained. We can handle the exponential reg-
ulator by integrating over η1 using the delta function, and then expanding in distributions
of (1− x) as follows∫

dη1 e
−2k1⊥

e−γE
ν

[cosh (η1)+ζ cosh (η−η1)] δ(k−1 + k−2 − (1− x)p−)

= 1
p−

[(
− ln

(
(eη + ζ)(e−η + ζ)

)
+ ln p

−ν

k2
1⊥

)
δ(1− x) + 1

(1− x)+
+O(ν−1)

]
. (3.23)

As usual, we kept only the leading power terms in the limit ν →∞.

Rapidity regularisation for the uncorrelated correction. The integrand of the
uncorrelated contribution does not vanish asymptotically in the regime of large rapidity
separation. Therefore, it features two types of rapidity divergences, which emerge in the
limits η → ±∞ and x = 1. Eq. (3.23) must be modified accordingly to deal with this more
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complicated structure, and should now involve the divergence in η as well. We proceed by
expanding in distributions also in the variable w ≡ eη as follows3∫

dη1dη e
−2k1⊥

e−γE
ν

[cosh (η1)+ζ cosh (η−η1)] δ(k−1 + k−2 − (1− x)p−) (3.24)

= 1
p−

∫
dw

[
2
( ln(1− x)

1− x

)
+
δ(w)− 2

(1− x)+

(
ln(ζ)− ln p

−ν

k2
1⊥

)
δ(w)

×
(

1
(w)+

ln p
−ν

k2
1⊥
−
(

ln
((
w−1 + ζ

)
(w + ζ)

)
w

)
+

)
δ(1− x)

−
(
ζ2 + 2 ln(ζ) ln p

−ν

k2
1⊥
− ln2 p

−ν

k2
1⊥

)
δ(w) δ(1− x) + 1

(w)+

1
(1− x)+

+O(ν−1)
]
.

The integral over dw can only be performed after inserting the squared amplitude and the
measurement function.

Laurent expansion in the jet radius. To proceed, in each of the contributions listed
above, we consider the differential equation derived by taking the derivative of the inte-
grals (3.21) in R. Since only the measurement function depends on R, this amounts to the
replacement

Θ(η2 + φ2 −R2)→ −δ(η2 + φ2 −R2) , (3.25)

where R2 > φ2. The resulting integral can be evaluated as a Laurent expansion in the
jet radius R, that we obtain analytically in Mathematica with the help of the package
PolyLogTools [53].

To calculate the boundary condition, we decompose the Θ(η2 + φ2 − R2) function in
∆M(pveto

T , R2) given in eq. (3.16) as

Θ
(
η2 + φ2 −R2

)
= Θ

(
φ2 −R2

)
︸ ︷︷ ︸

part A

+ Θ
(
R2 − φ2

)
Θ
(
η2 + φ2 −R2

)
︸ ︷︷ ︸

part B

. (3.26)

The contribution stemming from part A contains the collinear singularity proportional to
ln(R), while that arising from part B is regular in the R→ 0 limit. The collinear singularity
in part A does not directly allow us to take the boundary condition at R = 0. We then take
an expansion by regions around R = R0 � 1 and neglect terms of O(R2

0). All boundary
conditions are calculated analytically with the exception of the O(1) constant terms arising
from part B of eq. (3.26) for the correlated corrections, which are obtained numerically as
a grid in the x variable. This is the only non-analytic ingredient in our calculation. We use
the resulting boundary conditions to solve the differential equation in R, and afterwards
we take the limit R0 → 0. This procedure allows us to obtain the Laurent expansion to any
order in R. In this article we present results up to and including O(R8) terms, which are
sufficient to reach very high precision in the numerical evaluation of the beam functions.
Higher order terms in R could be in principle included in our expansion.4

3After symmetrising the integrand in k1 and k2, the integral over w from 0 to +∞ equals twice the
integral of w from 0 to 1. The distributions in eq. (3.24) are defined in the latter range.

4We note in passing that an expansion in R2 was also performed in ref. [51] in the context of rapidity-
dependent jet vetoes.
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3.3 Zero-bin subtraction and absence of soft-collinear mixing at two loops

The structure of SCET reproduces that of an expansion by regions [54] of the relevant inte-
grals occurring in the (real and virtual) radiative corrections to the observable under study.
This method requires a full expansion of the integrals, in such a way that any expansion
of each region within the scaling corresponding to a different region leads to scaleless inte-
grals.5 In practical applications of SCET, the presence of scales related to either additional
regulators or the observable itself might render the overlap contributions non-vanishing.
This can be overcome by subtracting by hand such overlapping regions to avoid double-
counting using the so-called zero-bin subtraction procedure [55]. In this sub-section we
consider this procedure in the context of the factorisation theorem in eq. (2.1), more pre-
cisely in its application to the matching coefficients IFF ′(x,Q, pveto

T , R2;µ, ν). Starting
from the definition of the renormalised beam function given in eq. (3.2), we observe that
I⊥FF ′(x,Q, pveto

T , R2;µ, ν), which we extract from refs. [43, 44], already underwent zero-bin
subtraction and thus does not contain any overlap between soft and collinear modes. It
is thus sufficient to discuss the new contribution ∆IFF ′(x,Q, pveto

T , R2;µ, ν) computed in
this article, which still contains contamination from soft modes due to the presence of
additional scales such as the jet radius R and the rapidity regulator ν.

