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Abstract

One of the most important mechanisms at the Large Hadron Collider (LHC) for the
production of the pseudoscalar Higgs boson of the Minimal Supersymmetric Standard
Model (MSSM) is the loop-induced gluon fusion process gg → A. The higher-order
QCD corrections have been obtained a long time ago and turned out to be large.
However, the genuine supersymmetric (SUSY–)QCD corrections have been obtained
only in the limit of large SUSY particle masses so far. We describe our calculation of
the next-to-leading-order (NLO) SUSY–QCD results with full mass dependence and
present numerical results for a few representative benchmark points. We also address
the treatment of the effective top and bottom Yukawa couplings, in the case of heavy
SUSY particles, in terms of effective low-energy theories where the heavy degrees of
freedom have been decoupled. Furthermore, we include a discussion of the relation
between the SUSY–QCD corrections that we have computed and the Adler–Bardeen
theorem for the axial anomaly. In addition, we apply our results to the gluonic and
photonic pseudoscalar Higgs decays A → gg, γγ at NLO.

1 Introduction

The discovery of a Standard-Model-like Higgs boson at the LHC [1] completed the Standard
Model (SM) of electroweak and strong interactions. The existence of the Higgs boson [2] is
inherently related to the mechanism of spontaneous symmetry breaking while preserving the
full gauge symmetry and the renormalizability of the SM [3]. The measured Higgs boson mass
of (125.09± 0.24) GeV [4] ranks at the weak scale. The existence of the Higgs boson allows
the SM particles to be weakly interacting up to high-energy scales [5]. This, however, is only
possible for particular Higgs-boson couplings to all other particles, so that the knowledge
of the Higgs-boson mass fixes all its properties uniquely. The massive gauge bosons and
fermions acquire mass through their interaction with the Higgs field that develops a vacuum
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expectation value in its ground state. The minimal model requires the introduction of one
isospin Higgs doublet and leads after spontaneous symmetry breaking to the existence of
one scalar Higgs boson. The SM itself, however, leaves several fundamental questions open
as e.g. the nature of Dark Matter, the baryon asymmetry of the universe or the stability of
the electroweak against the Planck or grand unification scale. If the SM is extended to a
Grand Unified Theory (GUT) scale, radiative corrections to the Higgs-boson mass tend to
push it towards the GUT scale, if the Higgs boson couples to particles of that mass order.
In order to obtain a Higgs mass at the electroweak scale the Higgs-mass counterterm has to
be fine-tuned to cancel these large corrections thus establishing an unnatural situation that
asks for a solution. This is known as the hierarchy problem [6]. These open questions call for
extensions of the minimal model. To increase the experimental sensitivity to effects beyond
the SM (BSM), the SM and BSM parts of measured relevant observables need to be known
as precisely as possible in order to allow for a reliable interpretation of potential deviations
and effects beyond the SM.

The open problems of the SM motivate extensions of the minimal model which cover
e.g. the Two-Higgs-Doublet model (2HDM) [7] or the minimal supersymmetric extension
(MSSM) [8, 9] as prominent and highly motivated examples. Supersymmetric extensions of
the SM provide a solution to the hierarchy problem if the supersymmetric particle masses
rank at scales up to a few TeV [10]. Supersymmetry relates fermionic and bosonic degrees
of freedom and thus links internal and external symmetries. The MSSM, if embedded in
a Grand Unified Theory, predicts a value of the Weinberg angle in excellent agreement
with experimental measurements of electroweak precision observables [11]. Moreover, it
contains a Dark Matter candidate if R-parity is conserved [12] and allows for generating
electroweak symmetry breaking radiatively, since the top mass ranks in the proper region
for that mechanism to work [13]. The MSSM introduces two isospin Higgs doublets due to
the analyticity of the superpotential, requiring two different doublets for the generation of
the up- and down-type fermion masses and the anomaly-freedom with respect to the gauge
symmetries [14], since the higgsino states as the supersymmetric partners of the Higgs bosons
contribute to the Adler-Bell-Jackiw anomaly [15]. Due to this, the MSSM Higgs sector is
a 2HDM of type II at leading order (LO). There are a light (h) and heavy (H) scalar, a
pseudoscalar (A) and two charged (H±) states as the corresponding mass eigenstates. Since
the self-interactions of the Higgs fields, as defined by the corresponding Higgs potential,
are entirely fixed by the electroweak gauge couplings, this induces an upper bound on the
light scalar Higgs mass that has to be smaller than the Z-boson mass MZ at LO. However,
radiative corrections, which are dominated by top-quark-induced contributions, strongly
increase this upper bound to about 130 GeV in general [16]. The Higgs sector is uniquely
fixed at LO by the value of the pseudoscalar mass MA and the parameter tgβ, defined as
the ratio of the two vacuum expectation values of the scalar Higgs fields.

In this work, we will describe the calculation of the full SUSY–QCD corrections at NLO
to pseudoscalar Higgs production via the gluon-fusion mechanism gg → A. This process
belongs to the dominant MSSM Higgs-boson production processes at the LHC and thus
contributes to the present bounds on the so far negative searches for the heavy MSSM Higgs
bosons at the LHC. In order to make the predictions for this process reliable, the full NLO
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corrections within SUSY–QCD have to be computed. The paper is organized as follows. In
Section 2, we will summarize the present status of the gluon-fusion cross section. In Section
3, we briefly discuss pseudoscalar Higgs decays to gluons and photons. In Section 4 we
will describe our implementation of the stop and sbottom sector followed by the detailed
description of our NLO calculation in Section 5. In the latter we also include a discussion of
effective Yukawa couplings and the relation of the considered process to the Adler–Bardeen
theorem [17]. In Section 6, we discuss numerical results for a few representative benchmark
points. We close the paper with our conclusions in Section 7.

2 Gluon Fusion

The dominant channels for pseudoscalar production at a hadron collider are given by gluon
fusion, gg → A, and production in association with bottom quarks, qq̄, gg → