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We study probes of neutral triple gauge couplings (nTGCs) at the LHC and the proposed 100 TeV pp
colliders, and compare their sensitivity reaches with those of proposed e¢™ e~ colliders. The nTGCs provide
a unique window to the new physics beyond the Standard Model (SM) because they can arise from SM
effective field theory operators that respect the full electroweak gauge group SU(2); ® U(1)y of the SM
only at the level of dimension-8 or higher. We derive the neutral triple gauge vertices (n'TGVs) generated by
these dimension-8 operators in the broken phase and map them onto a newly generalized form factor
formulation, which takes into account only the residual U(1),,,, gauge symmetry. Using this mapping, we
derive new nontrivial relations between the form factors that guarantee a truly consistent form factor
formulation of the nTGVs and remove large unphysical energy-dependent terms. We then analyze the
sensitivity reaches of the LHC and future 100 TeV hadron colliders for probing the nTGCs via both the
dimension-8 nTGC operators and the corresponding nTGC form factors in the reaction pp(qg) — Zy with
Z — ¢+¢, vb. We compare their sensitivities with the existing LHC measurements of nTGCs and with
those of the high-energy eTe™ colliders. In general, we find that the prospective LHC sensitivities are
comparable to those of an e*e™ collider with center-of-mass energy < 1 TeV, whereas an e'e™ collider
with center-of-mass energy (3—5) TeV would have greater sensitivities, and a 100 TeV pp collider could

provide the most sensitive probes of the nTGCs.

DOI: 10.1103/PhysRevD.107.035005

I. INTRODUCTION

Neutral triple-gauge couplings (nTGCs) provide a
unique window for probing the new physics beyond the
Standard Model (SM). It is well known that they do not
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appear among the dimension-4 terms of the SM
Lagrangian, nor are they generated by dimension-6 terms
in its extension to the Standard Model Effective Field
Theory (SMEFT) [1]. Instead, the nTGCs first appear
through the gauge-invariant dimension-8 operators [2—0]
in the SMEFT. Hence any indication of a nonvanishing
nTGC would be direct prima facie evidence for new physics
beyond the SM, which is different in nature from anything
that might be first revealed by dimension-6 operators of
the SMEFT [7-9]. Moreover, searching for the effects of
interference between the other dimension-8 interactions and
the SM contributions to amplitudes must contend with
possible contributions that are quadratic in dimension-6
interactions, which is not an issue for the nTGCs.
Relatively few experimental probes of dimension-8
SMEFT interactions have been proposed in the literature.
One of them is the nTGCs mentioned above [2—-6], which
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first arise from the dimension-8 operators of the SMEFT
and have no counterpart in the SM Lagrangian of
dimension-4 or in the dimension-6 SMEFT interactions.
Recent works have studied how the nTGCs can be probed
by measuring Zy production at high-energy e e~ colliders
[5,6,10] and pp colliders [11] under planning. Other
examples include light-by-light scattering [12], which
has been measured at the LHC and could also be interesting
for high-energy e*e™ colliders [13], and the processes
gluon + gluon — y +y [14] and gluon + gluon —» Z 4y
[15], which have been probed at the LHC. There are also
recent studies on the dimension-8 operators induced by
toplike heavy vector quarks and the their probes via fth
production at hadron colliders [16], and on the dimension-8
operators induced by the heavy Higgs doublet of the two-
Higgs-doublet model [17].

In this work, we present a systematic study of the
sensitivity reaches of probing the dimension-8 nTGC
interactions by measuring Zy production at the LHC
(13 TeV) and the pp(100 TeV) colliders. The nTGCs
are coupling coefficients of the neutral triple gauge vertices
(nTGVs), which are often parametrized in terms of effective
form factors that respect only the residual U(1),,, gauge
symmetry of the electromagnetism. This is in contrast with
the dimension-8 nTGC operators of the SMEFT, which
respect the full electroweak gauge group SU(2); ® U(1)y
of the SM. We derive the nTGVs from these dimension-8
operators in the broken phase and map them onto a newly
generalized form factor formulation of the nTGVs. Using
this mapping, we derive new nontrivial relations among the
form factor parameters that ensure a truly consistent form
factor formulation of the nTGVs and remove unphysically
large energy-dependent terms. Using these, we analyze
systematically the sensitivity reaches of the LHC and future
hadron colliders for nTGC couplings via both the dimen-
sion-8 nTGC operators and the corresponding nTGC form
factors. We also make a direct comparison of our LHC
analysis with the existing LHC measurements of nTGCs in
the reaction pp(qq) — Zy with Z — vo by the CMS [18]
and ATLAS [19] Collaborations based on the conventional
nTGC form factor formulation that takes into account only
the unbroken U(1),,, gauge symmetry [3,4]. From this
comparison, we demonstrate the importance of using our
proposed SMEFT form factor approach to analyze nTGC
constraints at the LHC and future high-energy colliders.

The outline of this paper is as follows. In Sec. II we
review the parametrization of nTGCs and derive the cross
sections for the reaction ¢ — Zy (followed by Z — ff
decays) as induced by the nTGCs. We also analyze the
perturbative unitarity bounds on the nTGCs, showing that
they are much weaker than the collider limits we present in
Secs. IV=V. Then, in Sec. III we present a newly gener-
alized form factor formulation of the nTGCs and demon-
strate that the full spontaneously broken electroweak gauge
symmetry SU(2); ® U(1)y of the SM leads to important
restrictions on the nTGC form factors. As noted above,
the full electroweak gauge symmetry is respected by the

construction of the SMEFT, where the nTGCs appear first
through dimension-8 operators. Using this formulation, we
study in Sec. IV the sensitivities of the LHC and future
pp(100 TeV) colliders for probes of the nTGCs in the
reaction pp(qg — Zy) with Z — £, vb. We make a direct
comparison of the sensitivity bounds using our SMEFT
formulation of nTGCs with the existing LHC measure-
ments on the nTGCs. In Sec. V, we further present a
systematic comparison with the sensitivity reaches of the
prospective high-energy e*e™ colliders. Finally, we sum-
marize our findings and conclusions in Sec. VI.

II. SCATTERING AMPLITUDES AND CROSS
SECTIONS FOR nTGCs

In this section, we first set up the notations and present
the dimension-8 operators for the neutral triple gauge
couplings (nTGCs) and the corresponding neutral triple
gauge vertices (nNTGVs). Then, we derive the nTGC
contributions to the Zy amplitudes and cross sections.
Finally, we derive the perturbative unitarity constraints on
the nTGC couplings.

A. nTGCs from the dimension-8 operators

In previous works [5,6] we studied the dimension-8
operators that generate nTGCs and for their contributions
to helicity amplitudes and cross sections at e ™ e~ colliders. In
particular, we identified a new set of CP-conserving pure
gauge operators of dimension-8 for the n'TGCs, one of which
(Og.) can give leading contributions to the neutral triple
gauge boson vertices ZyZ* and Zyy* with enhanced energy
dependences « E?. In this subsection, we recast them for our
applications to the LHC and future high-energy p p colliders.

The general dimension-8§ SMEFT Lagrangian takes the
following form:

) i sign(¢;) 1
AL(dim=8) =) £ 0; =3 A;!’ Oj:Z@Oj,
J J J

(2.1)

where the dimensionless coefficients ¢; are expected to be
around O(1) and may take either sign, sign(¢;) = +.
For each dimension-8 operator O;, we have defined in
Eq. (2.1) the corresponding effective cutoff scale for new
physics, A; =A/ |&;|'/4. We also introduced a notation
[AY] = sign(¢;)A].

We have analyzed the following set of dimension-8
operators [5] that are relevant for our nTGC analysis:

il

90¢,. = B,,W*(D,D,W** + D*D*W$), (2.2a)
906 = B, W (D,D,W** — DD*W¢,), (2.2b)
Opy =iH'B,W*{D,.D'}H + H.c., (2.2¢)
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Ocy = B, WD, T ry.) + D*WrT7w.)l.
(2.2d)
OC— = Buvwaﬂﬂ [D/J(WTayyl//L) - DU(WTLJ},/)WL)]'
(2.2e)
The fermionic operators O, and O,_ do not contribute
directly to the nTGC couplings, but are connected to the

three bosonic nTGC operators (Og,, Og_, Opy) by the
equation of motion [5]:

Oc: = Og_ = Opy. (2.3a)
Oc- = Og, — {iH'B,,W*[D,, D'|H
+i2(D,H)'B,,W*D"H + H.c.}. (2.3b)

They both contribute to the quartic f fZy vertex and thus to
the on-shell amplitude 7 [ff — Zy]. Hence they can be
probed by the reaction ff — Zy. However, we note that the
operators Og, and O¢_ give exactly the same contribution
to the on-shell amplitude 7| ff— Zy] at tree level [5],
because Eq. (2.3b) shows that the difference (O-_ — Og..)
is given by the Higgs-doublet-related term on the right-hand
side which contains at least 4 gauge fields and is thus
irrelevant for the amplitude 7 [ff — Zy] at the tree level.

We consider first the dimension-8 nTGC operators Og_.,
Opw and Og_. These operators contribute to the ZyZ* and
Zyy* vertices as follows:

_v(g3 —M3)
My[AG,]

X (392,64 24343,G2,6"°),

FZ%*(GJF)(%, q2, C]S) =

2
S /Uq_n,

T (@1, g2, q3) = —— 23—

Zyr*(G+) cwMy [/\é+]

X (G2, + 245q3,42,6"7).

(2.4b)
Faﬂﬂ o /UMZ(qg _ M%) afuv 2.4
ZYZ*(BW)(‘IIv‘h’ 43) = Tgw]e G (2:4¢)
SwovMz
Ty (@1 42.43) = = A< (249)

We consider next the fermion-bilinear operator O¢ ,

which contributes to the effective contact vertex ggZy as
follows:

.. 2M3T,
Fzgzy(cﬂ(%, q2) = —sign(Zc) AZ4

€aﬂ”yQ2y7ﬂva
(2.5)

where the four external fields are on shell. In the above
formula, we have introduced the third component of the
weak isospin T3 = = § and the chirality projections Py ) =

1 F7s).

B. nTGC contributions to Zy amplitude
and cross section

Next, we study the helicity amplitude for the quark and
antiquark annihilation process qg — Zy, where the quark
has weak isospin 75 and electric charge Q. We can compute
the SM contributions to the helicity amplitude of gg —

(242)  Z(2)y(2) as follows:
|
JssT < - -+ ) - —2¢20 ( (¢} cotg — Clp tan g)M% (¢} cotg + i tan g)s > (2.6)
sm — < s .
+— ++ swew(s = M3Z) \ (¢ tang — ¢ cotd)s (—cp tand + cgcot§) M2

“2\/32Q(; + cp)Mzy/5

T3 (0-.0+) =
( ) swew(s — M%)

(1,-1), (2.6b)

for the helicity combinations A4’ = (——, —+, +—, ++) and 42’ = (0—, 0+). In the above, we have defined the coupling
coefficients (c}.,ck) = ((T5 — Qs%v)éx._% ., —Qs,6,1) with the notations (sy. cy) = (sin 6y, cos@y) and the subscript

2

index s = F % denoting the initial-state fermion helicities. If the initial-state quark and antiquark masses are negligible, the

relation s = —s’ holds.

We find the following contributions to the corresponding helicity amplitudes from the dimension-8 operator O (O¢_):

/]' S,

(

o [AG:]

, V2M 4 (s — M%)\/s
ss’ L . VA VA
T(s),0+(0_’ 0+) = AL,

F— bt

s, T (“ _+) B (C’L—l-C}e)(s—M%)ssinH(l 1 >
8) s

0 0 0 0
I ain2 o2 ol qin2 ! cos2
(cLsm 5 CROOST 5, Cpsin” 5 —cjcos” 5 |,

0 1 (2.7a)

(2.7b)

2 2
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where the coupling coefficients are given by (¢}, ck) =
—T5(J,.-1.0), and we have used the notations AL] =

sign(Zg, )AL, for Og.,. We note that in Eq. (2.7a) the off-
diagonal amplitudes vanish exactly. This is because the
final state Z(1)y(4') with helicities 44’ = +—, —+ should
have their spin angular momenta pointing to the same
direction in their center-of-mass frame and thus the sum of
their spin momenta would have magnitude equal 2. But this
is disallowed by the s-channel spin-1 gauge boson Z* or y*.
For the same reason, the off-diagonal amplitudes contrib-
uted by the other dimension-8 operators in the following
Eq. (2.8a) have to vanish as well.

As for the other three dimension-8 operators
(Og_, Oy, Oc,), we derive their contributions to the
helicity amplitudes of the reaction gg — Zy as follows:

1 —— —T :(c’L+c§e)sin9M%(s—M§)
B\ +— 4+ [A]

< - >

X 9,

0 -1
ss' L

T g, (0-.0+)

_ V2My(s = M3)\/5
N [A]]

(2.8a)

0 0 0 0
x <c’Lsin2 o cheos? 3 chsin? 3~ ¢y cos? 5) , (2.8b)

where [AY] =sign(¢;)A? and j € (G_.BW.C,). In
Eq. (2.8), the coupling factors (¢}, c%) are given by

(choch) = Qs (6, 1.6,)).  (for Og_).  (2.9)
(choch) = (aub, y.qrd,y).  (for Opy).  (2.9b)
(choch) = =T33, 1.0} (for Oc.).  (2.9¢)

and the coefficients (g;,qz) = (T3 — Os%, —Qs%,) arise
from Z gauge boson couplings with the (left, right)-handed
the quarks.

The kinematics for the complete annihilation process
qq — Zy — ffy are defined by the three angles (0,6, ¢.),
where 6 is the polar scattering angle between the direction
of the outgoing Z and the initial state quark g, 8, denotes
the angle between the direction opposite to the final-state y
and the final-state fermion f direction in the Z rest frame,
and ¢, is the angle between the scattering plane and
the decay plane of Z in the gg center-of-mass frame
[cf. Eq. (4.8)]. We note that, at a pp collider, we cannot
determine which is the initial state quark (antiquark) in each
collision, so we could only determine the scattering angle
up to an ambiguity 0 <> 7z — 0. It follows that the deter-
mination of the angle between the scattering plane and
Z-decay plane also has an ambiguity ¢, <> 7 — ¢..

Taking these remarks into account, we can express the
full amplitude of the reaction process gg — Zy — ffy in
the following form:

T5,,(fFr)
M,D . o 0
_eMzlz [ﬁe“’” (f?ecosz — — f7sin? —*) TT,(4+4)
SWCW 2 2 AN
—ig ) 9* 2 6* T
+ V2e - ( fosin o —fieos T3y (=4)

+ (fg + f7)sin0,TL, (oz)], (2.10)

where D, = 1/(q} — M% +iM,T";) comes from the Z
propagator. In Eq. (2.10), the final-state fermions have
the electroweak gauge couplings given by (f97,f%) =
((T3 — Qs3)8, 1. —0siy8,1), and the scattering ampli-
tudes 77, (44) and T%,(04) represent the on-shell helicity
amplitudes for the reaction gg — Zy:

TT(+2) = T8 (+4) + T (+4),

TL,(0) = T4 (04) + T 3" (04), (2.11)
which receive contributions from both the SM and the
dimension-8 operator.

Applying a lower angular cut sin@ > sind for some
0 < 1, we derive the following total cross section for the
partonic process gqq — Zy, including both the linear and
quadratic contributions of Og, and summing over the
final-state Z and y polarizations:

e*(q7 + q3) Q%= (s — M%)* —2(s* + M%) Insin]]
8753, cy (s — M%)s?

i eq 0TsM3(s=M3) 1

o(Zy) =

drsycws (AL
T3(s+M3)(s—M3)* 1
0(9), 2.12
4813 Ay, TO©. @12

where the weak isospin T3 = i—% is associated with the
W3 gauge coupling, and the coefficients (q;,qr) =
(T3 — Os¥,,—0s%,) are the (left, right)-handed gauge
couplings of the quarks to the Z boson. In Eq. (2.12),
\/s denotes the center-of-mass energy of the partonic
process qq — Zy, but for the pp collider analyses in
Sec. IV we will rename the above partonic center-of-mass
energy as \/3 for clarity.

We define the normalized angular distribution functions
as follows:

1 do;
J

fl=

035005-4
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where the angles & € (6.0, ¢,), and the cross sections o; (j = 0, 1, 2) represent the SM contribution (o), the O(A™)

contribution (o), and the O(A~
normalized azimuthal angular distribution functions f{p*:

fg _ i_'_ 3”2(‘1% - ‘ﬁ?)(fL

fR)MZ\/_(S + Mz) cos ¢* - S(QL + ‘IR)(fL +fR)M%S cos 29,

8) contribution (c,), respectively. In the following, we derive the explicit formulas for the

= + 0(9), 2.14a
© 2z 167(q7 + q%)(f7 + f2)[(s = M%)? + 2(s* + M%) Insin ] (¥) ( )
. 1 3z(f2 — f2)(M% + 5s)cosp,  scos2g,
fo. =5~ ) 5 (2.14b)
2m 256(f7 + fr)Mzy/s 8aM?,
1 92(f? — f32)M,\/s cos ¢,
fi:__ ( L 5 R)ZZ\/_ 5 , (2140)
2r 128(f7 + fr)(s + M7)
|
where we denote the Z couplings with the initial state quarks  (x,, xz) = —Qs%(1, 1), (for O; = Og-), (2.16a)

as(q.,qg) = (T3 — Qs?,,—0s3,), and the Z couplings with
the final-state fermions as (f;, fz) = (T3 — Os¥,), —0s%).

In the cases of the other n'TGC operators O;, we further
derive their contributions to the total cross sections of the
reaction gg — Zy as follows:

2y € R s=MEP 205"+t nsin
8rsty (s — M%)s?
_€0(qx, — qrxr)Mz(s = M) (s +M7) 1
8zsycws® [AY]
+ (xf +xz)M7 Elsgjr'st)(s -M3)’ 1 A8 +0(9),
(2.15)

where we define the relevant coupling coefficients (x; , xz) as
|

(xp, xg) = (T3 = Qsjy, —QOsiy), (for O; = Ogy),
(2.16b)
(.xL,.xR) == —(T3,0), (fOI‘ Oj == Oc+). (2160)

We see that in the high energy limit, the contributions of the
SM, the interference term, and the squared term behave as
(571,59, 5%) respectively. We can compare the above cross
section with that of Eq. (2.12) for the nTGC operator O,
where the SM term, the interference term, and the squared term
scale as (s7!, 5%, s), respectively. This shows that the con-
tribution of O, to the squared term has higher energy power
enhancement of s* than the factor s> of the other operators.

Then, for the full process gg — Zy — ffy, we further
derive the following normalized angular distribution func-

tions f{];* for the operators (Og_, Oy, Oc.):

1 322f2¢*M M3 M%s cos?2
fg _ T f q- 2Z\ég(s + g)QCOS(ﬁ* f—&-f-k Z.S(;OS ¢* + 0(5)’ (2178.)
© 2n 1612 ¢% [(s — M%)* 4 2(s* + M%) Insin 3]
flo— 1 9m(quxp + qrxr)(f7 — fR)VScos¢.  scos2q. (2.17b)
72 128(qx;, — qrxe) (f7 + f2)Mz An(s +M3)’
f3, = L 9nbL =X (i~ f)Mzy/scos (2,170

T2 128(x2 +x3) (2 + ) (s + MB)

where we have defined the coefficients (f2,q%)=
(f2 £ 1%,q2 £4¢%), and the electroweak gauge couplings
of the final state fermions are given by (f;,fr)=

((T5=Qs3y). —Qsiy)-

C. Analysis of unitarity constraints on nTGCs

In this subsection, we analyze the perturbative unitarity
constraints on the nTGCs, showing that these constraints

|
are much weaker than the sensitivity reaches of the collider
probes presented in the following Secs. III-V.

We first make the following partial-wave expansion [20]
of the nTGC contributions to the scattering amplitude for
the reaction ff — Zy:

1 ey 1 S¢S7,A7
a; = —e'l —l/)lﬁ/ d(cos0)d’, (cos Q)TnfTéé i (2.18)
32 —1
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where the differences of initial/final state helicities are
given by v=s;—s;==+1 and V=12-4,=0%£l1,
respectively. We note that for the present collider analysis
it is sufficient to treat the initial-state fermions (f, f) (light
quarks or leptons) as massless. Thus we have s, = —s7,
which leads to v = +1. Hence the J =1 partial wave
makes the leading contribution. The relevant Wigner d
functions are given by

1

1
di,= —\/—Esine, di :5(1 +cosh), (2.19)
and we have a general relation dJ o = =d —

In the case of the dimension-8 operator (“)G+ (or Oc_), its
leading contribution to the amplitude 7" n{F(éCZ ’ is given by
Eq. (2.7), as follows:

5p57.T (¢} + ci)s?sin@
T o (FF) =4, (220)

AG]

where \/s = E_, stands forthe c.m. energy of ff. As for the

other three dimension-8 operators O; € (Og_, Oy, Oc.),

. : S . syAzh,
their leading contributions to the amplitude 7" ;fTYéCZ " are

given by Eq. (2.8b), as follows:
Sr87 \/_MZS3/2 . 0 0
T ! Y (0 ,04+) = Tﬂ (C’Lsm2 3~ cheos? 3

5 (2.21)

0 0
closin® 3~ ¢ cos? —) ,
where the coupling factors (¢}, c) are defined in Eq. (2.9).
Then, we derive the leading p-wave amplitude a, for the
nTGC operator O, :

S2

Re(alh)| = ————.
Phe(af )] = o

(2.22)

For the other nTGC operators O; € (Og_, Opy, Oc. ), we
derive their leading p-wave amplitudes as follows:

/ 3/2
cL’RMZs/

Ne(a])| = =22
re(e))] = e

(2.23)

Next, we impose the partial-wave unitarity condition
|Re(ay)| <4 for J =1, and derive the following unitarity
bounds on the new physics cutoff scales (A, A;) of the
nTGC operators Og and O; € (Og_, Oy, Oc ), respec-
tively,

G
(24f )

A; > <é%j>i(\[>%zozo3 (€} o)t <Tevf)

Ag, > 70311V, (2.24a)

(2.24b)

where /s = E_, denotes the center-of-mass energy of ff.
In the cases of the nTGC form factors (hy, h%,h%)
defined in Eq. (3.5) of Sec. III, they are connected to the
cutoff scales of (Og,, Opyw, Og_) via (|hyl, |h%, |H]) =
(ra/ A, 3/ABW, 5/ Ag_), as given by Eq. (3.6).
Thus, using Eq. (2.24) we further derive the following
unitarity bounds on the nTGC form factors:

| <

24/ 2mv* M3 0.597 TeV\4
V2 Zz( ¢ ) , (2.25a)

? Vs

SwCwsS

Aj (TeV)

107}

0.25 0.5 1 2
Ecy (TeV)

FIG. 1.

3 456 810 20 30

0.25 0.5 1 2
Ecy (TeV)

3 456 810 20 30

Unitarity bounds on new physics cutoff scales for the n”TGC operators (Og.., Opy, Og-, Oc,) in plot (a) and for the nTGC

form factors (|hy|, |h%|, |h}|) in plot (b). These bounds are derived from the p-wave amplitudes of the reaction ff — Zy, where

ff = qg.,ete” with g being the light quarks.
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TABLE L.

Unitarity bounds on the new physics scale A; of the dimension-8 nTGC operators and on the nTGC

form factors h}/, as derived for various sample values of the center-of-mass energy E. ,, of the reaction gg — Zy or
e~et — Zy that are relevant to the present collider study.

E... (TeV) 0.25 0.5 1 3 5 25 40
Ag. (TeV) 0.078 0.16 0.31 0.93 1.6 7.8 12
Agy (TeV) 0.058 0.098 0.16 0.37 0.55 1.8 2.6
Ag. (TeV) 0.050 0.084 0.14 0.32 0.47 1.6 22
Acy (TeV) 0.060 0.10 0.17 0.39 0.57 1.9 2.7
| 33 2.0 0.13 0.0016 2.0 x 107 33x 1077 501078
|| 53 6.6 0.83 0.031 6.6 x 1073 53 % 107 1.3x 107
|| 53 6.6 0.83 0.031 6.6 x 1073 53 % 107 13x 107

v 6V2xFy My 03507 (TeV)3
|nY| < = L ., (2.25b)
Swewl g \/s— L.R \/E

where we have used the expressions in Eq. (3.7b) for
the coefficients (ry, ry) and have defined 7y € (75, 7) =
(L sw/cw).

Using formulas (2.24) and (2.25) for the unitarity
bounds, we present their values in Table I for various
sample values of the c.m. energies E., = (0.25,0.5,1,
3,5,25) TeV, of the reactions ¢g — Zy and e"e™ — Zy
that are relevant to the present collider study. Then, in Fig. 1
we present the unitarity bounds on the nTGC operators and
nTGC form factors as functions of the center-of-mass
energy E,,, = (0.25-30) TeV for the reaction ff — Zy,
where ff = qg.ete™ and g denotes the light quarks. We
plot the unitarity bounds on the new physics cutoff scales of
the nTGC operators (Og., Oy, O, Oc.) in plot (a),
whereas in plot (b) we impose the unitarity bounds on the
nTGC form factors (|hy|, |h%|, |H}|), as derived from the p-
wave amplitudes. Finally, by comparing the unitarity
bounds of Table I and Fig. 1 with our collider bounds
summarized in Tables IX—X and in Figs. 10-11 of Sec. V,
we find that these perturbative unitarity bounds are much
weaker than our collider bounds. Hence, they do not affect
our collider analyses in the following Secs. IV-V.

III. FORM FACTOR FORMULATION FOR nTGCs

We study in this section the form factor formulation of
the neutral triple gauge vertices (nTGVs) ZyV*. After
imposing Lorentz invariance, the residual electromagnetic
U(1),, gauge symmetry and CP conservation, they are
conventionally expressed in the following form [3,4]:

2

e(q3 — My)
F%[;I\J/ (91.92.93) = % Ry qu e
z

(3.1)

14
+h—4q“q3 Qs |,
M% 2 v o

where the gauge bosons are denoted by V = Z, y and the
form factor parameters (hy,h)) are treated as constant
coefficients for the purposes of experimental tests [18].!

We stress that the spontaneous breaking of the SM
electroweak gauge symmetry requires the nTGCs to be
generated only by the gauge-invariant effective operators of
dimension-8 or higher. This implies that the consistent form
factor formulation of the neutral triple gauge vertices must
map precisely the expressions for these gauge-invariant
nTGC operators in the broken phase. This precise mapping
between the nTGVs in the broken phase of these dimen-
sion-8 nTGC operators (2.2) imposes nontrivial relations
between the parameters of the nTGVs in the form factor
formulation and removes possible unphysical energy-
dependent terms in them.”

By direct power counting, we find that the dimension-8
operator O, contributes to the nTGVs with a leading E>
energy dependence. Based on this and the above observa-
tions, we find that the conventional form factor formula (3.1)
is not compatible with the gauge-invariant SMEFT formu-
lation, and a new term must be added, labeled by hg in the
following. With these remarks in mind, we express the
neutral triple gauge vertices ZyV* as follows:

2_ M) 2
l—‘aﬁﬂ(*S) . _ e(qS V ho Ry 3 afuv
ZyV (9192 q3) M% 3 T Ng M% q2,€

|4

h
+ _4261(21431,61206/}””6] )

e (3.2)

'44q3,q2,€" is equivalent to g%qs,qr,€*? under the on-
Sh6211 condition (g5 + ¢%)e;, = —qfe; = 0.

The spontaneous breaking of the SM electroweak gauge
symmetry has many important physical consequences that, most
notably, guarantee the renormalizability [21] of the SM electro-
weak gauge theory. Here our new observation is that the
spontaneous breaking of the electroweak gauge symmetry re-
quires nontrivial extension of the conventional form factor
parametrization and imposes new restrictions on these form
factors that go beyond the residual U(1),, gauge symmetry
alone. These considerations were not incorporated in the conven-
tional form factor formulation of the nTGVs [3,4].
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where the form factors h) are taken as constants in the
present study. The parametrization of the nTGVs in Eq. (3.2)
corresponds to the following effective Lagrangian:

e
hg 2 h? 2 7
+-—2(070,F"°) +—=(0 a,,Z/”’)} Z°F ,,
M} M !

A h? N
+ { 4O P + (O +M2)0"ZP"‘]}Z,,F a] ,
2M2 2M2 z ’

(3.3)

which differs from the conventional nTGV form factor
Lagrangian [2] by the new h;’ terms.

We now compare our modified nTGV formula (3.2) with
the n'TGVs in Egs. (2.4a)—(2.4d) as predicted by the gauge-
invariant dimension-8 nTGC operators (Og.,, Og_, Opw)
in Egs. (2.2a)—(2.4d), which should match exactly case by
case. In the case of the operator O, this matching leads to
the following two restrictions on the form factors in
Eq. (3.2):

hY = 2hY . (3.42)
W= pr, (3.4b)
Sw

where henceforth we denote hy = h% for convenience.
These conditions demonstrate that there are only three
independent form-factor parameters (h%, h}, hy). Applying
the condition (3.4a), we can express the ZyV* vertex (3.2)
as follows:

2 2 1%
apu(8) e(qs —My) v, hi 5

00 (q1.62093) = ——=—5—= | | hY + =543 | qo, €™
av M 2M% Y

+ L eﬁﬂ"f} (3.5)
M% 9293926 . .
Comparing the nTGVs (2.4) predicted by the dimension-8
operators (2.2a)—(2.2c) with the form factor formulation
(3.5) of the nTGVs, we can connect the three independent
form-factor parameters (h{ %, hy) to the cutoff scales
(AG4s Mg, Apy) of the corresponding dimension-8 oper-

ators (Og, Og_, Oy ). as follows:

: ~ 27012
sign(¢g, ) v°M r
hy =— A<4 6+) UMy _ A44 . hY=0, for Og,.
G+ Swlw [ G+]
(3.6a)
: = 2M2 rZ
e =S8 Cw) My _ T 0, for Oy

A%W 2SWCW o [A%W]

(3.6b)

sign(¢g_) v*M% 1}
Ao 2¢f NG

h = h%,hy =0, for Og_,
(3.6¢c)

where the form factor £, is defined below Eq. (3.4) and we
have used the notations

[AG,] = sign(Cgy)AG, [A‘};w] = Sign<5BW)A4BW’
[AG-] = sign(Cg-)Ag_. (3.7a)
2M3 202 2 112
rg=———Z, g—_ T2 g L7200 (37p)
SwCw 7 2sycey 2c,

From the above, we see that only the operator Og. can
directly contribute to the form factor A}, as in Eq. (3.6a),
which can be understood from the explicit formulas (2.4a).
We note that the operator Oy, contains Higgs-doublet
fields and thus cannot contribute to the hX term in Eq. (3.5),
but Oy, can contribute to the 4% term through the ZyZ*
vertex and leaves hg =0, as shown in Eq. (3.6b). The
operator Og_ also cannot contribute to A} due to the
equation of motion (2.3a), Og_ = Oy + O¢,, where
Oc¢, contains a bilinear fermion factor and cannot con-
tribute directly to the nTGC. The fact that Os_ is irrelevant
to A1) is also shown explicitly in Eq. (2.4d). The explicit
formula (2.4d) further shows that O;_ makes a nonzero
contribution to hg, but leaves h§ =0, as we find in
Eq. (3.6¢c) above.

Using Egs. (3.2) or (3.5) and by direct power counting,
we infer the following leading energy dependences of the
hY contributions to the helicity amplitudes 7 [ff — Zy]:

Ty" = WY O(E?) + hY O(EY), (3.8a)

T = W O(E®) + h{O(E®) + h{O(E®).  (3.8b)

We note in Eq. (3.8a) that the form factor hX does not
contribute to the production of a transversely polarized Z
boson in the final state, because the s-channel momentum
g5 has no spatial component and the Z boson’s transverse
polarization vector €7, has no time component, and thus
q5€7q = 0.

Inspecting Eq. (3.8), it would appear that the leading
energy-dependence of 7' Eg;L should be O(E?). However,

we observe that the helicity amplitudes including a
final-state longitudinal Z boson as contributed by the
gauge-invariant dimension-8 nTGC operators must obey
the equivalence theorem (ET) [22]. At high energies
E > M, the ET takes the following form:

T )l Zr.vr] = T(5)[-in".y7] + B, (3.9)
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where the longitudinal gauge boson Z; absorbs the would-
be Goldstone boson z° through the Higgs mechanism, and
the residual term B = 7 (4)[v"Z,, 77| is suppressed by the
relation v =€} — ¢, /M, = O(Mz/E;) [22]. However,
we cannot apply the ET (3.9) directly to the form factor
formulation (3.2), because it does not respect the full
electroweak gauge symmetry of the SM and contains no
would-be Goldstone boson. We stress again that the
electroweak gauge-invariant formulation of the nTGCs
can be derived only from the dimension-8 operators as
in Eq. (2.2). Hence, we study the allowed leading energy-
dependences of the helicity amplitudes (3.8) by applying
the ET to the contributions of the dimension-8 nTGC
operators (2.2). Then we find that only the operator Oy,
could give a nonzero contribution to the Goldstone ampli-
tude T g [<iz%, y7], with a leading energy dependence
O(E?) that corresponds to the form factor h%. The operator
Og, does not contribute to the Goldstone amplitude
T (8)[—iz",y7], but can contribute the largest residual term
B = O(E?®). From these facts, we deduce that in Eq. (3.8b)
the O(E?) terms due to the form factors Aj and hY must
exactly cancel each other, from which we derive the
following condition,

hy/hY =2, (3.10)
which agrees with Eq. (3.4a). Then, using our improved
form factor formulation (3.5) of the nTGCs, we can
compute the corresponding helicity amplitudes of ff —
Zy from the nTGC contributions:

o[- —+
Tir L— ++]
(¢} + c)e*(2hYM% + hYs)(s —M%)sin0 [1 O
B {0 —1}’
(3.11a)

)
4MZCWSW

T 55(0-.0+)
VAR (s = M)

3
4MZCWSW

(2hY + hY)

x (chinzg — cheos? g , cpsin? g —c)cos? z) , (3.11b)
where the coupling coefficients are defined as (c%, c%) =
(T3 — Qs?,—0s3%,) for V.= Z and ¢} = ¢4 = Qcysy for
V = y. On the right-hand side of the above formulas, the
subscript “F” indicates contributions given by the form
factors. From the above, we see that the helicity amplitude

T fg;T for the transverse Z; final state contains the O(E?)
contribution from the form factor A} and the leading
contribution of O(E*) from the form factor hY, while

the helicity amplitude 7 Eg;L for the longitudinal Z; final

state has a leading contribution of O(E?) from the form
factor combination (24} + h)).

We note that the operators O¢, and Oc_ both contain
only left-handed fermions, and recall that the operators
Og.. and Oc_ give the same contributions to the amplitude
T[ff — Zy], due to the equation of motion (2.3b). Thus,
we find that the ratio h%/h! must be fixed to cancel
their contributions to the amplitude 7 [ff — Z* — Zy] +
Tff =y — Zy] via right-handed fermions [5]. This
imposes the following condition on the two form factors
(R, 1y):

‘w W

hy = h? = (3.12)

Sw

for the O, operator. This condition agrees with Eq. (3.4b),
which we derived earlier by matching the prediction of
the operator Og_. with the nTGV formulation (3.2). Hence,
using the gauge-invariant dimension-8 nTGC operators to
derive the form factor formulation (3.2), we deduce that
there are only three independent form-factor parameters
(h%, %, hy), where hy = h% and h), are connected by the
condition (3.12).

The fermionic dimension-8 operators Oc, and O_
contribute to the quartic vertex ffZy, but do not contribute
directly to the nTGC vertex ZyV* in Eq. (3.5). We can
factorize their contribution to the on-shell quartic vertex
ffZy as follows:

- M)

re, (a1 ) ZF (FFV)PL x (43

XF%/}/IC/*(ql’q27 ‘I3)» (313)

which includes effectively an nTGC vertex 'Y sy~ This

effective nTGC vertex function Fzﬂ v+ contains the form
factor parameters (h%, h}) for the operator Oc,. Since O,
involves purely left-handed fermions, we find that the ratio
hg / hg must be fixed, so as to cancel its contributions to
the amplitude T[ff — Z* = Zy| + T[ff = v* = Zy] via
right-handed fermions. This imposes the following con-
dition between form factors (h%, if):

hy = h3

hg, for O¢,. (3.14)
W

N

We note that the above relation holds only for the fermionic
operator Oc,. For the other fermionic operator Oc_, its

contribution to the effective nTGC vertex function FZﬁ v+ in
Eq. (3.13) contains the same form factors (h%, h}}) as that of
the operator O, because the equation of motion guar-
antees [5] that both of the operators Og_. and O_ give the
same contributions to the on-shell quartic vertex ffZy.

035005-9



JOHN ELLIS, HONG-JIAN HE, and RUI-QING XIAO

PHYS. REV. D 107, 035005 (2023)

Thus, the form factors (h%, h}}) of the effective nTGC vertex

function F%’\‘/ of the left-handed fermionic operator Oc_

obey the same cancellation condition Eq. (3.4b).

IV. PROBING nTGCs AT THE LHC
AND FUTURE pp COLLIDERS

In this section we will analyze the sensitivity reaches on
probing the nTGCs at the LHC and future pp colliders via
the reactions pp(qq) —» Zy with Z — £7¢~,vb. In Sec. IV
A, we give the setup for the analyses. In Secs. IV B-1V C,
we present the analyses of nTGCs at O(A™*) and O(A™?),
respectively. In the analysis of Sec. IV D, we further include
the decay channel of Z — vo. Then, we study the probes of
the nTGV form factor in Sec. IV E, and the correlations
between the nTGC sensitivities in Sec. IV F. Finally, we
compare in Sec. IV G our predicted LHC sensitivity reaches
on the nTGCs with the published LHC experimental limits
by both the ATLAS and CMS Collaborations.

A. Setup for the analyses at hadron colliders

The distributions of quark and antiquark momenta in
protons are given by parton distribution functions (PDFs).
At leading order, the total cross section of pp — Zy at the
LHC is calculated by integrating the convolved product of
the quark and antiquark PDFs and the parton-level cross
section of the gg — Zy subprocess:

o= Z/dxldxz[Fq/p<xla/’t)f(_]/p(x27/’l)0qq(§)
9.9

+ (g < ). (4.1)

where the functions ¥/, and F;,, are the PDFs of the
quark and antiquark in the proton beams, and § = x;x,s
with the collider energy /s = 13 TeV. The PDFs depend
on the factorization scale x, which is set to be 4 = v/5/2 in
our leading-order analysis. We use the PDFs of the quarks
q =u, d, s, ¢, b and their antiquarks determined by the
CTEQ Collaboration [23].

During LHC Run-2 the ATLAS measurements of the
£t¢~y and Duy final states reached a maximum value of
Myp, ~3 TeV.> Accordingly, we set § <3 TeV for our
LHC analysis and use an upper limit § < 23 TeV for the
100 TeV pp collider.

We compute the production cross section of gg — Zy at
leading order (LO) in QCD and O(a?) for the SM, and
O(a'2;) or O(ac7) for the nTGCs, where a = agy, Or
as the possible high-order contributions are not important
for our study. There are next-to-leading-order (NLO)
QCD corrections from the gluon-induced loop diagrams

*We thank our ATLAS colleague Shu Li for discussions of the
ATLAS measurements during LHC Run-2.

for qqg — Zy and the real emission of a gluon: gg —
Zy + g, and there are also NLO QCD contributions from
99 = Zy + q (9g = Zy + q). In these cases the NLO/LO
ratio is O(a,), and it was found numerically that the effect
of adding the full NNLO corrections is less than 10%
[24-26]. We define a QCD K factor for the nTGC signal by
Kg=S/S0 =14 AKg and for the SM background by
Ky = B/B;o = 1 + AKg. We have checked the K factors
for pp — Zy by using Madgraph5@NLO [27], and find
that they depend on the kinematic cuts. The corrections AK
can be larger than one if only basic cuts are made, but we
find that adding a cut to remove the small Py (y) region and
vetoing extra jets in the final state reduces AK to only a few
percent, which may be neglected.

We note in addition that Zy production by the gluon
fusion process is formally a next-to-next-to-leading-order
(NNLO) contribution, and is found to be generally less than
1% [28]. The nTGC contributions via gluon fusion is also
found to be negligible [28].

Next, we discuss the statistical significance and its
optimization for our present analysis of sensitivity reaches
on the nTGCs. Since the SM contribution ¢, could be
small, the ratio S/+/B is not an optimal measure of the
statistical significance. We use instead the following for-
mula for the background-with-signal hypothesis [29]:

B
z—.[2(B1 S
\/< "Brs " >

— \/2 <0'0 n—20 Aa) xVLxe, — (4.2)
oo+ Ac

where Ao = 6 — 6 denotes the part of the cross section
beyond the SM contribution, £ is the integrated luminosity,
and ¢ is the detection efficiency. When B > S, we can
expand (4.12) in terms of S/B and find that it reduces to
the form Z~S/ /B, whereas for S > B it reduces to
Z ~+/2S. If the signal S is dominated by the interference
contribution of O(A™*), we can deduce that the sensitivity
reach on the new physics scale,
A (Lxe)/8,

(for B> S), (4.3a)

A (L xe)/*,  (for S>> B). (4.3b)
If the signal S is dominated by the squared contribution
of O(A™?), we can deduce that the sensitivity reach on the

new physics scale,
A (L xe)/e,

(for B> §), (4.4a)

Ax (Lxe)/®,  (for S> B). (4.4b)
In either case, we see that the bound on the new physics

scale A is not very sensitive to the integrated luminosity £
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and the detection efficiency e. For instance, in the case of
B > S, if the integrated luminosity £ increases by a factor
of 10, we find that the sensitivity reach of A is enhanced by
about 33% when the interference contribution dominates
the signal and 15% when the squared contribution domi-
nates the signal. If the detection efficiency e is reduced from
the ideal value of e =1 to ¢ = 0.5, we find that the
sensitivity reach of A is weakened by only about 8% when
the interference contribution dominates the signal and 4%
when the squared contribution dominates the signal.

In order to achieve higher sensitivity, we can discrimi-
nate between the signal and background by using the
photon Py distribution, employing the following measure

of significance:
Ztolal =\ Z Z]%in-

In the above, we impose the optimal cut on the photon Py
for each bin and compute the corresponding significance
Zyin of each bin. By doing so, we maximize the signifi-
cance Z, given in Eq. (4.5).

(4.5)

B. Analysis of nTGCs at O(A~4)

We compute analytically the parton-level cross section
of the annihilation process gg — Zy, and then perform
the convolved integration over the product of the quark
and antiquark PDFs to obtain the cross section for
pr(qq) — Zr.

Inspecting the azimuthal angular distributions in
Eq. (2.14), we note that the SM ¢, distribution fg is
nearly flat, whereas the maximum of the nTGC contribu-
tion f}) is at ¢, = 0. We consider the double differential
cross section with respect to the photon transverse momen-
tum P and ¢, at ¢, =0,

i Zﬂdzdj
ProdPrdg., o

(4.6)

Equation (2.14a) gives doy/d¢, ~oy/(2x) for the SM
contribution, so we can deduce

do
9 o~ d—PZ . (4.7)
We present in Fig. 2 the photon Py distribution (4.6) at the
LHC (upper panel) and a 100 TeV pp collider (lower
panel), where in each plot the SM contribution is shown as
a black curve and the Og, new physics contributions for
different values of A are shown as the colored curves. We
find that the SM contribution to the photon Py distribution

*In our study we define the angles 0 and ¢, and the momenta
in the center-of-mass frame of the £y system, rather than in the
laboratory frame.

100 .
10 LHC13TeV) — SM
1
z
o 0.100
<
£
£ 0.010
0.001
1074
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Py (TeV)
0.100 . .
pp(100TeV)
0.010 — SM
— A=15TeV
0.001
- ] — A=20TeV
2
O 1074 — A =25TeV
g
& 10°5
107¢
1077

Py (TeV)

FIG. 2. Photon transverse momentum Py distributions at the
azimuthal angle ¢, = 0 for the reaction pp(qg) — Zy followed
by Z — £¢ decays, as contributed by the SM (black curve) and
by the nTGC operator O at O(A™*) (colored curves for the
indicated values of A) at the LHC (13 TeV) in the upper panel and
at the 100 TeV pp collider in the lower panel.

f‘};r decreases more rapidly with the increase of Py,
whereas the nTGC contribution to f }DT reduces much more

slowly with Py.
According to our definition of the azimuthal angle ¢, in
Sec. II, we have

(Py X Pz) - (PF X P7)
Py X Pzlps x Pyl

cosp, = (4.8)

We note that the quark ¢ can be emitted from either proton
beam, so the direction of p,, is subject to a 180° ambiguity.
This means that the normal direction of the scattering plane
of qg — Zy is also subject to a 180° ambiguity, so that
cos ¢, can take either sign in each event and the cos ¢,
terms in féx cancel out when the statistical average is taken.

However, the angular terms o cos(2¢,) = 2cos’> ¢, — 1
are not affected by this ambiguity and survive statistical
average. Thus, for the nTGC operator Og, and also the
related contact operator O,_, we derive the following
effective distributions of ¢, after averaging:

035005-11



JOHN ELLIS, HONG-JIAN HE, and RUI-QING XIAO

PHYS. REV. D 107, 035005 (2023)

30F L su
A—4
20f
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10F
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—-10F
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[
FIG. 3. Normalized distributions in the azimuthal angle ¢, for

the reaction pp(qg) — Zy followed by Z — ££ decays, as
generated by the dimension-8 nTGC operator O, at the LHC
(13 TeV). The angular distribution f 41,) of the interference
contribution of O(A™*) is shown as a red curve; the angular
distribution f7 of the squared contribution of O(A~%) is shown
as the blue curve that is flat like the SM distribution f%
(black curve).

- 1 §M? cos 2¢
0 z *
=—- 0(9),
74, 27 2x[(8 — M%)* + 2(8* + M%) Insin] +00)
(4.9a)
- 1 Scos2¢
1 iy 4.9b
To. =25 8xM?% (4.95)
72
4, = o (4.9¢)

We see that the interference term ]_”('/, has a nontrivial angular
dependence « cos(2¢, ) that is enhanced by the energy factor
s/ M?% relative to the nearly flat SM distribution f ~1/2z.
We present the angular distributions of ¢, in Fig. 3, where the
angular distribution f}, (red curve) from the interference
contribution of O(A~*) dominates over the nearly flat SM
distribution f§ (black curve) and the distribution f7 (blue
curve) of the squared contribution of O(A~%), which is flat
and behaves like the SM distribution. In this figure, for
illustration we have imposed a selection cut on the parton-
parton collision energy, v/5 > 2 TeV.

For the other operators (Og_, Oy, Oc, ), inspecting
their angular distributions in Eq. (2.17) we find that
( f?/) féﬁ) have the leading energy contributions given
by the cos¢, terms and the cos(2¢,) terms only have
subleading energy dependence. In addition, their contribu-
tions to f7 contain no cos(2¢,) term. After statistically
averaging over the two possible directions of the scattering
plane at pp colliders, we derive the following effective
distributions:

. 1 SMZ cos 24,
=_—= 0(9),
13, 2 2z[(3 — M%)? +2(3* + M%) Insing] +00)
(4.10a)
- 1 Scos2¢p
b= T 4.10b
Ja. 27I+47T<3‘ + M2) ( )
2= 4.10
f4,* 7 ( c)

where the SM contribution J:”g is the same as that of
Eq. (4.9a). For operators (Og_, Ozy,Oc, ), under the
statistical average, their angular distribution f}ﬁ* has a
high-energy dependence of §°, while the angular distribu-
tion fé* becomes a constant and is independent of both
the energy and ¢,. These should be compared to the
statistically averaged angular distributions (4.9b)—(4.9c) for
the nTGC operator O, where its angular distribution f ;,)
has higher-energy dependence of 3! for the cos(2¢,) term,
while the angular distribution fé* also becomes constant.

Based on the effective angular distributions (4.9) and
Fig. 3, we construct the following observable O :

0, = . (411)

o /dqb*f;s* x sign(cos 2¢,)

where o, is the total cross section from the interference
contribution of O(A~*). Then, we use the formula (4.2) to
derive the significance:

B (o0}
z=,/2(B1 s) = /2( 61 0
\/( nB+S+) \/<aon60+®l+ 1)

X VL Xe, (4.12)

where L is the integrated luminosity and e denotes the
detection efficiency.

To achieve the optimal sensitivity, we apply the for-
mula (4.5) to compute the total significance Z, from the
contributions of the significances {Zy;,} of all the indi-
vidual bins. In our analysis, we choose the bin size to be
APr =100 GeV for the LHC (13 TeV) and APy =
500 GeV for the pp (100 TeV) collider. But we find that
Z,oal 18 DOt Very sensitive to such choice. For instance, if we
choose APy = 50 or APy = 200 GeV at the LHC, we find
that the significance Z,,, only varies by about 1%.

We present prospective sensitivity reaches for probing
the new physics scale A of the nTGC operator Og,. in
Table II. For instance, given an integrated luminosity £ =
300 fb~! (3 ab™') at the LHC and choosing the ideal
detection efficiency € = 1, we find the 2¢ sensitivity reach
A¥, ~2.6TeV (A¥, ~3.6 TeV). At the 100 TeV pp
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TABLEIL Sensitivities to the new physics scale A at O(A™) of
the nTGC operator O, at the 20 and 5o levels, as obtained by
analyzing the reaction pp(qg) — Zy — ¢£y at the LHC
(13 TeV) and the pp (100 TeV) collider, respectively, with the
indicated integrated luminosities.

Vs LHC (13 TeV) pp (100 TeV)

£ (ab™!) 014 03 3 3 10 30
A¥ (TeV) 2.1 24 33 14 17 19
A (TeV) 1.6 1.8 26 10 12 15

collider with £ =3 ab~! (30 ab™!), we derive the 2¢
sensitivity reach A%, ~ 15 TeV (A¥, ~21 TeV).

C. nTGC analysis including O(A~3) contributions

In this subsection, we further analyze the squared
contributions of O(A™%) and study their impact on the
sensitivity reaches at the LHC and the pp(100 TeV)
collider. Inspecting the effective angular distributions
(4.9), we find that requiring the differential cross section
of the interference contribution of O(A~*) to be larger than
that of the squared contribution of O(A~®) would impose
the following condition:

0)

|51f<],>*| > ozfé* =5

- (4.13)

which gives a lower bound of A > 1.3+/5 for the reaction

channel uit — Zy and A > 1.5+/5 for the dd — Zy chan-
nel. These bounds are comparable or somewhat stronger
than the LHC sensitivity limits of the new physics scale A
given in Table II, whereas they are satisfied by the
sensitivity limits of the 100 TeV pp collider. Thus, to
improve the sensitivities for the LHC probe of the nTGCs,
we consider the full contributions of the nTGC operators
including their squared terms of O(A™8). We note that
including the full contributions of the nTGC operators also
allows a consistent mapping of the current analysis to the
form factor approach given in the following Sec. IV E
which always includes the full contributions of the form
factors to the cross sections.

We present in Fig. 4 the photon Py distribution including
the contribution of O(A™®). Since the O(A~?) contribution
can be larger than O(A~*) for large §, we choose here a set
of larger values A = (2,4,6) TeV for the LHC distribu-
tions and A = (20, 25,30) TeV for the distributions at the
pp(100 TeV) collider, instead of the previous values of
A =(1,2,3) TeV for the LHC and A = (15,20, 25) TeV
for the pp(100 TeV) collider chosen for Fig. 2. Also,
Fig. 4 extends to a larger range of the photon Pr.

For the high-energy hadron colliders such as the LHC
and pp(100 TeV), we have |o)| < 2z|o,f} | < o;, and
thus o; may be neglected. Following the procedure in
Sec. IV B, we use the same method and cuts on Py to divide

10t LHC(13TeV)
— SM
— A =3TeV
5 0.1001 — A =4TeV
S — A=45TeV
;% 0.001}
&
10-5 /
(a)
10—7 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Py (TeV)
o001l pp100TeV) — sM
— A =20TeV
— A =25TeV
Z 107 — A=30GeV
Qo
=
£
;‘i ]0—6-/
. /
1 / -
2 4 6 8 10 12

Py (TeV)

FIG. 4. Photon transverse momentum P, distributions at the
azimuthal angle ¢, = 0 for the reaction pp(qg) — Zy followed
by Z — £7 decays, as contributed by the SM (black curve) and
by the nTGC operator O up to O(A™*) and O(A™?) (colored
curves) at the LHC (13 TeV) and the pp (100 TeV) collider in the
lower panel.

events into a set of bins. Because the ¢, distribution is
rather flat for both the SM and O(A~®) contributions, we do
not need to impose an angular cut on ¢,. We analyze the
sensitivity reaches of A by using Eq. (4.5), and present the
results for probing the nTGC operator O, up to O(A™8) in
Table III. The sensitivity reaches at O(A~®) appear sig-
nificantly better than those at O(A~*) shown in Table II.

For instance, given an integrated luminosity £ =
300 fb~! (3 ab™!) at the LHC and choosing the ideal
detection efficiency ¢ = 1, we find from Table III that

TABLE III.  Sensitivities to the new physics scale A at O(A™®)
of the nTGC operator O, at the 26 and 5o levels, as obtained by
analyzing the reaction pp(qg) — Zy — ¢£y at the LHC
(13 TeV) and the pp (100 TeV) collider respectively, with the
indicated integrated luminosities.

Vs LHC (13 TeV) pp (100 TeV)

L (ab™") 014 03 3 3 10 30
A, (TeV) 3.0 32 39 21 24 26
AY, (TeV) 2.6 28 34 17 20 22
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the 20 sensitivity reach is given by A ~3.4 TeV
(A2G‘7+ ~4.1 TeV). At the 100 TeV pp collider with £ =
3 ab™' (30 ab™"), we obtain the 25 sensitivity reach AY, ~
22 TeV (A¥, ~27 TeV).

D. nTGC analysis including the invisible
decays Z — v

In this subsection, we study the probe of nTGCs via the
Zy production with invisible decays Z — vv. In this case,
the final-state photon is the only signature of Zy production
that can be detected, and we will use the jet vetoing to
effectively remove all the reducible SM backgrounds
having the final state jet 4+ y. Then, we can use the same
strategy as that for probing the O(A~®) contribution via the
leptonic Z-decay channels, where the kinetic cut on the
photon Py distribution will play the major role to enhance
the sensitivity to the nTGC contributions.

Following this strategy, we perform combined analyses
for both the Z — £7 final state and the Z — vo final state.
We present in Table IV a summary of the prospective
sensitivity reaches on the new physics scale A of the nTGC
operator Og,, where we have combined the limits from
both the charged-lepton final state and the neutrino final
state. We find that the combination of both leptonic and
invisible Z-decay channels can enhance the sensitivity to
the new physics scale A by about 10% over that using the
leptonic channels alone.

Using the sensitivity bounds of Table IV and comparing
them with our study for e™e™ colliders [5] (which will be
summarized later in Table IX of Sec. V), we find that for
probing the nTGC operator O, the sensitivity reaches with
the current LHC luminosity (£ = 140 fb~!) are already
better than those at future 250 and 500 GeV e™e™ colliders
[5], and that the HL-LHC (with £ = 3 ab™!) should have
comparable sensitivities to a 1 TeV et e~ collider [5]. The
future pp (100 TeV) collider can have much stronger
sensitivities than an (3-5) TeV e*e™ collider. A systematic
comparison with the high-energy e*e™ colliders will be
presented in the following Sec. V.

Next, we extend the above analysis to the three other
nTGC operators (Og_, Oy, Oc,). We present the 20
sensitivities to their associated new physics scales in

TABLE IV. Sensitivity reaches on the new physics scale A at
O(A78) of the nTGC operator O, at the 20 and 56 levels, as
obtained from the reactions pp(qq) = Zy — £y and
pp(qq) » Zy - voy at the LHC (13 TeV) and the pp
(100 TeV) collider, with the indicated integrated luminosities.

Vs LHC (13 TeV) pp (100 TeV)

L (ab™") 0.14 0.3 3 3 10 30
A¥, (TeV) 33 3.6 4.2 23 26 28
A, (TeV) 29 3.1 3.7 20 22 24

TABLE V. Sensitivity reaches on the new physics scales of the
nTGC operators (Ogy, Og_, Oc.) at the 26 level, as obtained
from analyzing the reactions pp(qq) — Zy — ¢fy and
pp(qg) = Zy - vy at the LHC (13 TeV) and the pp
(100 TeV) collider, with the indicated integrated luminosities.
The third and fifth columns indicated by (£7,vD) present the
combined limits including both the charged-lepton and neutrino
final states.

13 TeV 13_TeV 100 TeV 10Q TeV
Vs (23] (¢, vp) (473) (¢, vp)
E(ab“) 0.14 033 014033 3 10 303 10 30

Agy (TeV) 12 13 1.5 13
Ac. (TeV) 1.0 1.1 1.3 1.1
Acy (TeV) 1.3

14 1.7 51566156 6.16.7
121442 4751465155
141614 151754596559657.1

Table V. The third and fifth columns of this table, marked
with (£7,vD), present the combined limits including both
the charged-lepton and neutrino final states. We see that
these sensitivities are significantly weaker than those of the
operators Og, and Oc_. At the LHC, they are generally
below 2 TeV, but the proposed 100 TeV pp collider could
improve the sensitivities substantially, reaching new phys-
ics scales A over the (5—7) TeV range. Finally, we compare
the collider sensitivity limits presented in Tables I1I-V with
the perturbative unitarity limits given in Table I and Fig. 1.
We find that our collider limits are much stronger than the
unitarity limits of Table I and Fig. 1. Hence, our current
collider analyses of probing the nTGCs via the SMEFT
formulation hold well the perturbation expansion.

As a final remark, we emphasize that the reaction gg —
Zy is a unique process for probing the nTGCs via s-channel
at the LHC and future pp colliders. We note, however, that
certain dimension-6 operators can contribute to the process
qq — Zy via t-channel diagrams by modifying the ¢-g-Z
vertex. Such contributions are constrained separately by
existing electroweak precision data via other reactions, and
future e™e™ colliders will place more severe constraints on
the ¢-g-Z coupling via Z-pole measurements. These
measurements are independent of the reaction qg — Zy,
and may be obtained from global fits to (@, Gg, M7, My)
and other Z-pole observables [30-32]. We take values of
these observables from the current electroweak precision
data [32] and from the projected CEPC sensitivities [31].
For contributions to the g-g-Z coupling, we consider the
following dimension-6 Higgs-related operators:

OF) = (iH'6" D, H)(¥, y'c"®, ).
O, = GH'D,H)(¥,"¥,),
Or = (iH'D,H) (Wgy"wr). (4.14)

Then, using the method of [31] we make a global fit and
obtain the electroweak precision constraints on the cutoff
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TABLE VI. Precision constraints at the 20 level on the
indicated dimension-6 operators that contribute to the g-g-Z
coupling. The bounds A[PDG] are derived from the existing
electroweak data [32], whereas the bounds A[CEPC] are the
projected sensitivities of the future ee™ collider CEPC
(250 GeV) [31].

Operators OMa)  Oular)  Orlug)  Oxldg)
A[PDG] (TeV) 4.7 4.7 2.9 24
A[CEPC] (TeV) 9.1 9.1 5.5 5.1

scale A of these operators, which we summarize in
Table VI, assuming for simplicity that the dimension-6
operators are universal for the three families of fermions.
Table VI shows that the dimension-6 operators (4.14) can
be constrained independently through different processes
and observables. The existing bounds A [PDG] derived in
Table VI are already strong and the projected sensitivities
on the cutoff scale A [CEPC] for the future e™e™ collider
CEPC (250 GeV) are much stronger than the corresponding
bounds on the cutoff scale of the dimension-8 nTGC
operators at the same e e™ collider (as we show below
in Table IX of Sec. V).

E. Probing the form factors of nTGVs

In this section we analyze the sensitivity reaches of the
LHC and the pp (100 TeV) collider for probing the nTGCs
by using the form factor formulation given in Sec. III. We
will also clarify the nontrivial difference between our
consistent form factor formulation (3.5) (based upon the
fully gauge-invariant SMEFT approach) and the conven-
tional form factor formulation (3.1) [retaining only the
residual gauge symmetry U(1),,,], where the latter leads to
erroneously strong sensitivity limits.

From Egs. (2.12), (2.15), (2.16), and (3.6), we can
further derive the partonic cross section of the reaction
qq — Zy in terms of the form factors. As before, we
decompose the partonic cross section into the sum of three
parts, o(Zy) = oo+ 0y + 065, where (0(,0,,0,) corre-
spond to the SM contribution, the interference contribution,
and the squared contribution, respectively. The cross
section terms (o, 6,) are contributed by the form factors
and take the following expressions:

o2
T
o — 0q; 3(‘9 >h
1 47125 !
3 ezQ(CILX% - QRX%)(:VZ - M%) ¥4
471252 ’
*ew (gL — qle;i%)(gz "My ws)
4JZ'SWU N

and

0y =03 + 035 + 033 + 05y + 033 + Oana. (4.16a)
4T2 S+M2 M2
3= 5 2= M) (ha)?. (4.16b)
7687s%,chMES
53 Q7w+ (T5= 053’15+ M7) (3 - M3)° W72
07= 2 V652 (h%)?,
1927s3,c3,M55
(4.16¢)
0¥ (3 + M%) (5 — M%)}
o35 = 967MES (h%)?, (4.16d)
e*T5(T § - M%)}
0_421% _ %( QSW)( Z) h4h§, (4.166)
967s%, ¢, M55
4 T ’\_MZ 3
ol = £ 230 T 2] 0T 8 6ZA) hyhf, (4.16f)
96msycywMys

033 Q(T3_2QSW)(S+M2)( Mz) hZhJ’

224 967 sy cywMSs? ¥
(4.16g)
where the coefficients (g, qg) = (T3 — Os3,, —0s%)

denote the (left, right)-handed gauge couplings between
the quarks and Z boson. The form factor /% is contributed by
the operator Oy, as in Eq. (3.6) and the coupling coefficients
(x%,x%) = (T3 — Qs3,, —Qs%,) are given by Eq. (2.16b),
whereas the form factor 4} is contributed by the operator Og_
as in Eq. (3.6¢) and the coupling coefficients (x{,x3) =
—Qs%/(1,1) are given by Eq. (2.16a). Inspecting Egs. (4.15)—
(4.16), we find that the cross section terms (o, 0,) have the
following scaling behaviors in the high energy limit:

o1 = 0(3%hy + O(3°)h% + O(3°)ni, (4.17a)
oy = O(8)(hs)* + O(3%)(hy)* + O(5*) (h4hy)
+ O(3%)(h%h}), (4.17b)

where we have used the notation V = Z, y.

If we consider instead the conventional parametrization
(3.1) with the nTGC form factors (hY, i) only, we would
obtain their contributions to the total cross section
&(Zy) = 69 + &, + &,. The form factors hY are not subject
to the constraints (3.4) imposed by the dimension-8 nTGC
operators of the SMEFT, so they contribute to (6;,5,) in
the same way as in our Egs. (4.15)—(4.16). However, the hX
contributions to the interference and squared cross sections
(61, 6,) have vital differences from Eqs. (4.15)—(4.17). For
simplicity of illustration, we set 4} = 0 and express the h)
contributions to (&, 5,) as follows:
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TABLE VII.

Sensitivity reaches on the nTGC form factor parameters at the 2¢ (outside the parentheses) and 5o

(inside the parentheses) levels, as derived by analyzing the reactions pp(qg) — Zy — ¢£y and pp(qq) — Zy —
vy at the LHC (13 TeV) and the pp (100 TeV) collider, with the indicated integrated luminosities. In the third and
ninth rows, the sensitivity limits for |4,(0,)| are derived by using the observable (4.11) from the interference
contributions, whereas the | /| limits in the fourth and tenth rows are derived including the squared contributions.
The third and fifth columns marked (£7,v0) present the combined limits including both the charged-lepton and

neutrino final states.

NG 13 TeV (£7) 13 TeV (¢7,vD)
L(ab™") 0.14 0.3 0.14 0.3 3
hy(0)] x 10° 5.8 (18) 3.7 (11) 1.0 2.8) 5.8 (18) 3.7 (11) 1.0 (2.8)
|| x 10° 14 (28) 11 (21) 52 9.1 9.6 (18) 7.5 (14) 3.8 (6.4)
|h%| x 10* 2.7 (5.0) 2.1 (3.8) 1.1 (1.8) 1.9 3.4) 1.8 (2.7) 0.80 (1.3)
|hh| x 10* 3.1 (5.8) 25 4.)5) 1.3 (2.1) 2.2 (4.0 1.8 3.1) 0.97 (1.6)
Vs 100 TeV (£7) 100 TeV (2, D)
L(ab™") 3 10 30 3 10 30
|h4(0))] x 108 3.4 (11) 1.6 (5.0) 0.85 (2.6) 34 (11) 1.6 (5.0) 0.85 (2.6)
|| x 10° 6.1 (13) 3.9 (7.8) 2.6 (5.1) 4.0 (8.1) 2.6 (5.1) 1.9 3.4)
|h%| x 107 8.9 (17) 6.0 (11) 4.2 (7.5) 6.1 (11) 4.2 (7.5) 3.0 (5.2
|n%| x 107 10 (20) 6.8 (13) 4.9 (8.7) 7.2 (13) 4.9 (8.7) 3.5 (6.1)
G\ (hY) = Q5 —M3)? (g — quid i iI}tegrat.ed luminosities. We recall that 'the form factors and
1% 325202 M2 qLXr — qrXR)y4 dimension-8 operators are connected via Eq. (3.6). We find
Wz i that the most sensitive probes are those of the form factor
— (qux} — qrx}) w hz} (4.182)  fas Wthh is generated bthhg nTGC operator Og.,. The
Sw sensitivities of probes of h% (via the operator Opy,) and A,
(5 — M2)S (via the operator QG_) are smaller.. ¥n. t.he case .of hy, we
&, (h)) = -\ 7] |\xZz (h%)? present in the third row the sensitivities obtained from
2\ 768752, c2, M0 | T LRV4 . o .
SwewMz' S the interference contributions using the observable O; of
m ks . ACW 70y Eq. (4.11), and in the fourth row the sensitivities from the
+ X7k 2 (hy)” —2XTk g (hg h4)] ) (4.18b) squared contributions. The sensitivity limits in the third row
W

where we have defined the notations

X{k = () + (xR)%,

ZA _ 2. A | |7
X4 = x¥x} + xgxp.

Xig = ()” + (xR)%,

(4.19)

Taking the high-energy limit, we find that the cross sections
(61, 6,) scale as follows:

&, (hY) = O(3)h% + O(5)H, (4.20a)

&y(hy) = O(3%)(h§)* + O(3%)(Hy)* + O(8%) (hF ).
(4.20b)

Comparing Eq. (4.20) with Eq. (4.17), we see that the /)
contributions to the cross sections (&;,5,) in the conven-
tional form factor parametrization (3.1) have an additional
high-energy factor of s' beyond the h, contributions to
(61,0,) in our improved parametrization (3.5).

We present in Table VII the sensitivities of probes of the
form factor parameters h}/ at the LHC (13 TeV) and a
100 TeV pp collider (marked in blue), with the indicated

are not improved by including the invisible decays of
Z — vp because the angular distribution of ¢, cannot be
measured for the invisible channel. We see that the
sensitivity bounds on | /4| in the fourth row are significantly
stronger than those in the third row. This is because the
squared contributions have stronger energy dependence
and thus are enhanced. The sensitivities of probes to |A%|
and |h%| are shown in the last two rows of Table VII, and are
found to be much weaker than the bounds on |4, (third and
fourth rows). We also see from Table VII that the
sensitivities of probes of these nTGC form factors at
100 TeV pp colliders are generally much stronger than
those at the LHC by large factors of O(10*-10°). In
passing, we note that the current collider limits on the
nTGC form factors given in Table VII are much stronger
than the unitarity limits of Table I and Fig. 1.

Next, we present in Table VIII a comparison of the 26
sensitivities to the form factor 4,4 defined in Eq. (3.5) (based
on the SMEFT formulation and marked in red color, taken
from Table VII) and the conventional form factors /) in
Eq. (3.1) [respecting only U(1),, and marked in blue
color]. These limits were derived by analyzing the reactions
qq — Zy — ¢y and q§ — Zy — vy atthe LHC (13 TeV)
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TABLE VIIL

Comparisons of the 2¢ sensitivities to the form factor s, formulated in the SMEFT (in the 3rd row) and the conventional

form factors h) respecting only U(1),,, (in the 4th and 5th rows), derived from analyses of the reactions pp(qg) — Zy — £y and
pp(qq) = Zy — voy at the LHC (13 TeV) and the 100 TeV pp collider, with the indicated integrated luminosities. As discussed in the
text, the form-factor limits (in blue color) are included for illustration only, as they do not respect the full SM gauge symmetry, and hence

are invalid.

NG 13 TeV (£7) 13 TeV (¢7,vD) NG 100 TeV (£7) 100 TeV (7, vD)

L(ab™") 014 03 3 0.14 0.3 3 L(ab™") 3 10 30 3 10 30
|hy] x 10° 14 11 52 96 75 38 |hy| x10° 6.1 3.9 2.6 4.0 2.6 1.9
|W7|x10" 75 57 28 52 4.0 20 |pf|x 10" 43 2.7 1.9 2.8 1.9 1.3
|| x107 87 67 32 59 4.7 24 M| x 10" 49 32 2.1 3.3 2.1 1.5

and a 100 TeV pp collider, with the indicated integrated
luminosities. We see that the sensitivities to the conven-
tional form factor k) (marked in blue color) are generally
stronger than those of the SMEFT form factor 4, (marked
in red color) by large factors, ranging from O(20) at the
LHC to O(10%) at a 100 TeV pp collider. However, they
are incorrect for the reasons discussed earlier. By com-
paring the energy dependences of the &) -induced cross
sections between Eqs. (4.17) and (4.20), we have explicitly
clarified why the sensitivity limits based on the conven-
tional form factor parametrization (3.1) are spuriously
much stronger than those given by our improved form
factor approach (3.5). The comparison of Table VIII
demonstrates the importance of using our consistent form
factor approach (3.5) based on the fully gauge-invariant
SMEFT formulation.

F. Correlations between the nTGC sensitivities
at hadron colliders

In this section, we analyze the correlations between the
sensitivities of probes of the nTGCs at hadron colliders
using both the dimension-8 SMEFT operator approach and
the improved formulation of the form factors presented
earlier.

We first analyze the correlations of sensitivity reaches
between each pair of the nTGC form factors (h4,h§),
(hy, h%), and (h%, h%) at the LHC(13 TeV) and the 100 TeV
pp collider. We compute the contributions of a given pair
of form factors to the following global y* function:

SZ' Gbin _ Gbin 2
)(225 b1n:§:( .O)X(EXG)
B.. Gbm
bin bl pip 0

:ZMXMXG), (4.21)

bin
bin %0

where 6™ is the SM contribution, and (6%", 65") are the
(interference, squared) terms of the form factor contribu-
tions. These cross sections are computed for each bin and

then summed up. We minimize the y? function (4.21) for
each pair of form factors at each hadron collider with a

given integrated luminosity £, assuming an ideal detection
efficiency ¢ = 1.

We present our findings in Fig. 5. Panels (a) and (b) show
the correlation contours of the form factors (hy, h%) (solid
curve) and (hy, h%) (dashed curve) at the 95% C.L., and
panels (c) and (d) depict the correlation contours of the form
factors (h%, h%) at the 95% C.L. Panels (a) and (c) show the
correlation contours for the LHC with different integrated
luminosities £ = (140, 300,3000) fb~! (marked by the blue,
green, and red colors, respectively), and panels (b) and
(d) depict the correlation contours for the 100 TeV p p collider
with different integrated luminosities £ = (3, 10,30) ab~!
(marked by the blue, green, and red colors, respectively).

Inspecting Figs. 5(a) and 5(b), we see that each elliptical
contour has its axes nearly aligned with the frame axes,
which shows that the form factors (hy, hY) have rather
weak correlation. This feature can be understood by
examining the structure of the y? function (4.21). For a
qualitative understanding of such correlation features,
here we simplify Eq. (4.21) by considering a single bin
analysis. Since the squared term o, in Eq. (4.17b) domi-
nates over the interference term o, from Eq. (4.21) we have
2% ~(62)*/00](L x €) « (6,)?, where the SM cross sec-
tion o does not contain any new physics parameter and is
thus irrelevant to the correlation issue. Since each elliptical
contour has a fixed value of y2, the cross section o, is given
by 6, ~ \/x*60/(L x €). We note that o, is a quadratic
function of the form factors, so we can use the usual
statistical method [32,33] to analyze the quadratic function
of ¢,, which suffices for examining the correlation property
of each elliptical contour.

Using Egs. (4.16) and (4.17b), we express the quadratic
form of o, as follows, exhibiting explicitly the energy-
scaling behavior of each term:

03 = P + 5253 (1] + 05 (hehY)

+ 52635, (W5 hY), (4.22)

where 5§ = §/M?% is a scaled dimensionless energy factor

and 5;’ denotes the coefficient of each leading cross-section
term in Eq. (4.16) in the high-energy expansion.
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Correlation contours of the sensitivity reaches (95% C.L.) for the indicated pairs of nTGC form factors at the LHC (13 TeV)

[ panels (a) and (c)] and a 100 TeV pp collider [panels (b) and (d)]. Panels (a) and (b) show the correlation contours of (/y, h% ) (solid
curves) and (hy, ) (dashed curves), and panels (c) and (d) depict the correlation contours of (h%, ).

To examine the correlations between h%’ and A4, only the
first three terms of Eq. (4.22) are relevant. Denoting the form
factors (hY, hy) = (x,y) = X, we can express the relevant
terms of Eq. (4.22) in the following quadratic form:

05(x,y) = Ax?* + By? +2Cxy = XV~IXT,

(e a)
vl = :
C B

where the coefficients (A, B, C) = (5°63;,.5°63*,15°637)).
The correlation contour of (x, y) is clearly an elliptical curve.
For the above quadratic form o, (x,y) = XV~!XT with two

(4.23a)

(4.23b)

parameters X = (x, y), we express the covariance matrix as
follows [33]:

(4.24)

where (6, 6,) are related to the errors in the parameters
(x,y). The inverse of the covariance matrix V is derived as

1 P
=p952  ~ (1=p)a.5, A C
-1 _ ? —
oo (Y4
(1-p*)6,6 (1-p*)63
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with the correlation parameter p given by
p=—-C/VAB,

where (6,,6,) are connected to (A,B,C) through the
relations, &, = [(1 —p?)A]? and 6, =[(1 - p?)B] ™.
Thus, using Eq. (4.23) we compute the correlation parameter

(4.26) for the (hY, hy) contour as follows:

—43
O
L

/33 ~44
24/ 65,05
—44 =33 -43

In the above, (63°,65y,65,) correspond to the leading-
energy terms of the cross sections (4.16b)—(4.16f). We see
from Eqgs. (4.16b)—(4.16d) and (4.16e)—(4.16f) that the cross
section coefficients (53*, 533, ) of the leading energy terms are
always positive and the cross section coefficients 533, of the
leading energy terms are positive for any quark flavor. Hence,

we deduce that the correlation parameter p(hY, hy) < 0 in

(4.26)

p(hY hy) = = (4.27)

Eq. (4.27), butit is suppressed by a large energy factor 1/+/5.
This means that the apex of the contour (where the slope
y" = 0) must lie on the left-hand side (lhs) of the y axis. These
features explain why the orientations of the contours in
Figs. 5(a) and 5(b) are not only nearly vertical, but also are
aligned slightly towards the upper-left direction. Moreover,
the deviation of the orientation of each contour from the
vertical axis of Fig. 5(b) is almost invisible because of
the more severe suppression by the energy factor 1/1/5 at the
100 TeV pp collider than at the LHC.

Then, we use Eq. (4.21) to perform the exact > analysis
for the form factors (h%,h}). The (h%,h%) contours are
plotted in Figs. 5(c) and 5(d) for the LHC and the 100 TeV pp
collider, respectively, which show strong correlations and are
oriented towards the upper-left quadrant, very different from
the contours in Figs. 5(a) and 5(b). To understand the
correlation features of Figs. 5(c) and 5(d), we examine the
relevant leading energy terms in the cross section (4.22) that
include the form factors (h%, h}) and their products. From
Eq. (4.22), we find that the cross section ¢, contains the
following leading energy-dependent contributions:

02 1. 1) = PEL () + FF (5 + P33, ()

= Ax? + By? + 2Cxy = XV~IXT, (4.28a)

1
(A.B,C) = <§26§§,§2&§§,§§25§§A>, (4.28b)
where we denote the form factors (h%, h%) = (x,y) = X and
the matrix V! takes the form of Eq. (4.23b). Thus, using o,
formula in Eq. (4.28), we compute the correlation parameter
(4.26) for the (h%, h}) contour as follows:

~33
0274 -0

—33 33
21/65,05;

p(hE. 1) = - (4.29)

This shows that the correlation parameter p is of O(s°)
and not suppressed by any energy factor, unlike the
case of Eq. (4.27) which is suppressed by 1/+/3.
From Egs. (4.16¢)—(4.16d) and (4.16g), we deduce that
53563 >0 and 535, > 0 always holds, which lead to
p(h%,h) < 0. These facts explain why the correlation
between (h%, h}) is large and all the contours of Figs. 5(c)
and 5(d) are oriented towards the upper-left quadrant.

We then consider the nTGC formulation using the
dimension-8 SMEFT operators as given in Sec. II and
study correlations of the sensitivity reaches between each
pair of the nTGC operators. We first study the correlations
between the pairs of nTGC operators (Og,,Opy) and
(Og+, Og_). We perform the »? analysis using Eq. (4.21)
and present the findings in Fig. 6 for the LHC (13 TeV)
[panel (a)] and the 100 TeV pp collider [panel (b)] for a set
of sample integrated luminosities, respectively. In each
panel, the (Og,,Opy) correlations are shown by the
contours in solid curves, whereas the (Og,,Og_) corre-
lations are depicted by the contours in dashed curves. We
see that the correlations of the operators (Og, , Ogy,) and
(Og4,Og-) are rather weak, similar to the case of the
(hy, hY) contours in Figs. 5(a) and 5(b).

The correlation features of the contours in Fig. 6 can be
understood in the following way. Using the relations in
Eq. (3.6), we here denote (x,y) = (hy, hY) = (14X, r¥¥)
and (%,5) = ([AVY].[AGY]), where V=2, A and
(A A = (Ag‘;v, AG'). With these, we express the
leading cross section o, in Egs. (4.22) and (4.23a) as
follows:

0,(%,7) = AX?> + By +2Cxy = XVIXT, (4.30a)

1
(A,B,C) = <52(r3v )2633, 52355, 5 52ry r45‘2“3/) , (4.30b)

where X = (¥,y) and the matrix V~! takes the form in
Eq. (4.23b). Thus, using Eq. (4.30), we compute the
correlation parameter (4.26) for (x,5) = ([Ay*]. [AGL])
as follows:

PAVY] [AGH]) = —sign(riry)

= sign(ryry)p(h3, hy), (4.31)

where the correlation parameter p(hY, hy) < 0 is derived in
Eq. (4.27). According to Eq. (3.7b), we have sign(r§r,) <
0 and sign(riry) > 0. Thus, we can infer the signs of the
corresponding correlation parameters:

AL NG > 0. p(AG)IAGH) <0 (432)
These nicely explain why in Fig. 6 the orientations of
the correlation contours (solid curves) of the operators
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FIG. 6. Correlation contours of the sensitivity reaches (95% C.L.) for the indicated pairs of nTGC operators at the LHC (13 TeV)
[panel (a)] and a 100 TeV pp collider [panel (b)]. Panels (a) and (b) show the correlation contours of (Og.,, Opyy ) (solid curves) and

(Og.,Og_) (dashed curves).

(Og, Opy) are slightly aligned towards to the rhs of the
vertical axis, whereas the orientations of the correlation
contours (dashed curves) of the operators (Og.., Og_) are
slightly aligned towards to the lhs of the vertical axis. Their
deviations from the vertical axis are rather small because of
the energy suppression factor 1/+/5 in Eq. (4.31), and they
become even smaller for the contours of Fig. 6(b) at a
100 TeV pp collider, as expected.

Next, we study the correlations between the nTGC
operators (Ogyy, Og_) and (O¢y, Og_). We perform a y?
analysis using Eq. (4.21) and present the ﬁndings in Fig. 7.
Using the relations (3.6b)—(3.6¢) we find [A Wl h% and

[AG!] « H}. So we expect that the (Opy, Og_) contour
should be related to the (h%,Hh%) contour. Inspecting the
contours in Figs. 5(c)-5(d) and 7(a)-7(b), we see that they all
exhibit significant correlations, but in Figs. 7(a)-7(b) the
contours are aligned along different directions from those of
Figs. 5(c)-5(d). We can understand this difference in the
following way. For convenience, we define (x,y)=
(r§%,ry) with X = (%,5) = ([A ], [AGL]). With these
and using Eq. (4.28), we express the leading terms of the
cross section o, as follows:

0y(%,5) = AX®> + By +2Cxj = XV'XT, (4.33a)
(1.8.0) = (P02705. 2P 5D, ).
(4.33b)

where the matrix V! takes the form of Eq. (4.23b). From the
above, we compute the correlation parameter (4.26) for the
operators (Ogy, Og_) as follows:

~33 <0
02748

~33 =33
21/065054

= 51gn(r3 ’”3) (h%, hy)

p([Agy)s [AGL]) = —sign(r§7%)
(4.34)

Because Eq. (3.7) gives sign(r§ r3) <0, we deduce

p([Agy ] [AGL]) = —p(h%, Hy) = O(5°) > 0. This explains
why the contours of (Opy, Og_) in Figs. 7(a) and 7(b)
exhibit strong correlations [similar to those in Figs. 5(c)
and 5(d)], but have their orientations aligned towards the
upper-right quadrant [unlike Figs. 5(c) and 5(d), in which all
the contours are oriented towards the upper-left quadrant].

Finally, we examine the correlations of the fermionic
contact operator Oc, with the nTGC operators Oy, and
Og_. Since O, is a combination of two other operators
Oc. = Og_ — Ogy via the equation of motions (2.3a), it is
connected to both of the form factors (h%, k%), which would
complicate the correlation analysis in the form factor
formulation (4.16). Instead, we analyze directly the con-
tributions of the operators (O¢, . Og_, Opy ) to the helicity
amplitudes (2.8)—(2.9). As shown by Eq. (2.9), the operator
Oc. has a nonzero left-handed coupling C/L(C =13

only. So for examining its correlations with Os_ and Opy,
the contributions of Os_ and (’)BW from the left-handed-
quark couplings c’L< and ¢, W) play key roles. Thus, we
can express as follows the relevant helicity amplitudes
(2.8)—(2.9) containing left-handed (right-handed) initial-
state quarks:

TSL = TSL X {C/L(CJr) {Azi] + C/

L(BW)
=Ty (frox+ frivi + frayn).

(A54)+ oy [AGE])
(4.35a)
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Correlation contours of sensitivity reaches (95% C.L.) for the indicated pairs of nTGC operators at the LHC (13 TeV) [panels

(a) and (c)] and the 100 TeV pp collider [panels (b) and (d)]. Panels (a) and (b) show the correlation contours of (O, Og_), whereas
panels (c) and (d) depict the correlation contours of (O¢,, Opy ) (solid curves) and (O, Os_) (dashed curves).

Ty = Ty {C/R(BW) [Agw] + R(G-) [AGL]}

= Ter(frivi + fr2y2): (4.35b)

where Tg; (or Tgg) is the remaining common part of
the helicity amplitudes (2.8)—(2.9) after separating out the

coupling ¢7; (or c%;) and the cutoff factor [A7*]. In the

above, we have defined (x,y;.y,) = ([AZL] [A54, ], [AG])

and
fro=¢pcsy = —Ts fro=cLpw =Ts - Osy.
S = CL( _Qsz (4.36a)

_QSW7
Sro = CR(G—) = CL(G—) =fr2 = fa.

Sri _CRBW

(4.36b)

With the above, we perform a y? analysis based upon
Eq. (4.21). We present the correlation contours of (Oc.,
Opw) and (Oc¢,., Og_) inFigs. 7(c) and 7(d) for the LHC and
the 100 TeV pp collider, respectively. We find that all these
contours exhibit strong correlations. In particular, the
(Oc.. Opy) contours (solid curves) are oriented towards
the upper-right quadrant, whereas the (O, , Og_) contours
(dashed curves) are oriented towards the upper-left quadrant.

To understand the qualitative features of the cor-
relation contours in Figs. 7(c) and 7(d), we examine the
cross section o,, which contains the squared part of the
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dimension-8 contributions and dominates the > function.
From Eq. (4.35), we derive the cross section o, as follows:

o2(x,y1,y2) = (frox + frivi + f2v2) (| T ?)
+ (friyvt + F2y2) (| Tsrl?)
= [(frox + friyi + f232)?
+ (Friyi + foy2)* [T 5 ).

where we have defined the notations (|7, |?) = [pg |75,
and (|7 gxl*) = [ps|Tgrl?> with [, denoting the phase
space integration for the final state. From the squared term
of the cross section (2.15), we can further deduce the
equality (|7g ) = (|7 sx|*) = (|Ts|?), which is used in
the last step of Eq. (4.37).

For analyzing the correlations, the overall factor (|7 g|?)
is irrelevant. So we define the following rescaled cross
sections for the convenience of analyzing the two-
parameter correlations:

5>(x.y1) = 02(x.y1.0) /(| T5 ).
55(x.y2) = 02(x.0,y2) /(| T ).

Thus, 6, (x, y;) and 6,(x, y,) are expressed in the following
quadratic form:

(4.37)

(4.38)

65(x,y1) = Ax? + Byt +2Cxy; = X, ViIXT,  (4.39a)

52(x,y2) = Ax? + Byy3 +2Coxy, = X, V5 IXT,  (4.39b)

where we have defined X; = (x,y;) and X, = (x,y,) as
well as the following notations,

(A.B1.Cy) = (f10- 11 + fRi- frof 1)

(A, By, Cy) = (f70.2f3. frof2)-

A G A G
Vil = , Vil= . (4.40c)
¢ B G B

Thus, we can deduce the following correlation parameter
for the two cases:

p ()C y ) _ _Cl _ _Sign(fLOle)
STV VAR T

(4.40a)

(4.40b)

>0,  (441a)

— 1
p2(x,y2) = \/f—gz = _ﬁSign(fLOfZ) <0, (4.41b)

where (x,y1) = ([Act].[A7]) and (x.y,) = ([AGL], [AGE)-
Using the coupling formula (4.36), we derive f;of1 =
—T53(T3—Qs3%) <0 and f,of, = T30s% >0, where
each inequality holds for both up-type and down-type
quarks. From these, we deduce that the operators (Oc,
Opy) are correlated positively, whereas the operators

(Oc., Og_) are correlated negatively. Moreover, Eq. (4.41)
shows that both correlation parameters are of O(5°) and not
suppressed by any energy factor. This predicts strong cor-
relations for the operators (Oc¢,, Opy) and (O¢,, Og_),
respectively. These features are indeed reflected in Figs. 7(c)
and 7(d). We see that the correlation contours of (O¢., Opy)
(solid curves) are oriented towards the upper-right quadrant
due to the positive correlation parameter p; (x, y;) > 0 given
by Eq. (4.41a), whereas the correlation contours of (O,
O¢_) (dashed curves) are aligned towards the upper-
left quadrant due to the negative correlation parameter
p2(x,y,) < 0 given by Eq. (4.41b).

G. Comparison with the existing LHC
bounds on nTGCs

In this subsection, we make direct comparison with the
published LHC measurements of nTGCs through the reac-
tion pp(qq) = Zy with Z — vb by the ATLAS [19] and
CMS [18] Collaborations using the conventional n'TGC form
factor formula (3.1). The CMS Collaboration analyzed
19.6 tb~! of Run-1 data at \/s = 8 TeV [18], whereas the
ATLAS Collaboration analyzed 36.1 fb~! of Run-2 data at
\/s = 13 TeV [19]. They obtained the following sensitivity
bounds (95% C.L.) on the form factors:

CMS:h% € (-1.5,1.6) x 1073,
h% € (-3.9,4.5) x 1075,

n € (-1.1,0.9) x 1073,
W, € (=3.8,4.3) x 107%;
(4.42a)

ATLAS:hf € (-3.2,3.3) x 1074, K} e(=3.7,3.7)x 1074,
hy € (—4.5,44)x 1077, h,e(—4.4,43)x1077,

(4.42b)

We see that the CMS and ATLAS analyses both obtained
much stronger bounds on (h%, h}) than on (h%, h}), i.e., by
factors ~(210-380) at CMS (Run-1) and ~(710-860) at
ATLAS (Run-2). In comparison, we see in Table VII using
our SMEFT form factor formulation (3.5) that the LHC
sensitivity bounds on /) are stronger than those on /Y only
by factors of about 20. Our Table VIII further demonstrates
that using the conventional form factor formulation (3.1)
would generate spuriously stronger /) bounds (marked in
blue) at the LHC (13 TeV) than the SMEFT bounds (marked
in red) by a factor of about 20, and thus much stronger than
the 4} bounds by a large factor of ~20 x 20 = 400, which
agrees with the ATLAS results in Eq. (4.42b) within a factor
of 2.” Unfortunately, this means that the strong experimental
bounds (4.42) on (h%, h!}) are unreliable because they were

>Since our analyses in Tables VII-VIII have used as input the
full Run-2 integrated luminosity of 140 tb~! as well as different
kinematic cuts for each bin, unlike the experimental analyses of
ATLAS [19] and CMS [18], such a minor difference in the
bounds could be expected.
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obtained by using the conventional form factor formulation
(3.1), which does not respect the SM electroweak gauge sym-
metry of SU(2); ® U(1)y as incorporated in the SMEFT.
To study quantitatively the conventional parametrization
(3.1) including the nTGC form factors (hY,h)) only, we
denote their contributions to the total cross section by
|

6(Zy) = 0y + 6, + 65, where &, is the interference term
and &, is the squared contribution. This is similar to what
we did around Eq. (4.18). We find that &, always dominates
over &; for both the LHC and the 100 TeV pp collider.
Using the conventional form factor formula (3.1), we derive
the squared contribution &, as follows:

A (XY )2 (5 = M2VJA(RY )2 (A% + 1) + 4RV Y (1 = 55) + (BY)2(1 = 5)?]

§

2 2
MZ MZ

0y —

where the coupling factor (X} y)? is defined as
Cw
(X[r)*= (X[ +(Xk)* X{p=x{p Xig= —axﬁm
(4.44a)

(., x%) = (T3 = Oy, =Osiy).  (xf, xk) = =Osiy (1, 1)
(4.44b)

Defining a scaled dimensionless energy parameter 5 =
§/M?2 and making the high-energy expansion for 5 > 1, we
can compare the leading energy dependence of each term of
&, with that of o,, as follows:

(X} p)2[(hY)*5* — 4h kY5 + 4(hY)*5]
7687s%,ch, M2

Oy R

,  (4.45a)

o CNT(HE)*S’ + 8T XTHERTS® + 4(X(g)* (h3)*5°]
: 768753, chM> ’

(4.45b)

where the cross section o, is given by our SMEFT form
factor formula (3.5). We note that the form factors (h%, k)
in the above cross section ¢, should obey the condition
(3.4b) due to the underlying electroweak gauge symmetry
of the SM that is respected by the corresponding dimen-
sion-8 nTGC operators. We have used the relation (3.4b) to
combine the //; contribution with that of 4% . To examine the
correlation of (i, h}) from Eq. (4.45b), we can use
Eq. (3.4b) to replace h% by hl,. Inspecting Eq. (4.45), we
see that both the (k) )? and (k) hY) terms in &, have higher
energy dependencies than those of ¢, by an extra factor 5!,
which leads erroneously to much stronger bounds on h) .

We first make a one-parameter analysis and derive the
bound on each form factor coefficient h}/ individually
(where j = 3,4 and V = Z, y) using the conventional form
factor parametrization (3.1). To make a more precise
comparison with the ATLAS bounds (4.42b), we adopt
the same kinematic cut on the transverse momentum of the
final-state photon, PJ} > 600 GeV, and the same integrated

7687s%,ch,M53

: (4.43)

|

luminosity £ = 36.1 fb~! as in the ATLAS analysis [19].
For illustration, we ignore the other detector-level cuts and
the systematic errors, and choose a typical detection
efficiency € = 75%.% With these, we derive the following
bounds on the nTGCs (95% C.L.) when using the conven-
tional form factor parametrization (3.1):

12| < 3.0 x 107,
2| < 4.4 x 1077,

1] < 3.4 x 1074,

|nl| < 4.9 % 1077, (4.46)
and note that the squared nTGC contributions dominate the
sensitivity. Comparing the above estimated bounds (4.46)
with the ATLAS experimental bounds (4.42b), we see that
they agree well with each other: the agreements for 47 are
within about 2% and the agreements for (h}, h%, h}) are
within about (8—13)%. This means that by making plau-
sible simplifications we can reproduce quite accurately the
experimental bounds (4.42b) established by the ATLAS
Collaboration [19] using the conventional form factor
formulation in Eq. (3.1).

Next, we analyze the correlation contours for (A%, hl)
and (h%,h%), respectively, using the conventional form
factor parametrization (3.1), which can be compared to the
correlation contours obtained by using our SMEFT form
factor formulation (3.5). Figure 8 displays the correlation
contours at 95% C.L. for LHC Run-2. Panels (a) and
(b) show the correlation contours based on the SMEFT
form factor formula (3.5), where the blue (red) contours
correspond to inputting integrated LHC luminosities of
36.1 fb~! (140 fb~!). Panels (c) and (d) present the
correlation contours based on the conventional form factor
parametrization (3.1), where the red and blue contours are
given by our theoretical analysis with the assumed detec-
tion efficiencies € = 100% and ¢ = 75%, respectively. For
comparison, we show in panels (c) and (d) the experimental
contours as extracted from the ATLAS results [19] based on
the conventional form factor formula (3.1), where the black
solid curves depict the observed bounds and the black

®We thank our ATLAS colleague Shu Li for discussing the
typical detection efficiency of the ATLAS detector [19].

035005-23



JOHN ELLIS, HONG-JIAN HE, and RUI-QING XIAO

PHYS. REV. D 107, 035005 (2023)

20F
LHC13TeV)
— 36.1fb™!
— 140fb~!
10F
)
% O
A{?
-10}
(a)
-20f, . ) . .
_4 -2 0 2 4
hyx10*
1.5
—— €=100% (Theory)
wk — €=75% (Theory)

—— Exp (Observed)

----- Exp (Expected) .
0.5 [
g
V4 o
® 7.
v ‘- o.'
R " £ 1

0.0p

1yx10°

-0.5F
-1.0F
© LHC(13TeV), 36.1fb™"
-15 L L L . . . .
-0.6 -04 -0.2 0.0 0.2 0.4 0.6
hyx10°

FIG. 8.

20F
LHC13TeV)
— 36.1fb7!
— 140fb~!
10F
=
X 0
N
-
-10}
(b)
—20f, , ; . .
4 -2 0 2 4
hZx10*
15 T T T T T T T
—— €=100% (Theory)
Y €=75% (Theory) ]
—— Exp (Observed)
----- Exp (Expected) N
0.5 S
>
X 0.0F ]
N
-~
-0.5F 1
-1.0F 1
@ LHC(13TeV), 36.1fb™!
~15 . . . . . . .
-0.6 -04 -02 0.0 0.2 0.4 0.6
h%x10°

Correlation contours of the sensitivity reaches (95% C.L.) for the indicated pairs of nTGC form factors at the LHC (13 TeV).

Panels (a) and (b) present the correlation contours for (hg hﬁ) and ( h{ , hf), respectively, by using our SMEFT form factor formula (3.5),
where in each panel the red contour inputs the full integrated luminosity 140 fb~' of Run-2 and the blue contour inputs a partial
integrated luminosity 36.1 fb~! as in the ATLAS analysis [19]. Panels (c) and (d) compare the theoretical correlation contours (red and
blue colors) with the experimental contours (black color) from the ATLAS analysis [19], where we derived the red and blue contours by
using the conventional form factor formula (3.1) and by assuming an ideal detection efficiency e = 100% (for red contours) or a reduced
detection efficiency ¢ = 75% (for blue contours). The ATLAS contours are shown by the black solid curves (observed) and the black

dashed curves (expected).

dashed curves show the expected limits. It is impressive to
see in panels (c) and (d) that our theoretical contours agree
well with the experimental contours obtained by using the
conventional form factor parametrization (3.1).

We note that the correlation contours of panels (a) and
(b) in Fig. 8 have very different features from those of
panels (c) and (d), which can be understood as follows.
For convenience, we denote X = (x,y) = (hY, h%). Thus,

we can express the cross sections of Egs. (4.45a) and
(4.45b) as follows:

5, x Ax? 4+ By? +2Cxy = XVIXT, (4.47a)
6, « Ax* + By? + 2Cxy = XVIXT, (4.47Db)

where we have defined the following notations,

035005-24



PROBING NEUTRAL TRIPLE GAUGE COUPLINGS AT THE LHC ...

PHYS. REV. D 107, 035005 (2023)

(A,B,C) = (45%,5%, =25°), (4.48a)

(A,B,C) = (45*(X)z)?, 5°T3,45°X) T5),

\7—1:<?j g) V*:(é g) (4.48¢)

With these we can compute the correlation parameter of the
form factors in each case:

(4.48b)

. =C -C 2sign(T3)X)
p=—7==1>0, p= =- 572 < 0.
VAB VAB Xk
(4.49)

The fact of p = O(5°) > 0 explains why the (hY,h))
contours in Figs. 8(c) and 8(d) exhibit strong correlations
and have their orientations aligned towards the upper-right
quadrant. On the other hand, from Eq. (4.44) we find that
sign(T3)X) > 0 holds for the initial-state quarks being
either up-type or down-type, and thus Eq. (4.49) gives
p < 0. This means that the (hY, k) contours in Figs. 8(a)
and 8(b) should have their orientations towards the upper-left
quadrant, but this correlation is almost invisible because
p= O(E_%) receives a large energy-suppression factor at the
LHC. Thus, the correlation features of the (hY, b)) contours
are well understood both for Figs. 8(a)-8(b) [based on the
SMEFT form factor formula (3.5)] and for Figs. 8(c)-8(d)
[based on the conventional form factor formula (3.1)].

Our quantitative comparisons in Figs. 8 are instructive and
encouraging. We suggest that the ATLAS and CMS col-
leagues perform a systematic nTGC analysis based on the
new SMEFT form factor formula (3.5), using the full Run-2
dataset. Moreover, we note that in Refs. [18,19] the CMS

and ATLAS Collaborations analyzed the correlations
between the form factors (hY, 1Y) and found strong corre-
lations. We have reproduced this feature in Figs. 8(c)-8(d),
but we note that those correlation contours differ substan-
tially from our new correlation contours in Figs. 8(a)-8(b).
Based upon the above analysis, we suggest that the CMS and
ATLAS Collaborations should make updated analyses on the
(hY,h}) correlations using our new SMEFT form factor
formulation with their full Run-2 datasets. We anticipate that
such new analyses should yield results similar to the
theoretical predictions for LHC Run-2 given in Table VII
and Figs. 8(a)-8(b).

V. COMPARISON WITH PROBES OF nTGCs
AT LEPTON COLLIDERS

In this section we first summarize the sensitivity reaches
of nTGC new physics scales at high-energy e™ e~ colliders
found in our previous work [5]. Then we analyze the
sensitivity reaches of the nTGC form factors at these e e~
colliders. Finally, we compare these sensitivity limits with
those obtained for the hadron colliders as given in Sec. IV
of the present study.

At high energy e™ e~ colliders, we found in Ref. [5] that
the reaction ete™ — Zy with hadronic decays Z — ¢g
gives greater sensitivity reach than the leptonic and
invisible decays Z — ¢¢,vb. Therefore we choose for
comparison the sensitivity reaches obtained using hadronic
Z decays, and consider the e*e™ collision energies /s =
(0.25,0.5,1,3,5) TeV with a benchmark integrated lumi-
nosities £ = 5 ab™!. These results are summarized in the
upper half of Table IX for the new physics scale A of each
dimension-8 nTGC operator or related contact operator
(Og+,Og_, Ogw.Oc, ) at the 20 level, where each entry

TABLE IX. Comparisons of 2¢ sensitivities to the new physics scale A (in TeV) for each dimension-8
nTGC operator or related contact operator (Og,., Og_, Oy, Oc, ), at e e~ colliders of different collision energies,
and at the LHC and the pp (100 TeV) collider. The reactions e~e* — Zy — qgy and pp(qq) — Zy — £€y. vy
are analyzed for the lepton and hadron colliders, respectively. For the ete™ colliders, each entry corres-
ponds to (unpolarized, polarized) e beams, where we choose the benchmark e¥ beam polarizations as

(P¢.P%) = (0.9,0.65).

Vs (TeV) £ (ab~1) Ay Ao Apw Acy
ete™ (0.25) 5 (1.3, 1.6) (0.90, 1.2) (12, 1.3) (1.2, 1.6)
etem (0.5) 5 (2.3,2.7) (1.4, 1.7) (1.8, 1.9) (1.8, 2.2)
etem (1) 5 (3.9, 4.7) (1.9, 2.5) (2.5, 2.6) (2.6, 2.9)
etem (3) 5 9.2, 11.0) (3.4, 4.3) 4.3, 4.5) 4.4,52)
ete (5) 5 (13.4, 15.9) 4.4, 5.6) (5.7, 5.9) (5.7, 6.8)

0.14 33 1.1 1.3 1.4

LHC (13) 0.3 3.6 1.2 1.4 1.5

3 42 1.4 1.7 1.7

3 23 4.6 5.6 59

pp (100) 10 26 5.1 6.1 6.5

30 28 55 6.7 7.1
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has two limits that correspond to the (unpolarized, polar-
ized) e™ beams. For the polarized e¥ beams, we choose the
benchmark polarizations (P¢, P%) = (0.9, 0.65). For com-
parison, we summarize in the lower half of Table IX the
sensitivity reaches of A via the reaction pp(qg) — Zy with
Z — ¢¢,vb at the LHC (13 TeV) and the 100 TeV pp
collider, based on Tables IV and V of Sec. III.

From the comparison in Table IX, we see that the
sensitivity reaches for the nTGC operator Og, (and also
the contact operator O,_) at the LHC (13 TeV) with
integrated luminosities £ = (0.14,0.3,3) ab~! are higher
than those of ete™ colliders with collision energies
/s = (250,500) GeV, and are comparable to those of
an e'e™ collider of energy /s = 1 TeV, but much lower
than that of the CLIC with /s = (3 — 5) TeV. On the other
hand, the sensitivity reaches of the 100 TeV pp collider
with an integrated luminosity £ = 3 ab~! can surpass those
of all the eTe™ colliders with collision energies up to
(3-5) TeV.

We consider next the other three dimension-8 operators
(OG-, Opw.Oc, ). Table IX shows that the LHC has
sensitivities to A that are comparable to those of ee”
colliders with /s = (250, 500) GeV, but are clearly lower
than those of eTe™ colliders with collision energies
/s > 1 TeV. On the other hand, we find that the sensi-
tivities of the 100 TeV pp collider with an integrated
luminosity £ = 3 ab~! are significantly greater than those
of the e e~ colliders with energy /s < 3 TeV. Moreover,
a 100 TeV pp collider with an integrated luminosity £ =
(10-30) ab~! has sensitivities comparable to those of an
ete™ collider with /s =35 TeV, while a 100 TeV pp
collider with an integrated luminosity of 30 ab~' would
have higher sensitivities than an e"e~ collider with
/s =5 TeV. In passing, we find that our collider limits

given in Table IX are much stronger than the unitarity limits
of Table I and Fig. 1. This shows that the perturbation
expansion in the SMEFT formulation is well justified for
the present collider analyses of probing the nTGCs.
Next, we analyze the probes of nTGCs at e e~ colliders
using the form factor formulation we described in Sec. III.
According to the relations we derived in Eq. (3.6), can
translate our sensitivity reaches on the new physics scale A;
of each dimension-8 operator O; to that of the related form
factor h}’. The corresponding sensitivities on the form

factors (hy, h%,h%) are presented in the upper half of
Table X. For comparison, we also show the sensitivities
of the LHC (13 TeV) and a 100 TeV pp collider in the
lower half of Table X.

We see from Table X that the LHC has sensitivities for
the form factor |hy4| that are higher than those of the ete™
colliders with /s = (250,500) GeV by a factor of
0(10-10%), but has comparable sensitivities to that of an
ete™ collider with \/E — 1 TeV, whereas the LHC sensi-
tivities are lower than those of the e*e™ colliders with
V/s = (3-5) TeV by a factor of O(10-102). On the other
hand, a 100 TeV pp collider would have much higher
sensitivities than all the e*e™ colliders with /s < 5 TeV,
by factors ranging from O(10-10°). We also see that a
100 TeV pp collider has a sensitivity for probing the form
factor hy that is better than that of the LHC by a
factor O(10?).

Similar features hold for the form factors (h% , %), as can
be seen by inspecting Table X. We find that an eTe~
collider of any given collision energy /s has comparable
sensitivities for probes of (h%, k%), with the differences
being less than a factor of 2. We see also that the
sensitivities improve from O(10™%) to O(1077) when
the collider energy increases from /s = 0.25 to 5 TeV.

TABLE X. Sensitivity reaches on the nTGC form factors at the 26 level of et e~ colliders with different collision
energies, compared with those of the LHC and the pp (100 TeV) collider. The reactions e~ e¢™ — Zy — ggy and
pp(qq) — Zy — €€y, vy are considered for the lepton and hadron colliders respectively. For the e*e™ colliders,
each entry corresponds to (unpolarized, polarized) e¥ beams. As benchmarks for the ¢T beam polarizations we

choose (P¢, P%) = (0.9,0.65).

V5 (TeV) L (@b™) A

|| |75

ete™ (0.25)

5

(3.9,2.0) x 10~

2.7,2.3) x 10~

(4.9,1.6) x 107

(

ete” (0.5) 5 (3.8,1.9) x 1073 (6.2,5.2) x 1073 (10,3.7) x 107>
etem (1) 5 (45,2.3) x 107 (1.5,1.2) x 1073 (2.3,1.0) x 1073
ete” (3) 5 (1.6,0.84) x 1077 (1.7,1.4) x 107° (2.5,1.0) x 107°
ete™ (5) 5 (3.6,1.8) x 1078 (5.8,4.9) x 1077 (8.9,3.4) x 1077

0.14 9.6 x 107 1.9x 1074 22x 1074

LHC (13) 0.3 7.5 x 107° 1.5x 107 1.8 x 107

3 3.8x 107 0.80 x 1074 0.97 x 1074

3 4.0 x107° 6.1 x 1077 7.2 x 1077

pp (100) 10 2.6 x 107 4.2 % 1077 49 %1077

30 1.9 x 107 3.0x 1077 3.5x 1077
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We further note that the LHC and 100 TeV pp colliders
have comparable sensitivities to (h%hg) for any given
integrated luminosity. When the integrated luminosity of
the LHC (or the 100 TeV pp collider) increases over the
range from £ = (0.14-3) ab™! [or £ = (3-30) ab~!], we
see that the sensitivities to the form factors (h%, i%) increase
by about a factor of 2. Comparing the sensitivity reaches of
the eTe~ and hadron colliders in Table X, we find that the
sensitivities of the LHC are comparable to those of a
0.25 TeV eTe™ collider, but lower than those of eTe~
colliders with /s = (0.5-1) TeV by a factor of O(10), and
lower than those of eTe™ colliders with /s = (3-5) TeV
by factors of O(10>~10%). On the other hand, the sensi-
tivities of the pp(100 TeV) collider for probing (h%, )
are generally higher than those of the 250 GeV e'e”
collider by a factor of O(10?), higher than those of the 0.5
to 1 TeV eTe™ colliders by a factor of O(10?), and higher
than those of the 3 TeV e* e~ collider by a factor of O(10),
while they are comparable to those of a 5 TeV ete”
collider.

Finally, it is instructive to present the ¢, angular
distributions for the form factor /). In the gauge-invariant
form factor formulation given in Eq. (3.5), we have
imposed the constraints (3.4a)—(3.4b). Hence, the form
factor hY is not independent, and should be replaced by
hY = —h} /2, according to Eq. (3.4a). Moreover, Eq. (3.4b)
shows that hf‘ is not independent, so the form factors
(hY,hY) reduce to a single parameter hy(=h%) as shown
below Eq. (3.4). We can then derive the interference cross
section ¢; contributed by /i, and the normalized angular
distribution f} as follows:

A+ )6 -1,

= , 5.1
71 8aswewv’s N (5-1a)
o 1 3a(ff — fR)(MZ +55)cos ¢, | scos2h,
o " 2x 256(f7 + fR)MzA/5 87M?
(5.1b)

We see that the interference cross section scales as o, o« E°,
while the angular distribution f}, has the leading term

cos 2¢, enhanced by E? and the subleading term cos ¢,
enhanced by E'! for large energy /s = E. We plot the
angular distribution f;ﬁ* in Figs. 9(a) and 9(b) for the ete™
collider energies /s = 250 GeV and 3 TeV, respectively.
In each panel, the h, contribution is depicted by the red
solid curve, and the SM contribution is shown as the black
dashed curve which is almost flat. We also observe that
cos ¢, and cos 2¢), terms in the function f }/) in Eq. (5.1b)
have opposite signs. They are comparable for lower
collision energy /s = 250 GeV, but cos(2¢,) becomes
dominant for a large collision energy /s = 3 TeV. We can
evaluate the numerical coefficients of f;b*, as follows:

1
{1/, =5 0.485c0s¢p, +0.299c0s2¢,., for /s =250GeV,
* /3

(5.2a)

[y = 2i— 5.67 cos ¢, +43.1cos2¢,, for \/s =3 TeV.
© 2

(5.2b)

This explains why panel (a) of Fig. 9 exhibits a significant
cancellation between the cos¢, and cos(2¢,) terms,
whereas in panel (b) the cos(2¢,) term dominates and
thus the red curve exhibits interesting cos(2¢,) behavior.

For comparison, we consider the conventional form
factor formulation (3.1) with hY =0, where (h%, h},) are
treated as two independent parameters. In this case we
derive the following interference cross sections (57,54)
contributed by (h%,h}) and their normalized angular
distributions (]‘},Z, f}f‘ ):

7 et(s —M2)? (1 —4s3 2
(67.51) = £ 5V, H ). (5.3a)
1287M7s SWCw SwCw

}IZ:L_3”(f%_f%€)(3S+M%)1_4S%V+8S%VCOS¢
P 2m 128My(fE 4 [R5 1 —4sy, *’

(5.3b)

w14 _ 1 _3”(f% — f2)(3s + M3)

- 1 — 452 .
2T M+ s W

(5.3¢)

We see that the interference cross sections in (5.3) scale as
(67,51)  E?, while the angular distributions (f}”, f;")
have leading terms o cos¢, enhanced by E'! for large
energy /s = E'. We also note that the distribution f}" is
much suppressed relative to f;ﬁz due to the small factor
(1 —4s7) < 1. We plot the angular distributions (f;7, fy*)

of Eq. (5.3¢) as the blue solid curves in Figs. 9(c)-9(d), while
the squared distributions (f77, f3") and the SM distribution
fg* are plotted as the green solid curves and black dashed
curves, respectively. As expected, the distributions
(fi.f7') and fj are dominated by the constant term
and thus nearly flat.

We stress that Eq. (5.3) and the corresponding
Figs. 9(c)-9(d) are incorrect because the conventional
form factor formulation (3.1) with 4Y = 0 does not obey
the consistency conditions (3.4) imposed by the sponta-
neous breaking of the electroweak gauge symmetry
SU(2); ® U(1), of the SMEFT. In the following we
further show that the conventional form factor formulation
also leads to erroneously strong sensitivity limits on the
form factors (h%, h}).
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FIG.9. Normalized angular distributions in ¢, for e*e~ — Zy with Z — dd, as generated by &, in our form factor formulation (3.5) in
panels (a) and (b), and as generated by (17, h}) in the conventional form factor formulation (3.1) with h;/ = 0 in panels (c) and (d). The
panels (a) and (c) correspond to the e™e™ colliders with /s = 250 GeV and the panels (b) and (d) correspond to /s = 3 TeV.

Following the steps leading to Eq. (4.11), we construct
the following observables (O, 0,) for probing the form
factors:

0, = |o; /d¢*fglb* x sign(cos2¢,)|,  (5.4a)
0, = |5, / dep, [}, x sign(cosg,)|.  (5.4b)
TABLE XI.

From the above formulas (5.1a) and (5.3), we deduce that
energy-dependences of the observables are O (h,) o E? and
O, (h))  E®. This shows that in the conventional form
factor formulation @f has an erroneously large energy
dependence (E? instead of E?), leading to incorrectly strong
sensitivities to the form factors (h%, h}). We present these
incorrect sensitivities in blue color in Table XI. For com-
parison, we also show in this table the correct sensitivities
(red color) to the form factors Ay, as derived within our
consistent form factor formulation (3.5) with the constraints

Comparisons of the 2¢ sensitivities to probing the form factor 4 of our SMEFT formulation (3.5) (in

the 2nd row) and the conventional form factors (h%, h}) that take into account only U(1),,, gauge invariance (in the
3rd and 4th rows), as derived by analyzing the reaction ete™ — Zy — ¢gy at various e*e™ colliders with £ =
5 ab~! and unpolarized e¥ beams. As discussed in the text, the conventional form-factor limits (in the 3rd and 4th
rows) are included for illustration only, as they do not respect the full SM gauge symmetry, and hence are invalid.

Vs (TeV) 0.25 0.5 1 3 5

|y 3.9 x 107 38 %107 4.5 %1076 1.6 x 1077 3.6x 1078

A 8.9 % 1075 42 % 107 2.5x 1077 3.0x 107 3.9 x 10710
A 6.7 x 1074 32 %107 1.9 x 1076 23 %107 2.9 %107
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FIG. 10. Sensitivity reaches for the new physics scale A of
the nTGC operators at the hadron colliders LHC (13 TeV) and
pp (100 TeV) in plot (a) and e'e~colliders with collision
energies /s = (0.25,0.5,1,3,5) TeV in plot (b). In each plot,
the (20,50) sensitivities are shown in (light, heavy) colors,
respectively.

(3.4a) and (3.4b). From this comparison, we see that for the
form factor % the conventional sensitivities (blue color) are
erroneously stronger than our new sensitivities (red color)
by a factor of 5 for the collider energy /s = 250 GeV,
by a factor of O(10-20) for the collider energies /s =
(0.5-1) TeV, and by a factor of O(10%) for the collider
energies /s = (3-5) TeV.

Finally, for an intuitive comparison and overview, we
summarize in Fig. 10 the sensitivity reaches for the new
physics scales of the dimension-8 nTGC operators at the
hadron colliders [panel (a)] and the e™e™ colliders [panel
(b)] from Tables IV-V and IX. We present these limits at
both the (26, 56) levels, which are indicated by the (light,
heavy) colors respectively. In Fig. 10(b) we only plot the
sensitivity reaches for e~e™ collisions with unpolarized
electron/positron beams. We note that according to
Table IX, adding the e~ /et beam polarizations can
increase the sensitivity reaches on the new physics scale
by about 20% for O, and Oc,, and by about 5% for
Opw. Also, we summarize in Fig. 11 the sensitivity
reaches for probing the nTGC form factors (hy, h%, h})
at the hadron colliders [panel (a)] and the eTe™ colliders
[panel (b)] from Tables VII and X, where the (20, 50)

0.001F  LHC(13TeV) pp(100TeV)  (a)
i i i L
1 LT
107 i i i ?
1w
10-9 : : : :

140ab~' 300ab~! 3ab! 3ab™'  10ab™' 30ab”!

0.001 nE ete” (5ab™") ; (b)
107 | 3 LY

5 5 HE Y
10 R
106 i B
0 1 (| IH L
107
10 ' ' : ' —

250GeV 500GeV 1TeV 3TeV 5TeV

FIG. 11. Sensitivity reaches for the nTGC form factors
(h4h%h§) at the hadron colliders LHC (13 TeV) and pp
(100 TeV) in plot (a) and at e*e~colliders with collision
energies /s = (0.25, 0.5, 1,3,5) TeV in plot (b). In each plot,
the (20,50) sensitivities are shown in (heavy, light) colors,
respectively.

limits are marked by the (light, heavy) colors, respec-
tively. In Fig. 10(b) we present only the sensitivity
reaches for e~e™ collisions with unpolarized electron/
positron beams. We note that according to Table X,
adding the e~/e™ beam polarizations can increase the
sensitivity reaches for the nTGC form factors by about
100% for hy, by about 20% for h%, and by about 160%
for K.

The reason that the effects of beam polarization for
probing the nTGC form factors in e"e™ collisions appear
much stronger than those for probing the new physics cutoff
scales of the dimension-8 nTGC operators can be understood
as follows. We note that the relation between the polarized
and unpolarized cross sections of the SM backgrounds is
given by [5]:

PjPyci + (1= Pf)(1 - PR)ck

oo(P;,Pg) =4 Z+c

50(0.5,0.5),

(5.5)

where P$ (P%) denotes the fraction of left-handed
(right-handed) electrons (positrons) in the e (e™)
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beam and P; + P =1 holds for both e~ and e™
beams.”

According to Ref. [5], we construct the following three
kinds of O; observables and extract the different signal
terms of O(A™*) in the differential cross section:

3

d
0, = / d6de.dg, —= 2!

46d6,dg. (5-62)

sign(cos ¢,),

d*c
Op = / dede*d(ﬁ*m

x sign(cos ¢, )sign(cos @)sign(cos b,),  (5.6b)

3

o1 sign(cos 2¢..).

(5.6¢)
For these observables, we can deduce the following:

1 ]
04(G+) = A x 5cLP;P;;(Ss + M%)AG, (5.7a)

O4(j) = A x 3[cpx, P{ Py + cgxp(l = P7)(1 = Pg)]
x (s + M%)AJT“, (5.7b)
1 _
03(G+) = B x ECLPZP;(SS + M2)AG, (5.7¢)
Op(j) = B x 3[c x, P; Pk — cpxg(l = P7)(1 = P})]
x (s + M%)A]T“, (5.7d)
1 e A—4
®C(G+) =Cx ECLPEP;SAGJH (576)
Oc(j) = C x [cpx P; Pg — crxg(1 = P7)(1 = Pg)]
x MZAGY, (5.71)

where the index j denotes the operators (Og_, Ogy, Ocyy ),
respectively. The values of the coefficients (A,B,C) in
these formulas are given by the numerical results for the
observables in Eq. (5.6). The dependence of each sensi-
tivity limit on the polarization choice is determined by the
relation between the left- and right-handed couplings. The
most sensitive observable for probing Og, (hy) is Oc,
while the most sensitive observable for probing Oy, (h%)
and Oc, is O,. For probing Og_(h}), the most sensitive

"Note that the degree of longitudinal beam polarization for e~
or et is defined as P = Pr — P; [5]. Thus, the left-handed and
right-handed fractions of ¢~ and e in the beam can be expressed
as P§ p =1(1 F P°) and P§ , =1(1 F P?), respectively. For
instance, unpolarized ¢~ and ¢ beams have vanishing degrees of
polarization (13“, IA’E) = 0, whereas a polarized ¢~ beam with
fraction P§ = 90% has P¢ = —0.8 and a polarized e* beam with
fraction P4 = 65% has P¢ = 0.3.

observable is Oy in the case of unpolarized beams, and is
0, in the case of polarized beams [for the choice
(P¢,P%) = (0.9,0.65)]. We note that the sensitivity limits
for the nTGC form factors scale as (hY, h}) « Oy (where
X = A, B, C), and that the new physics cutoff reaches of the
dimension-8 nTGC operators behave like A @;(/ .,
Hence, the improvements from the beam polarizations
can be significant for the form factors, but become rather
mild for the cutoff scales of the dimension-8 operators.

For convenience, we express a given observable Oy =
Oy /A for the dimension-8 operator formulation and Oy =
0 xh! for the form factor formulation. We may estimate the
significance by Z ~ §/+/B. If we require the significances
of the polarized and unpolarized cases to be equal,
Zool = Zunpol» We can derive the following ratio of the
polarized/unpolarized limits on the dimension-8 cutoff
scales and on the form factors, respectively:

A;(pol) _ i
R. = J = [Ry(P¢, P? 1/4’
A Aj(unpol) [ X( L R)]
hY (unpol) - .
Ry = ———=- = Rx(P%, P%), 5.8
= M) = Rl PR) 58
where the ratio Ry (P, P%) is defined as
_ o Ox(P§.P%) ]60(0.5,0.5)
Rx(P{,Pg) == —. (5.9
x(PL-Py) 05(0.5,0.5) \/ o0(P%. P?) (59)

From the above, we derive the following estimate of the
ratio Ry for each observable Oy:

R — 2|cpx Py Py + crxp(l — Pp)(1 — Pg)|

A
lepxp, + crxg|

2 2
X\ (5.00m)
P Pgcr + (1 = P7)(1 = PR)ck
o e PiPy — cprell = Py)(1 = P)
e lcpx, — crxg|
2 2
x| CLECR ——. (5.10b)
PjPger + (1= P7)(1 = PR)ck

where (c;,cg) = (T3 — Qs?,,—0s%,) denote the Z cou-
pling factors with the (left, right)-handed electrons, and the
coupling coefficients (x;,xy) are given by

(xp,xg) = —0s%(1,1), (for Og_), (5.11a)
(xp,xg) = (T3 — Os%,, —0s%), (for Ogy), (5.11b)
(xz,xg) = =T5(1,0), (for Og., Ocy). (5.11c)
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Because the coupling coefficient xz = 0 for O, (hy) and
Oc,, we can reduce the significance ratio (5.10) to the
following form and compute its value for (P§,P%) =
(0.9,0.65):

Ry(P¢, P%) = 2P; X At _
EOR T RN P PRe + (1= PE)(1 = PR)cg

(5.12a)

Rx(0.9,0.65) ~ 2.0, (5.12b)

where X = A, B, C. Thus, we deduce the following ratios
for the operators (Og,., Oc.) and the form factor /y:
Ra

=R, = [Rx(0.9.0.65)]"*~12,  (5.13a)

G+

Ry, = Rx(0.9,0.65) ~2.0. (5.13b)

This means that the e”/e™ beam polarizations can
enhance the sensitivity reach for the cutoff scale Ag, by
about 20%, and enhance the sensitivity reach for the form
factor i, much more significantly, namely, by about 100%,
which explains the features shown in Tables IX-X and
Figs. 10-11.

We further note that the coupling coefficients x; p =
cp.g for the nTGC operator Oy, and form factor h%. We
find that to enhance the polarization effects for probing
Opy and h%, the most sensitive observable is O 4. Thus, we
simplify the significance ratio (5.10) to the following form
and compute its value for (P§, P%) = (0.9,0.65):

_ , P Poca +(1—=PS)(1—P%)c3
RA(PZ,P§)=2\/ L RCL+(2 L2>( R)CR
¢ty

. (5.14a)

RA(0.9,0.65) ~ 1.2. (5.14b)

With these, we deduce the following ratios for the operator
Opy and the form factor h%:
7_?’ABW =

Riz = Rx(0.9,0.65) ~ 1.2.

[RA(0.9,0.65)]"/*~1.05,  (5.15a)

(5.15b)

This shows that the beam polarizations can increase mildly
the sensitivity reach for the cutoff scale Agy, by about 5%,
and increase the sensitivity reach for the form factor 4% by a
larger amount of 20%, which agree with the features shown
in Tables IX—X and Figs. 10-11. Finally, we note that the
enhancement ratio (5.9) does not apply to the cases of Og_
and A because there Oy, is the most sensitive observable for
the unpolarized case and O, is the most sensitive observ-
able for the polarized case. Thus, we define the corre-
sponding ratio R ,z(P$, P%) of significances between the
polarized and unpolarized cases and compute its value
R45(0.9,0.65):

OA(PE’ P%)
0,(0.5,0.5)

66(0.5,0.5)

7_?’AB(PZ’PIEQ): Go(Pe PE)’
L% R

(5.16a)

R45(0.9,0.65) ~2.6. (5.16b)
From these we derive the significance ratios for the operator
Og_ and the form factor /%:

Ra, = [Rap(0.9,0.65)]"/4~1.27,  (5.17a)

Ry = Rx(0.9,0.65) = 2.6. (5.17b)
We see that the beam polarization effects can raise the
sensitivity reach for the cutoff scale A;_ by about 27%,
and raise the sensitivity reach for the form factor 4% by
about 160%, which agree with the results presented in
Tables IX-X and Figs. 10-11.

VI. CONCLUSIONS

Neutral triple-gauge couplings (nTGCs) provide an
important window for probing new physics beyond
the SM. In this work, we have studied systematically the
prospective experimental sensitivities to nTGCs at the
13 TeV LHC and a future 100 TeV pp collider, using
the SMEFT approach to classify and characterize the
nTGCs that can arise from gauge-invariant dimension-8
operators.

In Sec. I A we first considered a set of CP-conserving
dimension-8 nTGC operators and the related contact
operators in Eq. (2.2). Then, in Sec. I B we derived their
contributions to the scattering amplitudes of the partonic
process gq — Zy in Egs. (2.7) and (2.8). With these, we
computed the corresponding total cross sections including
the SM contribution, the interference term of O(1/A%), and
the squared term of O(1/A3%), as in Egs. (2.12) and (2.15),
where A is the new physics cutoff scale defined in Eq. (2.1).
We further presented in Eqgs. (2.14), (2.17), and Fig. 3 their
contributions to the differential angular distributions, in
comparison with that of the SM. In Sec. Il C we analyzed
the perturbative unitarity bounds on the nTGCs, as shown
in Table I and Fig. 1, which are much weaker than the
collider limits presented in Secs. [IV-V. Hence, the pertur-
bation expansion is well justified for the current collider
analyses.

In Sec. IIT we presented a new form factor formulation of
the neutral triple gauge vertices (nTGVs) ZyV* (with
V =7, y), by mapping them to the dimension-8 nTGC
operators of the SMEFT that incorporate the spontaneously
broken electroweak gauge symmetry SU(2); ® U(1)y of
the SM. This differs from the conventional form factor
parametrization of nTGCs that takes into account only the
unbroken U(1),,,, gauge symmetry [3,4]. Using the SMEFT
approach, we have found that a new momentum-dependent
nTGC term with form factor iY has to be added and the
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mapping with the dimension-8 SMEFT interactions enfor-
ces new nontrivial relations (3.4a)—(3.4b) between the form
factors (hy , hY) and between the form factors (h%, h'}). The
new form factor h;’ was not included in all the previous
form factor analyses of nTGVs. We have demonstrated that
including the new form factor hé’ is crucial for a fully
consistent form factor formulation of nTGVs and ensures
the exact cancellation of the spuriously large unphysical
terms of O(E?) in the scattering amplitudes of gg — Zy, as
shown in Egs. (3.8b) and (3.10). In consequence, among
the six general n'TGC form factors (hY, by, hY) in Eq. (3.2),
we have proven that only three of them, (h%, i}, hy) with
hy = h4Z, are independent, and the correct nTGC form
factor formula is given by Eq. (3.5). We have further
presented the explicit correspondence between the nTGC
form factors and the cutoff scales of the dimension-8 nTGC
operators in Egs. (3.6)—(3.7).

In Sec. IV, we have systematically studied the sensitivity
reaches for probing the new physics scales of the nTGC
operators and for probing the nTGC form factors in the
reactions pp(qg) — Zy — ¢£y.viy at the LHC and the
future pp (100 TeV) collider. We have presented analyses
of sensitivity reaches using the interference contributions of
O(A™*) in Sec. IV B and including the squared contribu-
tions up to O(A~?) in Sec. IV C. We have evaluated the
prospective 20 and 5o sensitivities of the LHC and the
future 100 TeV pp collider to the different nTGCs, and
have combined the sensitivity reaches of the leptonic decay
channel Z — #7¢~ (Secs. IVB-IV C) and the invisible
decay channel Z — vv (Sec. IV D). We have presented our
findings in Tables II-IV for the dimension-8 operator O,
and the equivalent operator O._, and in Table V for the
other dimension-8 operators (Opy., Og_, Oc, ). These
sensitivity reaches are further summarized in our
Fig. 10(a). From Table IV, we see that the 26 (50)
sensitivity to the scale of the operator Og, could reach
44 TeV (3.9 TeV) at the 13 TeV LHC with 3 ab~!
integrated luminosity, and reach 30 TeV (26 TeV) at the
100 TeV pp collider with 30 ab~!, whereas the estimated
sensitivity reaches on the scales of the dimension-8
operators (Ogy, Og_. O¢, ) shown in Table V are some-
what smaller. Then, in Sec. IVE we have presented the
LHC sensitivity reaches on the three independent form
factors (hy, h%, hY) in Table VII, with a summary of these
sensitivities given in Fig. 11(a). We see that the sensitivities
for probing the form factor s, are generally higher than
those of the other two form factors (h%, hY) by about a
factor of 5 x 1072 at the LHC and by about a factor of 1072
at the 100 TeV pp collider. We emphasize that if the
dimension-8 SMEFT relations between the different form
factors are not taken into account, one would find unre-
alistically strong sensitivities due to the uncanceled large
unphysical energy-dependent terms associated with the
form factor hy, as seen by comparing Eq. (4.20) with

Eq. (4.17). Then, we explicitly demonstrated in Table VIII
that the sensitivities to 4% and 4/, in the conventional form
factor approach (marked in blue color) are (erroneously)
higher than the correct sensitivities (marked in red color
and extracted from Table VII) by about a factor of 5 x 1072
at the LHC and by about a factor of 1072 at the
pp(100 TeV) collider. Hence, it is important to use the
consistent form factor approach for the nTGC analysis as
we advocated in Sec. III. After these comparisons, in
Sec. IVF we analyzed the 2-parameter correlations for
both the nTGC form factors and for the nTGC dimension-8
operators. We presented in Fig. 5 the correlations of each
pair of the form factors (hy, hy) and (h%,h%) at hadron
colliders, where the (/4, h%’ ) contours in the plots (a) and
(b) have rather weak correlations due to the extra energy-
suppression factor of Eq. (4.27), and the plots (c) and
(d) demonstrate large correlations between the form factors
(h%. h%). Then, we presented the correlations of each pair
of the nTGC operators (Og, . Opy) and (O, ,Os_) in
Figs. 6(a)-6(b) which are suppressed by large energy factor
1/+/5 as shown in Eq. (4.31). The correlations of each pair
of the nTGC operators (Ogzy, Og-), (Ocy, Opy), and
(Ocy, Og_) are presented in Figs. 7(a)-7(d). These corre-
lations are not suppressed by any energy factor and are thus
significant at both the LHC and the 100 TeV pp collider.
We demonstrated in Figs. 7(c)-7(d) that the correlations of
the operators (O¢, , Oy ) and (O¢, Og_) are particularly
strong. Finally, in Sec. IVG we have made direct com-
parison with the published LHC measurements on nTGCs
in the reaction pp(qg) — Zy (with Z — vp) by the CMS
[18] and ATLAS [19] Collaborations. Using the same
kinematic cuts and integrated luminosity together with
an estimated detection efficiency as in the ATLAS analysis
[19], we have applied the conventional form factor for-
mula (3.1) to reproduce the n'TGC bounds in Eq. (4.46) and
the strong correlations of (Y, h)) in Figs. 8(c)-8(d), which
agree well with the ATLAS results [19]. However, the
(hY,h)) contours of Figs. 8(c)-8(d) differ substantially
from those contours of Figs. 8(a)-8(b), which exhibit rather
weak correlations as predicted using our new SMEFT form
factor formula (3.5). Hence, it is important to use the
SMEFT form factor formulation described in Sec. III to
analyze the LHC bounds on nTGCs.

We presented in Sec. V systematic comparisons of the
sensitivity reaches for the nTGCs between the hadron
colliders (the LHC and the 100 TeV pp collider) and
ete™ colliders with different energies. Table IX summa-
rizes the comparisons for probing the nTGCs of dimension-
8 operators (Og.y, Opw, Og_, Ocy), whereas Table X
summarizes the comparisons for probing the nTGC form
factors (hy, h%, h}). We have summarized the above com-
parisons of sensitivity reaches between the hadron colliders
and lepton colliders in Figs. 6 and 10. Then, in Table XI, we
have further demonstrated that using naively the conven-
tional form factor formula without including the nontrivial
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constraints of the dimension-8 SMEFT approach would
cause erroneous sensitivities to (A%, h}) (marked in blue
color) that are stronger than the correct sensitivities (marked
in red color and extracted from Table X) at the e e~ colliders
by a factor of O(10) for the collision energy /s < 1 TeV and
by a factor of O(10%) for /s = (3-5) TeV. Hence, it is
important to use the consistent form factor approach of
Sec. Il for nTGC analyses at e e~ colliders. In general, from
the comparisons of Tables X-X and Figs. 1011, we find
that the LHC sensitivity reaches on the n'TGCs are similar to
those at the eTe™ colliders with collision energy /s <
1 TeV [5]. On the other hand, a higher-energy e e~ collider
with /s = (3-5) TeV would have greater sensitivities than
the LHC to probing the new physics scales of the nTGC
operators and the corresponding nTGC form factors.
However, we have shown that the sensitivity reaches of
the 100 TeV pp collider would be even higher.

Overall, we have found that nTGCs provide a powerful
means for probing any possible new physics beyond the
SM that could generate the dimension-8 nTGC operators
in the SMEFT. We have found that both pp and e*e”

colliders have significant roles to play. We advocate as a
first step that the ATLAS and CMS experiments at the
LHC apply the dimension-8 SMEFT approach proposed
here to analyze the nTGCs, in preference to the conven-
tional form factor approach that does not take into account
the full electroweak gauge symmetry SU(2); ® U(1)y of
the SM.
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