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Abstract

This work shows how it is possible to reconstruct SuperKEKB’s beam param-

eters using a Neural Network with beamstrahlung signal from the Large Angle

Beamstrahlung Monitor (LABM) as input. We describe the device, the model,

and discuss the results.

Keywords: Beamstrahlung, SuperKEKB, Collider, Beam, Monitoring, LABM,

Machine-Learning, Neural-Network,

1. Introduction

SuperKEKB [1, 2] is an intersecting double storage ring particle accelera-

tor with a circumference of 3.016 km that collides electrons and positrons to

provide luminosity for the Belle II experiment [3]. SuperKEKB is the suc-

cessor of KEKB [4]. While KEKB achieved a maximum peak luminosity of
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2.11 × 1034cm−2s−1 [3], SuperKEKB will attempt to reach a peak luminosity

of 8 × 1035cm−2s−1 [1], about 40 times larger than its predecessor. Since the

luminosity is strongly dependent on beam-optical parameters at the IP, it is

important to have direct measurement of such parameters. Such information

is especially crucial to a nano-beam collider as SuperKEKB, where there is

strong sensitivity to small parameter changes, in order to maximize the lumi-

nosity extracted for bunch crossing. The Large Angle Beamstrahlung Monitor

(LABM) is a device designed to measure the beamstrahlung emitted at the In-

teraction Point (IP) of a e+e- collider. Beamstrahlung is the radiation emitted

by two beams of charged particles due to their electromagnetic interaction [5].

Beamstrahlung is directly related to the size and configuration of the beams,

and provides direct information on the beams at the IP. Specifically, vertically

unequal beams create an excess of y-polarized light as seen by the telescope

observing the fatter beam (conversely, y-polarized light from the smaller beam

will decrease).

The latest version of the LABM is installed around the IP of SuperKEKB.

The LABM at SuperKEKB measures 32 independent values, with different op-

tical properties, that are directly related to the size and position of the beams.

In this framework, the LABM can be extremely useful to monitor the beams

and correct them in case they show an unwanted behavior that can cause lu-

minosity degradation. One of the challenges of the LABM is to relate these

32 measurements to observables of interest. This can be done on theoretical

grounds, by constructing a variable that is function of all or some of the 32

measurements, by traditional fitting methods, e.g., a linear regression, or us-

ing machine learning techniques, e.g. a neural network. In this paper, we will

present and compare results from linear regression and neural network models.

This will be an experimental validation for both the LABM and, more in gen-

eral, for machine learning models applied to the first particle accelerator using

the nano-beam scheme. The average beam parameters at the IP of SuperKEKB

IP for the data used in this paper are given in Table 1.

This article is organized as follows. In Section 2, we describe the LABM as
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Beam LER (e+) HER (e−)

L(cm−2s−1) 2.8 ×1034

E(GeV ) 4 7

N(1010) 3.8 3.1

β∗
x(m) 0.08 0.06

β∗
y(m) 0.001 0.001

εx(nm) 3.5 4.7

εy(pm) 46.4 37.7

σ∗
x(µm) 16.7 16.7

σ∗
y(nm) 214.8 192.7

σ∗
z(mm) 6 5

Table 1: SuperKEKB average beam parameters at the IP for the data used in this paper. The

Low Energy Ring (LER) is the positron ring, The High Energy Ring (HER) is the electron

ring. L is the luminosity, E is the energy of the beam, N the number of particles per bunch,

β∗ the β function at the IP, ε the emittance, and σ∗ the size of the beam at the IP.

it was installed at SuperKEKB. In Section 3, we describe how data for this work

was selected. In Section 4, we give an overview of the machine learning model

used in this work, which is a deep Neural Network. In Section 5, we present the

result of our Neural Network model and compare it with a traditional Linear

Regression. In Section 6, we discuss the results in details and provide some

comments. Finally, in Section 7, we summarize the results presented the paper.

