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We exploit the concept of hydrodynamic attractors to establish a macroscopic description of the early
time out-of-equilibrium dynamics of high energy heavy-ion collisions. One direct consequence is a general
relation between the initial state energy and the produced particle multiplicities measured in experiments.
When combined with an ab initio model of energy deposition, the entropy production during the
preequilibrium phase naturally explains the universal centrality dependence of the measured charged
particle yields in nucleus-nucleus collisions. Further, we estimate the energy density of the far-from-
equilibrium initial state and discuss how our results can be used to constrain nonequilibrium properties of
the quark-gluon plasma.
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Introduction.—Understanding the equilibration of iso-
lated quantum systems is a fundamental question that
touches physical phenomena across vastly different energy
scales, from microkelvin temperatures in cold atom experi-
ments to trillion kelvin temperatures in the dense strong-
interaction matter produced in ultrarelativistic nuclear col-
lisions [1–4]. One outstanding discoverymade in the field of
heavy-ion collisions is that the system created about 1 fm=c
(≈3 × 10−24 s) after the impact of two relativistic nuclei can
be described as a deconfined plasma of quarks and gluons
(QGP) with macroscopic properties of temperature and
velocity [5–8]. Such “unreasonable effectiveness of hydro-
dynamics” in describing the violent expansion of the QGP
droplets triggered a new research area in mathematical
physics devoted to the study of hydrodynamic attractors
that emerge in out-of-equilibrium systems experiencing
very fast memory loss of initial conditions and exhibiting
a universal approach toward thermal equilibrium [9,10].
In this Letter, we show that hydrodynamic attractors

can be used to describe entropy production in relativistic
nuclear collisions and to make robust estimates of initial-

state energy before the onset of equilibration. We derive a
simple formula, Eq. (6), that relates the energy density of
the initial state to the measured charged particle multiplic-
ity, dNch=dη, and point out two important phenomeno-
logical consequences of this result. We show that the
universal centrality dependence of dNch=dη across a wide
range of collision systems can be naturally reproduced by
combining the initial-state energy deposition in high-
energy quantum chromodynamics (QCD) with the non-
linear entropy production during the equilibration process.
Secondly, we determine the initial energy per unit space-
time rapidity, dE0=dηs, for different collision centralities at
the Relativstic Heavy-Ion Collider (RHIC) and the Large
Hadron Collider (LHC). By comparing our results to the
experimentally measured dEfinal=dy in the final state, we
estimate the work performed during the expansion of the
system [11] and discuss how such an analysis constrains
nonequilibrium and transport properties of the QGP.
Hydrodynamic attractors and Entropy production.—We

describe the early time dynamics (τ ≲ 1 fm=c) of the high-
temperature QCD plasma created in high-energy heavy-ion
collisions by the out-of-equilibrium evolution of a boost-
invariant and transversely homogeneous conformal system
[12]. Energy-momentum conservation dictates that the
energy density, e ¼ Tττ, evolves according to

∂τe ¼ −
eþ PL

τ
; ð1Þ
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where PL ≡ τ2Tηsηs is the longitudinal pressure, and we use
proper time τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

and space-time rapidity ηs ≡
atanhz=t coordinates. In (local) thermal equilibrium, the
longitudinal pressure is directly related to the energy density
via an equation of state, e.g., PL ¼ e=3 for a conformal
system. While for small deviations around equilibrium,
the longitudinal pressure is determined by hydrodynamic
constitutive relations in terms of the gradient expansion
PL=e ¼ 1

3
− 16

9
½ðη=sÞ=ðτTÞ�, where η=s is the specific shear

viscosity [9,10], this is generally not the case far from
equilibrium, where, for instance, at early times after the
collision of heavy nuclei, the system is highly anisotropic
PL ≪ e [4]. Nevertheless, new insights from microscopic
equilibration studies [13–30] point to the existence of a
hydrodynamic attractor [14], where the far-from-equilibrium
system displays an effective constitutive equation PL=e ¼
fðw̃Þ well before reaching local thermal equilibrium. Such
attractor behavior has been established for a number
of different microscopic theories (QCD Kinetic Theory
[26–29], Boltzmann RTA [16–20], and AdS/CFT [13–
15]), where the time evolution on the attractor is controlled
by a single scaling variable, w̃ ¼ τTeffðτÞ=ð4πη=sÞ, where
TeffðτÞ is an effective temperature such that eðτÞ≡
ðπ2=30ÞνeffT4