The starting point of the zero-bin procedure is the subtraction from ∆IFF ′ of its own
expansions when either one or both partons become soft. To be more precise, we introduce
the operator SC which acts on ∆IFF ′ by taking the expansion in the region in which
emission k1 is soft (kµ1 ∼ (k+ ∼ λ, k− ∼ λ, k⊥ ∼ λ)) and k2 is collinear (kµ2 ∼ (λ2, 1, λ)).
This expansion affects both the squared amplitudes and the phase-space constraint in the
∆IFF ′ integrals. Similarly, we introduce the operators CS and SS which, when acting on
∆IFF ′ , perform the expansion of the beam function in the limit in which k2 is soft and k1
is collinear or soft, respectively. For the problem under consideration, we observe that the
CS and SS operations commute, that is (CS)(SS) = (SS)(CS) (and similarly for SC). At
two loops, we can then define the zero-bin subtracted beam functions as

∆Isubtracted
FF ′ ≡ ∆IFF ′ − CS(1− SS)∆IFF ′ − SC(1− SS)∆IFF ′ − SS∆IFF ′ , (3.27)

where the terms (1 − SS) are responsible for subtracting the soft-soft limit of the soft-
collinear subtraction. For a generic channel FF ′, some of the terms in eq. (3.27) might
vanish at leading power in the counting parameter λ.

In this procedure, a crucial role is played by the terms CS(1− SS)∆IFF ′ and SC(1−
SS)∆IFF ′ , which describe an interplay between the soft and collinear modes. The only
overlap between soft and collinear modes predicted by the SCET factorisation theorem (2.1)
at a given perturbative order amounts to products of terms arising from the lower-order soft
and beam functions. The absence of any other type of overlap is a necessary requirement for
the observable under consideration to factorise and therefore to be resummable in SCET.
In the case at hand, the terms CS(1 − SS)∆IFF ′ and SC(1 − SS)∆IFF ′ in eq. (3.27) are
responsible for subtracting the overlap between soft and collinear regions. Performing the

5For instance, one expects that the consistent expansion of a soft integral within the collinear region
would vanish.
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multipole expansion of the phase-space constraint is necessary to demonstrate that these
terms have the expected form and thus that the factorisation theorem in eq. (2.1) is indeed
correct. This must be explicitly verified in the presence of the exponential regularisation
scheme, since it introduces an additional scale that prevents integrals that would otherwise
be scaleless from vanishing.

To be concrete, let us focus on the term CS(1−SS)∆IFF ′ on the r.h.s. of eq. (3.27). To
compute this term, we start by acting with the operator CS(1− SS) on the measurement
function in eq. (3.16), namely on

∆M(pveto
T , R2) ≡

[
Θ(pveto

T −max{k1⊥, k2⊥})−Θ
(
pveto
T −

√
k2

1⊥ + k2
2⊥ + 2k1⊥ · k2⊥

)]
×Θ(η2 + φ2 −R2) . (3.28)

We then rewrite
Θ(η2 + φ2 −R2) = 1−Θ(R2 − η2 − φ2) . (3.29)

The first term on the right-hand side of the above equation leads to a fac-
torising contribution, in that the contribution associated with the theta func-
tion Θ

(
pveto
T −

√
k2

1⊥ + k2
2⊥ + 2k1⊥ · k2⊥

)
in eq. (3.28) will cancel exactly against

I⊥FF ′(x,Q, pveto
T , R2;µ, ν) when considering the full beam function IFF ′(x,Q, pveto

T , R2;µ, ν)
as defined in eq. (3.2). One is then left with the term

Θ(pveto
T −max{k1⊥, k2⊥}) = Θ(pveto

T − k1⊥)Θ(pveto
T − k2⊥) . (3.30)

The trivial action of the CS(1 − SS) operator on this term amounts to simply replacing
the transverse momenta ki⊥ with those of the collinear and soft particles. The resulting
phase-space integral reduces to the product of the one loop beam and soft functions, in
line with what is predicted by the factorisation theorem (2.1). Instead, the second term
on the right-hand side of eq. (3.29) seemingly leads to a term that is not captured by the
factorisation theorem, featuring the measurement function

∆Mmix(pveto
T , R2) ≡

[
Θ(pveto

T −max{k1⊥, k2⊥})−Θ
(
pveto
T −

√
k2

1⊥ + k2
2⊥ + 2k1⊥ · k2⊥

)]
×
(
−Θ(R2 − η2 − φ2)

)
. (3.31)

To proceed, we act with the CS(1−SS) operator on the above measurement function. The
action of CS corresponds to taking the limit kµ1 ∼ (λ2, 1, λ) and kµ2 ∼ (λ, λ, λ). Following
ref. [5], we then expand the clustering condition in eq. (3.31). Noticing that |η| � 1, this
amounts to6

Θ(R2 − η2 − φ2) = Θ(−η2) + δ(−η2)(R2 − φ2) + . . . (3.32)

The phase-space constraints on the r.h.s. of the above equation lead to vanishing in-
tegrals as in this region |η| � 1. We conclude that the terms CS(1 − SS)∆IFF ′ and

6Although at first glance eq. (3.32) resembles an expansion in ln 1/λ, one could recast it as an equivalent
power expansion in λ as shown in section 3 of ref. [5].
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SC(1 − SS)∆IFF ′ vanish for the mixing configuration arising from the measurement
function (3.31), in line with the prediction of the factorisation theorem (2.1). This result
demonstrates that this factorisation is formally preserved at the two-loop order in the
exponential regularisation scheme.

We then perform an explicit calculation of the remaining non-vanishing integrals en-
tering the definition of the zero-bin subtraction (3.27). The calculation is performed using
the same approach discussed in the previous sub-section, where now all the boundary con-
ditions for the R2 differential equation are evaluated fully analytically. The only technical
difference with the calculation discussed in the previous section is the treatment of the ex-
ponential regulator, which is now modified by the fact that either one (for the soft-collinear
zero bin) or none (for the double-soft zero bin) of the momenta k1, k2 appear in the longi-
tudinal δ function in the integrals corresponding to eq. (3.21). The analogues of eqs. (3.23)
and (3.24) for these contributions are given in appendix A.

An alternative approach to the zero-bin subtraction procedure, adopted in refs. [6, 25],
is to evaluate eq. (3.27) using an alternative set of operators CS, SC and SS = SS, where
the bar indicates that they do not act on the clustering condition Θ(η2 + φ2−R2) present
in the measurement function defining ∆IFF ′ , which is then left unexpanded. This leads to
the following alternative definition of the zero-bin subtracted beam function ∆I subtracted

FF ′ :

∆Isubtracted
FF ′ ≡ ∆IFF ′ − CS(1− SS)∆IFF ′ − SC(1− SS)∆IFF ′ − SS∆IFF ′ . (3.33)

Within this approach, the mixing terms originating from the integrals given by CS(1 −
SS)∆IFF ′ with the measurement function (3.31) do not vanish any longer. As such, to
reproduce the QCD result, one has to add them back by hand to the factorisation theo-
rem (2.1). We denote these terms by ∆Imix

FF ′ . In practice, at the two loop order considered
here, these are then given by

∆Imix
FF ′ =

(
CS− CS

)
(1− SS)∆IFF ′ , (3.34)

where the difference CS− CS picks out the contribution associated with the measurement
given in eq. (3.31).

Refs. [6, 25] claim that such mixing terms constitute an O(R2) violation of the SCET
factorisation theorem (2.1) already at the NNLO (and NNLL) level, making it unclear how
to carry out the resummation for the jet vetoed cross section to N3LL for such O(R2)
terms. Ref. [6] proposes to add these terms back by hand to eq. (2.1) in order to achieve
NNLL accuracy, but no fix is proposed beyond this order.

One can however note that, from an explicit calculation, the soft-collinear mixing
terms at the two-loop order have the same logarithmic structure as the zero-bin subtracted
beam function ∆I subtracted

FF ′ , that is they contain only logarithms of the type ln(µ/pveto
T )

and ln(ν/p−) (see also the corresponding discussion for rapidity dependent jet vetoes in
ref. [51]). This allows one, at this perturbative order, to absorb them into a re-definition
of the subtracted two-loop beam functions as

∆I subtracted
FF ′ → ∆I subtracted

FF ′ + 2 ∆Imix
FF ′ . (3.35)
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From eq. (3.34) it follows that

∆I subtracted
FF ′ + 2 ∆Imix

FF ′ = ∆Isubtracted
FF ′ , (3.36)

which we have verified by explicit calculation. As such, we conclude that the factorisa-
tion theorem (2.1) is preserved at NNLO and there are no additional mixing terms in
eq. (3.35) after performing the multipole expansion discussed above. The procedure lead-
ing to eq. (3.35) can be used as a way to compute ∆Isubtracted

FF ′ without performing the
multipole expansion of the measurement function, but the apparent presence of mixing
terms does not constitute a breaking of the SCET factorisation theorem at this perturba-
tive order. For the interested reader, together with the results for the two-loop subtracted
beam functions, we also provide in the supplementary material the expressions for the
mixing terms of eq. (3.35), ∆Imix

FF ′ , obtained without performing the multipole expansion
discussed above.

We note that our findings are also consistent with the QCD formulation of the resum-
mation of the jet-vetoed cross section [1, 3]. Eq. (3.31) predicts a clustering between soft
kµ ∼ (λ, λ, λ) and collinear kµ ∼ (λ2, 1, λ) modes which is absent in the QCD formula-
tion due to the nature of the jet algorithms belonging to the generalised kt family. By
construction, these do not cluster together partons that fly at very different rapidities, as
it is the case for a soft and a collinear parton which feature a large rapidity separation
|η| ∼ | ln 1/λ2| � 1. The only possible clustering between a collinear and a soft parton
in QCD is when the latter is also collinear, i.e. kµ ∼ (λ2, 1, λ) albeit with a small energy,
which is entirely accounted for in the definition of the beam functions. Therefore, the
absence of mixing terms in the SCET formulation is consistent with the QCD expectation.

3.4 Results and convergence of the small-R expansion

The two-loop zero-bin subtracted beam functions are included as Mathematica-readable
files in the supplementary material accompanying this article. For each channel, we de-
compose the result into the different colour structures contributing at two loops. The
final corrections to the (zero-bin subtracted) matching coefficients are obtained from their
own colour decompositions as follows (we drop here the superscript subtracted used in the
previous sub-section to simplify the notation):

∆I(2)
QQ = ∆I(2)

QQ
C2
F

+ ∆I(2)
QQCACF

+ nF∆I(2)
QQCF TF

+ ∆I(2)
QQS

,

∆I(2)
QQ̄

= ∆I(2)
QQ̄S

+ ∆I(2)
QQ̄NS

,

∆I(2)
QQ̄′

= ∆I(2)
QQ′ = ∆I(2)

QQ̄S
,

∆I(2)
QG = ∆I(2)

QGCATF
+ ∆I(2)

QGCF TF
,

∆I(2)
GQ = ∆I(2)

GQCACF
+ ∆I(2)

GQ
C2
F

,

∆I(2)
GG = ∆I(2)

GG
C2
A

+ ∆I(2)
GGCATF

+ ∆I(2)
GGCF TF

. (3.37)
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QQNS

QQCF2

QQCACF

QQCFTF

0

5

10

15

δ
F
F
'(R

2
=
1
)
x
10

5
1/(1-x)+ term at x=0.1 (correlated only)
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1
)
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5

δ(1-x) term (correlated only)

Figure 1. The quantity δF F ′(R2) as defined in eq. (3.38) evaluated at R = 1 for the different
flavour channels for the 1/(1 − x)+ contribution at x = 0.1 (left) and the δ(1 − x) contribution
(right). Note that, as indicated on the y axis, each value of δF F ′(R2) has been multiplied by a
factor of 105.

The full beam functions are then obtained with eq. (3.2). We stress that in our conventions
the ∆I(2)

GGCATF
matching coefficients already contain a factor of nF , while the ∆I(2)

QQCF TF
do not.

We now discuss some consistency checks on our results and on the validity of the small-
R expansion for phenomenologically relevant values of the jet radius. As a first check, we
verified that the dependence of the beam functions on ln ν matches the prediction from
the evolution equation (2.5). As a second check, to assess the validity of our expansion in
R we considered the quantity ∆I(2)

FF ′ (before performing the zero-bin subtraction discussed
in section 3.3) truncated at different orders in R2. More precisely, we defined the relative
difference of the expansions at sixth and eighth order in R, and plotted the quantity

δFF ′(R2) =
∣∣∣∣∣1− ∆I(2)

FF ′(x,Q, pT ;µ, p2
T /Q)|R6

∆I(2)
FF ′(x,Q, pT ;µ, p2

T /Q)|R8

∣∣∣∣∣ , (3.38)

for each different flavour channel (we set ν = p2
T /p

− = p2
T /Q to remove the rapidity

logarithms in ∆I(2)
FF ′). We find that in all cases δFF ′(R2) is vanishingly small up to R = 1,

where the convergence of the R2 expansion is not necessarily guaranteed. The convergence
of the series is drastically improved at smaller values of R which are relevant for collider
phenomenology. As an example, we plot in figure 1 the correlated corrections at R = 1.
The plot shows an excellent convergence of the small-R expansion with residual corrections
well below the permille level.

4 Numerical computation of the quark and gluon beam functions

We now discuss a numerical evaluation of the quark and gluon beam functions, which
provides a crucial consistency check of the analytic results discussed in the previous section.
In this section, we first outline the steps followed in the numerical calculation and then
present a comparison between our numerical and analytic results.
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4.1 Method for the numerical computation

All numerical integrations discussed below are performed using the GlobalAdaptive
NIntegrate routine from Mathematica, to an accuracy at the permyriad level or better.
This will allow for precise numerical tests of the analytic calculation.

The correlated correction. For this part of the beam function, the integrand can only
have a rapidity divergence as ηt ≡ 1

2(η1 +η2)→ −∞ at finite η ≡ η1−η2, corresponding to
x → 1. Note that the restriction k−1 + k−2 < p− forbids us from approaching ηt → ∞ and
encountering a rapidity divergence in this limit. We find it convenient to choose integration
variables that remain finite as ηt → −∞ (at finite k2

1⊥, k2
2⊥, η). In this way, x controls the

approach to the rapidity divergence. Explicitly, we choose

Z ≡ k+
1

k+
1 + k+

2
, T ≡ (k+

1 + k+
2 )(k−1 + k−2 ) , (4.1)

along with η and the azimuthal separation between the two emitted partons, φ.
Using these variables, the rapidity divergences manifest themselves as a factor of

1/(1− x) in the squared amplitude. This is regulated by inserting the exponential regulator
factor (3.4), where in the exponent we may drop the k− ≡ k−1 +k−2 as we do not encounter
any rapidity divergences associated with k−1 , k

−
2 → ∞. We take the limit ν → +∞ in the

regulator and make use of the distributional expansion given in eq. (3.5) of [43]:

e
− 1
ν (1−x)

1− x = (ln ν − γE) δ(1− x) + 1
(1− x)+

+O(ν−1) . (4.2)

The structure of the integrand in T is simple, containing only terms of the form logn(T )/T ,
and integration over this variable may be done analytically. This just leaves the integrations
over Z, η, and φ, which are performed numerically at fixed values of x and R.

The uncorrelated correction. After symmetrisation of the integrand in partons k1
and k2, we may choose to integrate only over η < 0 and then multiply the final result
by 2. With this restriction, for the uncorrelated contribution to the squared amplitude we
encounter rapidity divergences as η1 → −∞, as well as when ηt → −∞. For our integration
variables we should choose two variables that control the approaches to these two limits,
and then other variables that remain finite in these limits. We choose to use:

χ1 ≡ k+
2 (k−1 + k−2 ), χ2 ≡

k−1 (k+
1 + k+

2 )2

k+
1 k

2
2⊥

, Z = 1−Z , (4.3)

as well as x and φ.7 Then, the limit η1 → −∞ corresponds to Z → 0, whilst ηt → −∞
corresponds to x→ 1 and the rapidity divergences manifest themselves as a factor 1/[Z(1−
x)] in the integrand. We insert the exponential regulator (again, we can drop the k+ in

7Note that for both this calculation and that of the correlated correction, an alternative convenient
choice of variables would be those defined in eq. (4.6) as well as η, φ, x.
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the exponent), and make use of the distributional expansion given in eq. (3.30) of ref. [43]:

1
(1−x)Z

exp
(
− 1
ν(1−x)Z

)
=
(

1
2(lnν−γE)2 + π2

12

)
δ(1−x)δ(Z)+ 1

(1−x)+

1
Z+

+
([ lnZ
Z

]
+

+ lnν−γE
Z+

)
δ(1−x)+

([ ln(1−x)
1−x

]
+

+ lnν−γE
(1−x)+

)
δ(Z)+O(ν−1) . (4.4)

We perform the integration over χ1 analytically, and the integrations over the χ2, Z and
φ variables numerically (for terms containing a δ(Z), we perform the trivial Z integration
analytically).

The soft-collinear zero bins. We use the approach of refs. [6, 25] as a way to compute
the zero-bin subtraction without performing the multipole expansion of the measurement
function, see section 3.3 and in particular eq. (3.36). Let us, without loss of generality,
take parton k1 to be soft. Then k−1 is no longer restricted by the delta function on the
minus light-cone momentum, and we may have rapidity divergences for η1 → ±∞ as well
as for η2 → −∞. We handle this calculation by re-expressing the clustering constraint in
the measurement as:

Θ(η2 + φ2 −R2) = 1−Θ(R2 − η2 − φ2) . (4.5)

In the second term on the right hand side, the two partons are restricted to be close together
in rapidity, such that we only have rapidity divergences corresponding to ηt → −∞ (or
x→ 1). The same strategy may then be used for this term as was used for the correlated
corrections. Note that there is no collinear divergence here associated with η, φ → 0, due
to the form of the squared amplitude for the soft-collinear zero bin (which coincides with
the squared amplitude for the uncorrelated correction).

For the first term on the right-hand side of eq. (4.5), we choose to use the same variables
we used in ref. [16]:

K2
T = k2

1⊥ + k2
2⊥ , z = k2

1⊥
k2

1⊥ + k2
2⊥

, (4.6)

along with η1, φ and x. The approach to η2 → −∞ is then controlled by x, whilst η1
directly controls the approach to η1 → ±∞. We introduce the exponential regulator, and
split it in a straightforward way into two factors depending on k1 and k2 respectively; we
drop the k+

2 in the exponent as before, but now may no longer drop k+
1 . The integrand does

not depend on η1 (except in the regulator factor), and we may perform the integral over η1
using eq. (3.24) from ref. [16]. We utilise eq. (4.4) for the rapidity divergence corresponding
to x→ 1. The integration over K2

T is performed analytically, and the z and φ integrals are
done numerically.

The soft-soft zero bins. This calculation coincides exactly with that performed in
ref. [16] (up to a prefactor of δ(1− x) that appears here), and we use the results presented
in that paper for this contribution.
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Figure 2. Difference, in parts per million, between the analytic result and the numerical calculation
with full R dependence for the correlated contribution to the unsubtracted beam functions. The
figures show the coefficient of 1/(1 − x)+ at x = 0.1 (left plot) and the coefficient of δ(1 − x)
(right plot), both evaluated at R = 1. The different labels denote the various colour structures
contributing to each flavour channel. The size of the difference is always at the level of the precision
of the numerical calculation.

4.2 Comparison with the analytic results

As a further assessment of the quality of our analytic small-R expansion, we compare the
numerical calculations (which have exact R dependence) with the analytic results obtained
in the previous section at different values of R. Due to the many flavour channels, we
choose to show here only the worst-case scenario, namely the comparison between the two
calculations for the most complicated contributions, corresponding to the correlated part
of the squared amplitudes in eq. (3.19). Figure 2 shows the outcome of this comparison
at R = 1, and we can see that the difference between the two computations is at the
level of parts per million, which is the level of accuracy of the numerical calculation. This
demonstrates that the R expansion converges extremely well up to R = 1.

5 Leading-jet pT slicing at NNLO

The computation of the two-loop beam functions for the leading-jet pT constitutes the
last missing ingredient to construct a non-local subtraction scheme for colour singlet pro-
duction at NNLO based on pjet

T . In analogy with non-local subtraction schemes such as
qT -subtraction [56], jettiness subtraction [57, 58], and kness

T subtraction [59], we can for-
mulate an NNLO slicing fully differential in the Born phase space for the production of a
colour singlet F , as (dσ ≡ dσ

dΦBorn
)

dσFNNLO = HNNLO
veto ⊗dσBorn + lim

pjet
T,cut→0

∫ +∞

pjet
T,cut

dpjet
T

d2σF+jet
NLO

dpjet
T

− d2σ(pveto
T )

dpveto
T

∣∣∣∣∣
(α2
s)

pveto
T =pjet

T

 , (5.1)
where the first term on the right hand side coincides with the non-logarithmic terms of the
jet-veto cross section eq. (2.1), the last term is its derivative with respect to pveto

T expanded
through O(α2

s) relative to the Born, and the second term is the NLO cross-section for the
production of the colour singlet in association with a jet. The above formula formally
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reduces to the NNLO result in the limit pjet
T,cut → 0. However, since the second and the

third terms are both divergent logarithmically in this limit, eq. (5.1) can be computed
numerically only by choosing a finite value of pjet

T,cut > 0. This introduces a slicing error
O((pjet

T,cut/Q)m), where m is an integer value to be determined by studying the pjet
T,cut → 0

behaviour of the non-singular contribution contained within brackets in eq. (5.1).
The comparison of the NNLO results obtained using eq. (5.1) to the known NNLO

cross sections provides a very robust check of the correctness of the results presented in
this work. We perform this test by considering on-shell Z and H production, which allows
us to independently check the quark and gluon beam functions, respectively. We use MCFM
9.1 [60] to compute the NLO result for Z + j [61] and H + j [62–64] production, while
we use the implementation of the jet-veto resummation [2, 3, 5, 6] in the RadISH code [14,
65, 66] to compute the factorised expression (2.1) and its expansion up to NNLO. We
compare our results with the analytic NNLO cross section for Z [67, 68] and H [63, 69, 70]
production which we computed using the n3loxs code.8 For our numerical checks, we
consider proton-proton collisions at a centre-of-mass energy of 13TeV and R = 0.4. We
adopt the LUXqed_plus_PDF4LHC15_nnlo_100 parton distribution functions [71] through
the LHAPDF interface [72]. We choose factorisation and resummation scales equal to µR =
µF = mZ ,mH for Z and H production, respectively, with mZ = 91.1876 and mH =
125GeV. In figure 3 we study the dependence of the NNLO correction on pjet