2. LABM at SuperKEKB

The first experimental observation of beamstrahlung took place at the Stan-

ford Linear Collider (SLC) [6], colliding e+ and e−. The properties, polarization

and spectrum, of the beamstrahlung are directly related to the beam parame-

ters, and the analytical relations can be found in literature [7, 8]. The LABM

at SuperKEKB extracts visible beamstrahlung from about 5 meters distance

downstream of the IP. The light is extracted by using vacuum mirrors inside
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the accelerator’s vacuum chamber, as shown in Figure 1 (a), with the light

then going through glass windows. The light is then driven through an optical

channel with a series of mirrors and reaches an optical box after several meters,

see Figure 1 (b, c). The mirrors are located inside a series of aluminum pipes

connected to each other at 90 degrees. Since the beamstrahlung is emitted by

both the electron and positron beams, the same apparatus is installed in both

the electron ring, or High Energy Ring (HER), and the positron ring, or Low

Energy Ring (LER). In each ring, there are two vacuum mirrors, located down-

stream of the IP, at the top and at the bottom of the vacuum chamber. This

allows to be sensitive to vertical asymmetries with respect to the collision of

the two beams. Since there are two vacuum mirrors on each ring, we have 4

optical channels, each one producing 8 PMTs measurements. Optical boxes,

containing all the optical elements necessary to the measurements, are located

outside the radiation area in order to minimize interference with the electronics.

Each box is organized in two sides, each side accommodating 8 PMTs that serve

one optical channel. Figure 1 (d) shows one side of one optical box, containing

all the optical elements needed and the 8 PMTs located on the rear side of the

box. There are 2 boxes and each box has two sides, providing therefore a total

of 32 PMTs measurements. Each PMT receives light with horizontal or vertical

polarization and in a different spectral region in the range going from about

390 nm to about 650 nm. Therefore, while there is some level of redundancy,

in reality each PMT carries new information on the beam properties.

3. Data taking, data selection, observables

In this first paper, we analyze only the data from the two electron telescopes,

therefore 16 phototubes. These two are located at the top in the daisy chain

of mirror motors. Regrettably, the use of a single data bus for all motors leads

occasionally to interference that affects the higher numbered motors (those of

the positron telescopes). Once this happens, the device can be reset only by

access to the Interaction Region (IR). Still, with the positron telescopes not
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(a)

(b)

(c)

(d)

Figure 1: (a) Vacuum mirrors and extraction windows used to extract the light inside the

vacuum chamber. (b) The light extracted from the vacuum chamber travels through a LABM

optical channel. (c) The light is driven outside the radiation area to a shielded area underneath

through a manhole. (d) One side of an optical box used to measure the beamstrahlung. The

elements contained in the box are: Wollaston prism (1), gratings (2), mirrors (3), lenses (4),

a conveyor belt (5), photo-multipliers (6), and electronics (7).
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pointed at the IP we were able to cross check that there was no sensitivity on

that side. We also pointed one of the telescopes in use to a feature that was

clearly a reflection, with the same results.

The results presented here, obtained through ML, solve a problem that has

plagued this device for years. In an attempt to gain better knowledge of back-

grounds, which were rapidly varying, the device was scanned around the IP

spots presented in Fig. 3. In fact, this background subtraction method was

plagued by other problems, such as rapidly varying backgrounds during beam

refills (which are continuous at SuperKEKB), possibly varying beam tails in the

quadrupoles, and other machine variations. The rapidity of such changes was

generally larger of the ability of the device to move between side band and peak.

Starting in 2018, our beamstrahlung signal got progressively noisier every year.

Therefore, a classic ”side band” subtraction scheme could not be successfully

implemented.

The use of opposite telescopes (one located at the top of the vacuum cham-

ber, and one at the bottom) permits an automatic correction for the varying

beam orbits which affect both signal (beamstrahlung) and background (syn-

chrotron light from dipoles and quadrupoles).

Ref. [9] explains the observables used but a simple plot is provided, obtained

from our unpublished large angle beamstrahlung calculations. These were per-

formed using SuperKEKB beams, rigid beams approximation, at nominal and

close to nominal beam parameters at the IP. The SuperKEKB beams are very

flat, with an aspect ration σy/σx at the IP of order 100. With beams this flat,

the distance between particles, and therefore the deflecting force, is dominated

by the horizontal distance. Fig. 2 shows that the ratio of the two beam heights,

can be deduced from the ratio of y−polarized beamstrahlung yields, on opposite

sides, almost without dependence on the horizontal beam size.