effðτÞ (νeff is the number of effective degrees
of freedom, e.g., νeff ¼ 16 for ideal gluonic gas).
Based on these insights, the conservation law in Eq. (1)

can be integrated, yielding a universal relation between the
initial state energy density e0 at very early times w̃ðτ0Þ ≪ 1
and the energy density eðτhydroÞ of the near thermal system
at later times w̃ðτhydroÞ ≫ 1

eðτhydroÞ ¼ e0 exp

�
−
Z

w̃hydro

w̃0

dw̃
w̃

1þ fðw̃Þ
3
4
− 1

4
fðw̃Þ

�
: ð2Þ

Close to equilibrium fðw̃hydroÞ ≈ 1=3, and the energy
density of the longitudinally expanding plasma follows
the Bjorken scaling eðτÞ¼ehydroðτ=τhydroÞ−4=3, while the
entropy density per unit rapidity, sτ, remains constant [12].
Eventually, for τ ≳ R=c, where 2R denotes the transverse
extent of the system, theQGP fireball starts expanding in the
transverse plane and ultimately freezes out in color neutral
hadrons [31]. During the transverse expansion, the QGP
remains close to equilibrium and the total entropy per
unit rapidity dS=dηs ¼ A⊥ðsτÞhydro (where A⊥ ¼ πR2) is
approximately conserved onwards from the time τhydro when
the QGP can be described as an almost ideal fluid.
Ultimately, on the freeze-out surface, dS=dηs becomes
proportional to the produced charged hadron multiplicity,
dNch=dη. Therefore, the multiplicity of final-state particles
emitted from the QGP is a sensitive probe of the entropy
production during the preequilibrium phase.
Strikingly, the correspondence between initial-state

energy density and charged hadron multiplicity can be
quantified further using the theory of hydrodynamic

attractors. By factoring out the late time Bjorken scaling
from Eq. (2), the evolution of the energy density during the
preequilibrium phase can be characterized by an attractor
curve Eðw̃Þ

eðτÞτ4=3
ehydroτ

4=3
hydro

¼ E
�
w̃ ¼ TeffðτÞτ

4πη=s

�
: ð3Þ

As can be seen from Fig. 1, the function Eðw̃Þ smoothly
interpolates between an early free-streaming and late-stage
viscous hydrodynamics [15,26]

Eðw̃ ≪ 1Þ ¼ C−1
∞ w̃4=9 ðfree streamingÞ;

Eðw̃ ≫ 1Þ ¼ 1 −
2

3πw̃
ðviscous hydroÞ; ð4Þ

where C∞ is a constant of order unity. Even though the
evolution at intermediate times can be different for different
microscopic theories, the overall similarity between differ-
ent theories is remarkable. Most importantly for our
purpose, all curves have the same universal characteristics,
Eq. (4), at early and late times, irrespective of the under-
lying microscopic theory.
Based on Eq. (3), we can immediately establish a

quantitative relation between the energy densities eðτÞ at
various stages, which, upon use of the thermodynamic
relations Ts ¼ eþ p and p ¼ e=3 once the system is close
to equilibrium, turns into an estimate of the entropy density
per unit rapidity

ðsτÞhydro ¼
4

3

�
π2

30
νeff

�
1=4

�
lim
τ→0

eðτÞτ4=3
EðTeffðτÞτ

4πη=s Þ

�
3=4

: ð5Þ

FIG. 1. Hydrodynamic attractor for preequilibrium evolution of
the energy density obtained from QCD and Yang Mills (YM)
kinetic theory [26–29], AdS/CFT [13–15], and Boltzmann RTA
[16–20]. Solid lines show the asymptotic behavior of the attractor
curves given by Eq. (4).
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Evaluating the limit according to Eq. (4), one arrives at the
central result of this Letter, namely, the relation

ðsτÞhydro ¼
4

3
C3=4
∞

�
4π

η

s

�
1=3

�
π2

30
νeff

�
1=3

ðeτÞ2=30 ; ð6Þ

from which one can directly estimate the charged particle
multiplicity as discussed above

dNch

dη
≈
1

J
A⊥ðsτÞhydro

Nch

S
: ð7Þ

Here, S=Nch≡ðdS=dyÞ=ðdNch=dyÞ≈6.7–8.5 is the entropy
per charged particle at freeze-out [32] and J ≈ 1.1 is a
Jacobian factor between particle rapidity y and pseudor-
apidity η [33].
Equations (6) and (7) establish a one-to-one correspon-

dence between the initial-state energy per unit rapidity
dE0=dηs ≈ A⊥ðeτÞ0 and the charged particle multiplicity
dNch=dη. One crucial feature of this result is that it
accounts for the entropy production during the preequili-
brium phase, which gives rise to a nontrivial dependence on
the initial-state energy density ðeτÞ2=30 as well as on the
transport coefficient ðη=sÞ1=3. Our estimate includes all
relevant prefactors, in particular, the constant C∞, which
is the property of the hydrodynamic attractor, Eq. (3), and
depends on the microscopic physics of equilibration.
However, it is striking to observe that, for the different
theories shown in Fig. 1, the variation ofC∞ is only at∼10%
level. We emphasize that Eq. (6) is entirely based on the
macroscopic evolution described by a generic hydrody-
namic attractor, which sets it apart from previous parametric
estimates of entropy production based on particular micro-
scopic scenarios [34–37].
Centrality dependence of particle multiplicity.—One

important phenomenological consequence of the entropy
production in the preequilibrium phase concerns the
determination of initial conditions for hydrodynamic sim-
ulations of heavy ion collisions (see, e.g., [38]). While,
strictly speaking, our estimate of the entropy density in
Eq. (6) was derived assuming a one dimensional expansion,
the influence of transverse gradients can be neglected
over the short preequilibrium times, and we can directly
promote Eq. (6) to an estimate for the local entropy
density, τsðτ;x⊥Þjτ¼τhydro

. Specifically, the preflow v⊥ ∼
τhydro∇⊥e=e is negligible as long as gradients ∇⊥e=e are
small on the scale of hydrodynamization time ðcτhydroÞ
[25,26], and the one dimensional constitutive relation for
PL=e approximately remains valid, as explicitly confirmed
in [39]. Effectively, Eq. (6) then provides a nonlinear map
of the initial-state energy density profile to the entropy
density profile at later times τ ∼ τhydro.
Now, in order to illustrate the impact of the preequili-

brium phase, we will study the effects on the centrality
dependence of the charged particle multiplicity within a

simple initial state model based on the color-glass con-
densate effective theory of high-energy QCD [40]. Within
the dilute-dense formulation of this theory [41–45], the
initial energy density per unit rapidity ðeτÞ0 as well as the
initial gluon multiplicity per unit rapidity ðnτÞ0 can be
calculated from k⊥ factorization and are given in terms of
convolutions of unintegrated gluon distributions [46].
Essentially, one finds that (up to logarithmic corrections)
ðeτÞ0 and ðnτÞ0 are proportional to the (local) saturation
scales Qsðx⊥Þ of the two colliding nuclei [41,42]

ðeτÞ0ðx⊥Þ ∝ ðQ<
s Þ2ðx⊥ÞQ>

s ðx⊥Þ; ð8Þ

ðnτÞ0ðx⊥Þ ∝ ðQ<
s Þ2ðx⊥Þ; ð9Þ

where Q>=<
s is the saturation scale of the nucleus repre-

senting larger or smaller Qs at position x⊥.
Since the saturation scale locally characterizes the

longitudinally integrated density of color charge inside
the nucleus, it is generically proportional to the nuclear
thickness

Q2
sðx⊥Þ ∝ Tðx⊥Þ; ð10Þ

whose definition is recalled in the Supplemental Material
[47]. Based on these considerations, one can then try to
estimate the charged particle multiplicity per unit rapidity
from the initial gluon multiplicity ðnτÞ0 (i.e., with or
without preequilibrium) according to

dNch

dη
∝
Z

d2x⊥T<ðx⊥Þ; ð11Þ

as was done, for example, in [50,51]. However, such an
estimate is appropriate only when there is no significant
amount of particle production in the final state. Conversely, if
the initial state evolves into an almost ideal QGP fluid, one
needs to account for the entropy production during the
preequilibrium phase. By employing Eqs. (6) and (7) the
charged particle multiplicity is then estimated from the initial
state energy density ðeτÞ0, (i.e., with preequilibrium) as

dNch

dη
∝
Z

d2x⊥ðT<ðx⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T>ðx⊥Þ

p
Þ2=3: ð12Þ

We illustrate the difference between the two estimates in the
upper panel of Fig. 2, where we compare the centrality
dependence of the multiplicity dNch=dη from Eq. (12) (solid
line) and Eq. (11) (dashed line), with the nuclear thickness
and centrality quantiles determined from the optical Glauber
model (see the Supplemental Material for details [47]). Both
estimates are normalized to reproduce the experimentally
measured value of dNch=dη in the 10%–20% centrality class
of Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV (center-of-mass
energy per nucleon pair). Different trends in the centrality
dependence of dNch=dη are clearly visible, indicating the
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importance of the preequilibrium phase when comparing
observables of this type to experimental data.
Since dNch=dη is accurately measured in experiment for

a wide variety of colliding systems and energies, we can
also compare the two estimates directly to experimental
data, which are reported as symbols in the upper panel of
Fig. 2. It is interesting to note that the average hdNch=dηi as
a function of centrality possesses a remarkable degree of
universality, such that—up to an overall normalization
factor for each collision system—data points for different
colliding species (Au, Cu, Pb, U, Xe) at RHIC and LHC
energies all collapse onto a single curve to high accuracy.
Despite the simplicity of our theoretical estimate, we find
that the curve including preequilibrium effects provides a
rather good description of the experimental data, except for
the more peripheral bins, where fluctuations play an
important role (see below). Because of the nontrivial
geometry dependence in Eq. (12), the calculation including
preequilibrium dynamics provides a much better descrip-
tion of the data than the estimate in Eq. (11), which is based
solely on the initial state.
Even though Eq. (12) can be clearly justified from

theoretical calculations, our description is by no means

unique. Other phenomenological models [56–60] success-
fully reproduce the centrality dependence seen in Fig. 2 by
introducing various sources of event-by-event fluctuations
such as number and positions of participant nucleons, their
interaction strength, etc. However, it is important to
emphasize in this context that the preequilibrium phase
also modifies the statistics of fluctuations, such that, for the
long wavelength perturbations [25,26],

δshydro
shydro

¼ 2

3

δe0
e0

; ð13Þ

which follows from the linearization of Eq. (6). While
Eq. (12) overpredicts particle production in peripheral
collisions, it is, therefore, not surprising that one can restore
agreement with peripheral data by including event-by-event
fluctuations. This is demonstrated by the dotted-dashed line
in Fig. 2, where the average of the nuclear thickness in
Eq. (12) has been determined from a Glauber Monte Carlo
model [61] (see the Supplemental Material for details [47]).
Estimating the initial-state energy density.—So far, we

illustrated the utility of Eq. (6) for describing entropy
production in the preequilibrium phase of high-energy
heavy-ion collisions. However, an equally important appli-
cation concerns the inverse problem, namely, the estimation
of the energy density e0 of the nonequilibrium state at very
early time τ0 from experimental measurements of hadrons
in the final state.
By inverting Eqs. (6) and (7) (and inserting typical

values of dNch=dη ∼ 1600 and A⊥ ≈ πR2
Pb ≈ 138 fm2), we

obtain the following estimate for the initial energy density
for central Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV:

e0 ≈ 270 GeV=fm3

�
τ0

0.1 fm=c

�
−1
�
C∞

0.87

�
−9=8

�
η=s
2=4π

�
−1=2

×

�
A⊥

138 fm2

�
−3=2

�
dNch=dη
1600

�
3=2

×

�
νeff
40

�
−1=2

�
S=Nch

7.5

�
3=2

; ð14Þ

at a time τ0 ¼ 0.1 fm=c, which should be at least of the
order of the formation time 1=Qs ≈ 0.1 fm=c [4], but small
compared to the equilibration time τhydro ≈ 1 fm=c [26,27]
for the estimate in Eq. (14) to be valid. One finds that
the initial energy density quoted in Eq. (14) is nearly 3
orders of magnitude higher than the energy density at the
QCD crossover ec ≈ 0.346ð41Þ GeV=fm3 (for 2þ 1 flavor
QCD) [62,63].
We emphasize that, unlike the usual Bjorken

estimate based on the measured final-state energy e0 ¼
ð1=τ0A⊥ÞdEfinal=dy [12], our estimate in Eq. (14) includes
the work done during the expansion of the QGP [11].
We demonstrate this effect in Fig. 3 where we compare the
experimentally measured dEfinal=dy in the final state to the

FIG. 2. The effect of preequilibrium dynamics on the centrality
dependence of the charged-particle multiplicity, dNch=dη, can be
appreciated by comparing the theoretical estimate on the gluon
number (blue dashed line), given by Eq. (11), to that on the
charged-particle multiplicity after equilibration (red solid line),
given by Eq. (12). The green dotted-dashed line includes, as well,
fluctuations in the initial state energy within a Glauber
Monte Carlo approach. Experimental data points are shown
for different collision systems: Xe-Xe [52], Pb-Pb [53], U-U
[54], Au-Au [55], and Cu-Cu [55] collisions. All curves are
normalized to present the same value of multiplicity as ALICE
Pb-Pb data in the 10%–20% centrality bin. The bottom panel
shows the ratio between 2.76 TeV Pb-Pb data and the theory
curves.
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initial-state energy per unit rapidity dE0=dηs ¼
R
dx⊥ðeτÞ0

reconstructed from the measured particle multiplicities as in
Eq. (14). Note that, to better account for the nontrivial
transverse geometry, we have estimated the transverse area
A⊥ from our fluctuating initial state model as described in
the Supplemental Material [47].
Based on this analysis, we find that, especially in central

collisions at high energies, the initial state dE0=dηs can
easily exceed the measured dEfinal=dy in the final state by a
factor of 2 to 3. Evidently, the exact amount of work done
during the expansion is subject to uncertainties in the
nonequilibrium and transport properties of the QGP, which
we quantify by uncertainty bands in Fig. 3, corresponding
to variations of η=s and C∞ within the anticipated margins
(η=s ¼ 0.08–0.24 and C∞ ¼ 0.80–1.15). Vice versa, the
size of the uncertainty bands in Fig. 3 also demonstrates the
fact that, if the initial state energy density can be determined
precisely, e.g., from theoretical calculations, then the exper-
imentally measured dNch=dηwill impose strong constraints
on the nonequilibrium evolution of the QGP characterized
by C∞ and η=s. Since, the dE0=dηs should always be larger
than dEfinal=dy due to the work performed against the
longitudinal expansion, one can further rule out values in
the parameter space, where the initial dE0=dηs falls below
the experimental data points. Specifically, large values of
η=s and C∞ can already be ruled out, because the estimated
dE0=dηs in peripheral collisions turns out to be unphysically
small, i.e., below the experimental points of dEfinal=dy,
which provide a lower bound on the initial state energy.
Discussion.—Entropy production in high-energy heavy-

ion collisions occurs predominantly during the earliest

stages, when the system is significantly out of
equilibrium; therefore,measurements of the charged particle
multiplicities—reflecting the total amount of entropy pro-
duced in the collision—provide a highly sensitive probe of
the preequilibrium dynamics. Based on the concept of
hydrodynamic attractors, which give amacroscopic descrip-
tion of the early time dynamics of the QGP, we established,
for the first time, a direct relation between the initial-state
energy and the final-state entropy. This relation, Eq. (6), is
remarkably insensitive to the microscopic details of the
approach to equilibrium (see Fig. 1).
By combining the information from dNch=dη on entropy

production and dEfinal=dy on the work performed against
the longitudinal expansion, we demonstrate that a precise
calculation of the initial state energy can impose stringent
constraints on the shear viscosity to entropy density ratio
η=s. Based on our extraction of dE0=dηs, which assumes a
scenario of (nearly) complete equilibration, we obtain an
upper limit for η=s≲ 0.4 for the most favorable choice of
all other parameters. Conversely, for η=s≳ 0.4, we can not
expect the QGP to equilibrate in peripheral nucleus-nucleus
collisions (see, also, [30,64]) and our estimates need to be
revised. Nontrivial modifications due to incomplete equili-
bration will arise in this context, which should be inves-
tigated further, for instance by means of the KØMPØST

preequilibrium package [26,27,65]. We expect such effects
to become particularly important in collisions of smaller
nuclei, e.g., p-A or O-O, which may, therefore, provide
even deeper insights into the fascinating out-of-equilibrium
dynamics of the QGP.
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