T,cut/Q for Z
and H production for different partonic channels by normalising it to the analytic result.
We compare the results obtained using pjet

T -slicing (in orange) with those obtained using
qT -slicing (in blue) to assess the performance of the two methods. For Z production we
are able to lower the value of pjet

T,cut down to 0.1GeV, whereas we stop at pjet
T,cut = 0.5GeV

for Higgs production as the fixed order H + j calculation becomes slightly unstable in
some channels below this value.9 We observe that in all the channels the results obtained
using leading-jet pT slicing converge to the exact cross section in the pjet

T,cut → 0 limit,
thus providing a powerful check of the validity of our computations. By comparing the
results obtained with pjet

T -slicing to those obtained using qT -slicing we notice that the
convergence towards the analytic result is comparable between the two methods, with qT -
slicing converging slightly faster in most cases for R = 0.4. Smaller values of the jet radius
R appear to improve the convergence of the pjet

T subtraction, possibly due to the reduced
size of the subleading power corrections. Further investigations on the size of subleading
power corrections deserve dedicated studies.

6 Conclusions

In this article, we presented the first calculation of the complete set of two-loop beam
functions relevant for the leading-jet transverse momentum resummation in colour singlet
production. The results were obtained using two independent methods: a semi-analytical

8We are grateful to the authors of the n3loxs code for providing a preliminary version of the code to
carry out our numerical checks.

9We thank A. Huss for providing results calculated with the NNLOJET code [73] at pjet
T,cut = 0.1GeV

for Higgs production, which we used as an independent cross-check.
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Figure 3. NNLO correction for Z (left panel) and H (right panel) production: leading-jet pT

subtraction (blue) against qT subtraction (blue) and analytic results.

expansion for small jet-radius R up to and including terms of O(R8), and a fully numerical
evaluation for several fixed values of R. The small-R expansion is analytical with the only
exception being a set of R-independent regular terms. The numerical calculation retains
the complete R dependence and shows perfect agreement with the analytical expansion in
the range R ∈ [0, 1] which is relevant for collider phenomenology. We further checked our
computation by performing an NNLO calculation of the total cross section for Higgs and
Z boson production using a slicing subtraction scheme based on the leading-jet pT . Our
calculation reproduces known analytic predictions for the NNLO total cross section in all
flavour channels, thus validating our results.

When describing the technical aspects of the calculation, we discussed in detail the
complications related to zero-bin subtraction and soft-collinear mixing. In particular, we
explicitly showed that if one performs a multipole expansion of the measurement func-
tions there exist no mixed soft-collinear contributions which break the SCET factorisation
theorem at NNLO. This observation is non-trivial in the presence of the exponential ra-
pidity regulator in that it adds a new scale to the problem, which leads to the presence of
non-vanishing integrals that would otherwise be scaleless.

Our complete results are provided in Mathematica-readable files attached to the arXiv
version of this article. Together with our earlier analytic results for the leading-jet pT soft
function [16], they constitute a critical component of the N3LL resummation of this observ-
able, with the only missing ingredient being the three-loop rapidity anomalous dimension.

Acknowledgments

We are grateful to Thomas Becher for helpful discussions on the cancellation of soft-collinear
mixing terms in SCET factorisation. We would also like to thank Julien Baglio, Claude

– 21 –



J
H
E
P
0
4
(
2
0
2
3
)
1
2
7

Duhr and Bernhard Mistlberger for providing us with a preliminary version of their com-
puter code n3loxs used in our checks of the total cross section, and Alexander Huss for
kindly providing a cross check of the differential distributions with the NNLOJet code.
The work of JRG is supported by the Royal Society through Grant URF\R1\201500. LR
has received funding from the Swiss National Science Foundation (SNF) under contract
PZ00P2_201878. RS is supported by the United States Department of Energy under Grant
Contract DE-SC0012704.

Note added. In the final stages of the preparation of this article, ref. [74] appeared with
a numerical calculation of the beam functions in the quark channel. These results are
obtained with a different rapidity regulator and computed for a discrete set of real points
in the Mellin variable N conjugate to the longitudinal momentum x. For this reason, it is
not immediately clear how to compare the results of ref. [74] with the ones presented here.

A Expansion of the exponential regulator in zero-bin integrals

In this appendix we provide the ingredients to calculate the integrals contributing to the
zero-bin subtraction discussed in section 3.3. Specifically, we provide the analogues of
eqs. (3.23), (3.24) needed for the calculation of the correlated and uncorrelated contribu-
tions, respectively.