The sensitivity to the ratio of beam heights expresses itself through both

a reduction in y−polarized rate for the electron beam and an increase for the

positron beam, when the positron beam size increases. Not having a two sided

measurement, we resort to beam size variation to extract the same result during

6



Figure 2: Dependence of beamstrahlung rates on beam heights. In abscissa is the ratio of

electron and positron beam height, Rσ = σ−/σ+. In ordinate is the observed y−polarized

beamstrahlung ratio of rates, RB = R−/R+. The calculation was performed using the Su-

perKEKB crossing angle, equally populated beams, with equal σx=10µm, and equal beam

lengths σz=6mm. The three closely spaced lines, marked by different markers at the points of

calculation, correspond, from lower to higher, to 3 different electron beam heights, respectively

60 nm, 160 nm, and 260 nm.
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the course of our data taking.

Specifically in the case of beamstrahlung a beam entering the IP with a small

vertical angle δ will increase the rate of one telescope by a quantity of order δ/θ,

and decrease the rate in the opposite telescope by −δ/θ, where θ is the angle

of observation. This small correction is less or of order 1% at SuperKEKB,

and efficiently dealt with by the neural network. The neural network also can

reproduce small effects such as photomultiplier saturation (a 1-3% effect in

these data), and effectively finds beamstrahlung, including spectral effects (when

beams cross at an angle the spectrum at our observation angle, about 8 mrad,

differs for x- and y-polarized light, see Ref. [8]).

In order to analyze beamstrahlung, there needs to be certainty that the

telescopes are pointed at the Interaction Point (IP). Fig. 3 shows the vertical

geometry for the electron telescope located below the vacuum chamber. The

second mirror in the telescope can be oriented by two stepper motors to scan the

field of view looking for light spots. From Fig. 3 the features of the light spot

can be expected to be in the form of a lentil, with an angle equivalent to 1500

steps in the horizontal direction and 1500 in the vertical direction, or 0.7 mrad

horizontal by 0.3 mrad vertical. The data presented here are taken with two

2 mm collimators in each telescope, separated by about 10 meters, providing a

triangular acceptance with base 0.4 mrad in each direction.

Often telescopes, in this case the Down telescope, provide multiple spots of

light. Past experience indicates that the IP spot must have correct dimension

(specified above), and is generally more y-polarized (due to the presence of

beamstrahlung. Reflected synchrotron light is often strongly x-polarized) and

also generally can produce more elongated features compared to a proper spot.

Figs. 4 show the angular scans for two PMTs for each telescope. We generally

select the geometrical center of the spot as the IP. Although we have done much

data taking in scanning mode (in the simplest case, by continuously measuring

the presumed IP, and then two points at each horizontal side) in the past,

looking to have ”side band” measurements to measure independently signal

and background, for the data presented here the motors were left at the IP
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Figure 3: Vacuum chamber, or Beam Pipe (BP), vertical profile at the SuperKEKB Interaction

Point. Top: HER vertical vacuum chamber profile. Bottom: LER vertical vacuum chamber

profile. The IP and the vacuum mirrors are shown to the right. The thick bars to the left are

the locations and lengths of the last dipoles in the beam line.
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Figure 4: Fine angular scans near the detected Interaction Point (IP). Top: electron (HER)

telescope up. Bottom: electron (HER) telescope down. The IP is generally located very close

to the maximum intensity spot.
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without moving for 11 days. Subsequently, we took data at a spot considered

fake in the down telescope, finding no correlation with beam parameters.

Data used were subject to minimal cuts. We selected only Physics data,

since any tuning can easily make our spots disappear. All data with currents

above 100 mA were considered for analysis. Fig. 5 shows that during data taking

the transverse sizes of both beams changed quite a bit, with little correlation

between any pair of parameters, resulting in good parameter space coverage for

our analysis.

4. The Neural Network model

The model used in this work is a fully connected deep Neural Network (NN)

with the following architecture in terms of neurons: 16-64-128-64-32-1. The

model therefore consists of 19777 trainable parameters. The first layer consists

of the 16 neurons of the input, i.e. the 16 PMT input values from the LABM, and

the output layer consists of 1 neuron because we want to use our NN to perform

a regression on one of the beam parameters. The hidden layers architecture was

determined after several trial and error attempts in order to optimize the result

of the regression. The model was implemented using Keras [11], a high level

abstraction library that works on top of the low level TensorFlow [12] compute

engine. The data set used consists of about 150000 LABM and SuperKEKB

measurements, which are split in about 96000 points for training, 24000 for

validation, and 30000 for testing of the model, obtained over 11 days every

five seconds. These measurements are randomly shuffled before being used,

meaning that there is no time correlation between successive points in the data

set. The about 30000 measurements reserved for testing do not take any part

in the model learning process, allowing for an unbiased benchmark, and will be

used to present the results in the next section, as they effectively represent new

measurements with respect to the model.
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Figure 5: Distributions of calculated beam parameters at the IP used in this paper, based

on XRM [10] beam size measurements at other locations in SuperKEKB. The plots along the

diagonal represent the distributions for each parameter. The off-diagonal scatter plots show

the distribution of any two pair of parameters. First line and first column: electron σx; second

line and second column: electron σy ; third line and third column: positron σx; fourth line

and fourth column: positron σy .
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5. Reproduction of beam parameters

In this section we show the results of the NN model and we will also compare

these results with those provided by the traditional Linear Regression (LR):

y = β0 + β1x1 + ...+ β16x16 (1)

where the 16 independent variables xi correspond to the 16 PMT values

provided by the current data selection. Because previously data were obtained

by scanning, a direct comparison is not possible. A LR approach is feasible

as, historically, we have always seen high linearity with beam current and other

beam parameters in zero beamstrahlung conditions (that is, when only one beam

was present in the accelerator).

The data used in this paper has been collected parasitically during a physics

run for the Belle II experiment. In this sense, the beam parameters tend to be

quite stable, but there are still significant changes that we can observe in the

experimental data and try to reproduce with the predictions provided by our

models. The goal of this study is to show that the variation of the beam param-

eters can be reproduced by a NN model with the LABM measurements as input.

In the next subsections, we will compare experimental data and prediction by

sorting them from smaller to larger values with respect to the experimental

data. This kind of sorted plot is sometimes called a lift chart, and it is useful to

evaluate the quality of a regression. Besides the visual evaluation, the value of

the Mean Absolute Error (MAE) for each set of predictions is calculated. The

relative MAE, defined as

1

N

N∑
i=1

|yi − yi,pred|
yi

(2)

where N is the number of measurements, yi is the measured value, and yi,pred

the one predicted by the model, is indicated in the legend of each prediction

plot as percentage error.

5.1. Specific Luminosity

Although luminosity is not a beam parameter, it is strictly related to the

beam parameters at the IP and it constitutes, together with the energy, one of
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the two figures of merit of a collider. Therefore, it will be the first experimental

measurement that we will try to reproduce with our models. The absolute lumi-

nosity at SuperKEKB is measured by the Electromagnetic Calorimeter (ECL)

monitor [13], located in the Belle II detector. The ECL measures Bhabha events

and, following calibration, provides an absolute value for the luminosity. How-

ever, the luminosity depends on the currents and on the number of bunches

present in the beam, and in our models we only want to use the 16 measure-

ments from the electron side of the LABM as input. Therefore, for our purposes,

we will use the specific luminosity. The specific luminosity for collinear Gaussian

beams is defined as:

Lsp =
f0

2πΣx Σy
(3)

where f0 (0.1MHz for SuperKEKB) is equal to the single bunch revolution

frequency, and Σi (i=x,y) are the convoluted beam sizes, corresponding to the

quadrature sum of the two beam sizes at the IP: Σ2
i = (σ∗

i,1)2 + (σ∗
i,2)2. It

is obtained from the regular formula of the luminosity dividing by the factor

NbN1N2, i.e., the number of bunches times the product of the numbers of

particles per bunch of the two beams. In this way, the specific luminosity is

independent from the beam currents and from the number of bunches present

in the rings. Figure 6 shows the specific luminosity as predicted by LR (a) and

NN (b). From the comparison, we see that while the LR model reproduces the

average value fairly well, it fails to predict the changes in specific luminosity at

the low and high end of the plot. On the other hand, the NN is able to better

predict and follow these changes. Simple geometrical considerations show that

in the SuperKEKB beam crossing situation the specific luminosity should closely

track the variable

σy,eff =
σ∗
y,1σ

∗
y,2

Σy
(4)

where σ∗
y,1 and σ∗

y,2 are the beam heights of the two beams at the IP and

Σy =
√

(σ∗
y,1)2 + (σ∗

y,2)2. In fact, SuperKEKB adopted the nano-beam scheme

with a large crossing angle (83 mrad), and in such configuration the luminosity

is approximately independent from the horizontal beam sizes. The tracking of

14



(a) (b)

Figure 6: (a) Specific Luminosity data and prediction with Linear Regression. (b) Specific

Luminosity data and prediction with Neural Network.

(a) (b)

Figure 7: (a) σy,eff data and prediction with Linear Regression. (b) σy,eff data and predic-

tion with Neural Network.

this variable by the NN network is excellent, as shown in Figure 7.

5.2. Vertical beam size

The beam size at SuperKEKB is measured by the X-ray monitor (XRM) [10].

The XRMs are installed in both the HER (e−) and LER (e+) rings, at 641.4

and 1397.7 meters respectively from the IP. Using the Twiss parameters at

their location, it is possible to obtain an estimate of the emittance, and through

the optical transfer matrices it is possible to estimate the beam size at the IP,

which is the quantity we are interested in. Figure 8 shows data and prediction of

SIGMAY at IP for the LER ring. In this case the predictive power of LR and NN

is similar, although we can appreciate how the NN is able to better reproduce
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(a) (b)

Figure 8: (a) SIGMAY at IP for the LER as predicted with Linear Regression. (b) SIGMAY

at IP for the LER as predicted with with Neural Network.

(a) (b)

Figure 9: (a) SIGMAY at IP for the HER as predicted with Linear Regression. (b) SIGMAY

at IP for the HER as predicted with a Neural Network.

the variation in beam size for the highest values. In the case of SIGMAY at IP

for the HER beam, we see a much better predictive power for the NN. Figure 9

shows that the NN prediction is much less noisy and the MAE is 6.6% for the

LR and 3.4% for the NN. Finally, we are interested in the LER/HER ratio on

SIGMA Y at IP. In fact, KEKB had a vertical beam size for the LER that was

consistently larger than the corresponding one for the HER. This corresponds

to one beam being unfocused, causing significant luminosity degradation, which

is an effect that we want to prevent at SuperKEKB. Figure 10 shows the ratio

sigmay LER/HER, showing as well that the NN model predicts the experimental

data much better than the LR, which is very noisy, with the MAE being 9.0%
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(a) (b)

Figure 10: (a) Ratio SIGMA Y LER/HER data and prediction with Linear Regression. (b)

Ratio SIGMA Y LER/HER data and prediction with Neural Network.

(a) (b)

Figure 11: (a) SIGMAX at IP for the LER as predicted with Linear Regression. (b) SIGMAX

at IP for the LER as predicted with with Neural Network.

for LR and 4.8% for the NN. We did not focus on the horizontal beam sizes

since they are very stable and of little interest with respect to SuperKEKB’s

luminosity, as discussed above in Section 5.1. However, for completeness the

plots related to horizontal beam widths and their ratio are shown in Figs. 11

to 13. The good accuracy in predicting the horizontal sizes and ratio is noted,

also with errors of order percent.

6. Discussion

In order to understand the results of this paper, it is worth summarizing what

a single side observation can and cannot do. The technique was first proposed
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(a) (b)

Figure 12: (a) SIGMAX at IP for the HER as predicted with Linear Regression. (b) SIGMAX

at IP for the HER as predicted with a Neural Network.

(a) (b)

Figure 13: (a) Ratio SIGMA X LER/HER data and prediction with Linear Regression. (b)

Ratio SIGMA X LER/HER data and prediction with Neural Network.
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as a two-side observation [9]. The two-side analysis would then be able to

reconstruct beam parameters. One of the main results of this paper is that single

side measurements have good sensitivity to all four parameters. A two-side

measurement next year will then be able to further reduce the error, while also

provide auxiliary measurements of the beam tails. With two side observation

the LABM beam parameters determination will become truly independent of

other sensors. In this paper we limit ourselves to correlating LABM parameters

with another, existing sensor.

The beams are very flat (meaning that σx � σy), and the NN did not

know our signal rate calculations with the parameters of Table 1. In such a

situation, the ratio of beam heights can and should be measured well, but there

is minimal sensitivity to each beam height. Nevertheless it is clear from Figs. 9

and 10 that the NN is able to predict well also the height of the electron beam

(and, having the ratio and one size, the other size is derived also, Fig. 8). This

necessarily entails the presence of another source of radiation which depends

on the radiating beam height, which we identify as the light emitted by the

vertical beam tails in the final quadrupoles. We can arrive at this conclusion by

exclusion (dipole sources do not depend on the beam height). It appears that

the NN is able to disentangle the beamstrahlung and quadrupole radiation, a

task that is currently beyond our abilities using standard analysis techniques.

The size of the electromagnetic fields of a beam scales like 1/σxσz for flat

beams. A positron beam with a smaller horizontal size will make the electron

beam radiate more, and vice versa. Therefore, without knowing the normaliza-

tion, only the ratio of the beams horizontal sizes should be available through

a beamstrahlung measurement. However, the same radiation from the final

quadrupoles is present and can be used by the NN to provide an independent

measurement. Note that the hypothesized quadrupole radiation is not necessar-

ily better or worse at measuring the horizontal size compared to the vertical size.

The horizontal size is much larger than the vertical size, leading to a larger av-

erage displacement of particles from the center of the quadrupole, and therefore

there will generally be more x-polarized radiation. However, the vacuum mir-
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rors are located vertically from the beam line axis, and particles bent vertically

will illuminate them at a smaller (or larger) angle compared to particles bent

horizontally. From the general observed rates (with ratios between x-polarized

and y-polarized radiation of order 2) it appears that this enhancement make the

two polarized observed rates comparable.

It is noted that the NN provided measurements of beam parameters at the

few percent level, which is crucial for the viability of the device as a beam

monitor. Table 2 summarizes the relative MAE on the LR and NN predictions

presented in the previous section, representing the main result of this work. We

Model LR NN

Lsp 4.2% 3.4%

σy,eff 3.7% 2.2%

σx,LER 1.0% 0.7%

σx,HER 1.0% 0.9%

σx,LER/σx,HER 1.4% 1.1%

σy,LER 4.5% 3.7%

σy,HER 6.6% 3.4%

σy,LER/σy,HER 9.0% 4.8%

Table 2: Summary of relative MAE for LR and NN models for the results presented in this

paper. The NN performs consistently better than the LR with errors at a few percent level.

also note that the main current NN limitation is just due to scarce statistics

at the edges of the measured distributions, i.e. in the regions of low or high

luminosity and low or high beam sizes. We stress that improvement is expected

over time, allowing for larger and lower values of the parameter space contained

in the measured data set to become more populated, therefore increasing the

performance of the NN training, and consequently the quality of the predictions

in those regions.
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7. Conclusion

This study had two main purposes: (1) to show that the LABM measure-

ments of beamstrahlung signal are of excellent quality and are correlated with

key beam parameters; (2) to show that machine learning, in this case in the form

of a Neural Network model, can be useful in modern particle accelerators with

extremely small beams and large sensitivities to beam parameters. In section 5

we showed that the NN model was excellent at predicting specific luminosity

and beam sizes for unseen data using as input only 16 of the 32 PMT values

from the LABM. The data was collected parasitically during a Physics Run,

and therefore large variation in the parameters is not to be expected. How-

ever, the NN model was especially good at reproducing the modest changes,

performing always better or much better compared to the LR model. The NN

models, one for each of the parameters reproduced, can in principle be deployed

online to provide an estimation for the given parameters by taking input from

the 16 PMT values. This could also be useful when one or more of the other

instruments are offline, as in this case the LABM can provide a temporary re-

placement value. The ability to predict specific luminosity and beam size from

the LABM measurements only was at the same time an independent validation

of the LABM quality itself. The next step for the LABM would be to introduce

functions of some or all of the 32 PMT values, based on theoretical ground

or machine learning techniques, to provide new and original information about

the beam parameters at the IP. Finally, this study shows that machine learning

techniques can be useful in modern accelerators. SuperKEKB’s instrumentation

provides hundreds of variables other than LABM’s that could in principle be

used in larger correlation studies, significantly increasing the predictive power.

This study has shown the application of machine learning techniques in the

effort of reproducing key beam parameters at SuperKEKB. The Neural Network

model used had a significantly larger predictive power compared to the classical

Linear Regression. The model used only the LABM measurements as input, and

was able to predict specific luminosity and vertical beam sizes. This constituted
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on one hand a validation of the LABM itself, and on the other hand a further

validation of machine learning techniques use in accelerator physics.
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