Soft-collinear zero-bin. We consider the limit in which one of the two partons is soft
(say k2) and the second is collinear. The exponential regulator in the correlated corrections
can be expanded as:∫

dη1 e
−2k1⊥

e−γE
ν

[cosh (η1)+ζ cosh (η−η1)] δ(k−1 − (1− x)p−)

= 1
p−

[(
− ln

(
1 + e−ηζ

)
+ ln p

−ν

k2
1⊥

)
δ(1− x) + 1

(1− x)+
+O(ν−1)

]
. (A.1)

Similarly, we can use the following formula to deal with the uncorrelated contribution (see
footnote 3):∫

dη1dη e
−2k1⊥

e−γE
ν

[cosh (η1)+ζ cosh (η−η1)] δ(k−1 − (1− x)p−) (A.2)

= 1
p−

∫
dw

[ 1
(w)+

1
(1− x)+

− 2
(1− x)+

(
ln(ζ)− ln

(
ν

k1⊥

))
δ(w)

×
[
−
(

ln
(
1 + w−1ζ

)
w

)
+

+ ln
(
p−ν

k2
1⊥

)
1

(w)+

]
δ(1− x)

−2
(

ln(ζ)− ln
(
ν

k1⊥

))
ln
(
p−ν

k2
1⊥

)
δ(w) δ(1− x) +O(ν−1)

]
.

Analogous expressions hold for the case in which k1 is soft.
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Double-soft zero-bin. In the limit in which both partons are soft, the exponential
regulator in the correlated corrections can be expanded as:∫

dη1 e
−2k1⊥

e−γE
ν

[cosh (η1)+ζ cosh (η−η1)] δ((1− x)p−)

= 1
p−

[(
− ln

(
(eη + ζ)(e−η + ζ)

)
+ ln ν2

k2
1⊥

)
δ(1− x) +O(ν−1)

]
, (A.3)

and in the uncorrelated correction as (see footnote 3):∫
dη1dη e

−2k1⊥
e−γE
ν

[cosh (η1)+ζ cosh (η−η1)] δ((1− x)p−) (A.4)

= 1
p−

∫
dw

[
−
[(

ln
((
w−1 + ζ

)
(w + ζ)

)
w

)
+
− 2 ln

(
ν

k1⊥

) 1
(w)+

]
δ(1− x)

− 4 ln
(
ν

k1⊥

)(
ln(ζ)− ln

(
ν

k1⊥

))
δ(w) δ(1− x) +O(ν−1)

]
.

B Renormalisation of the beam functions in SCETII

In this appendix we show how the renormalisation of the transverse-momentum and jet-
veto matching coefficients determines the renormalisation of ∆I in eq. (3.2). We start by
writing eq. (3.2) for bare quantities

Ibare(x,Q, pveto
T , R2;µ, ν) = I⊥bare(x,Q, pveto

T ;µ, ν) + ∆Ibare(x,Q, pveto
T , R2;µ, ν) . (B.1)

The previous equation can be simply thought of as a way to decompose Ibare into the sum
of two terms. We now relate eq. (B.1) to eq. (3.2) by considering the renormalisation of
the UV poles in ε.

An important subtlety here is that the matching coefficient (or beam functions) for
transverse momentum and jet veto resummation renormalise in a multiplicative way in dif-
ferent spaces, that is in impact-parameter and momentum (cumulant) space, respectively.
We then use

I = Z Zαs Ibare ,

I⊥ = Z⊥ ⊗
(
Zαs I

⊥
bare

)
,

(B.2)

where the matching coefficients in the l.h.s. are renormalised, Z is the UV renormalisation
constant, and Zαs accounts for the renormalisation of the coupling in the MS scheme
(which can be performed in either space). The convolution operator denoted by ⊗ reduces
to a simple product in impact-parameter space. Since we are working in SCETII, the UV
renormalisation constants Z and Z⊥ are the same as a consequence of the fact that the
two observables have the same µ anomalous dimensions (while the rapidity renormalisation
groups structure differs), that is Z = Z⊥. This implies that they do not depend on the
value of the observable itself (i.e. on pveto

T ), but rather on µ and ν only which we keep
generic. By relating eqs. (B.1) and (3.2) we can express the renormalised ∆I in terms of
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bare quantities. At the one-loop level one has I(1)
bare = I

⊥, (1)
bare , and hence ∆I(1) = ∆I(1)

bare = 0.
At the two-loop level, since the renormalisation constants are independent of the observable
value, the convolution in eq. (B.2) becomes a product leading to

∆I(2) = ∆I(2)
bare , (B.3)

where ∆I(2)
bare denotes the two-loop bare matching coefficient whose coupling constant has

been renormalised in the MS scheme. Eq. (B.3) justifies eq. (3.2), which was used in
section 3 for our computation. Additional terms due to renormalisation contribute to ∆I
at higher loop orders.

We note that some of the arguments used to arrive at eq. (B.3) do not apply in the
SCETI case, where the µ anomalous dimension is observable dependent and therefore the
convolution structure already plays a role at two loops. An analogous discussion in the
SCETI case was discussed in ref. [51].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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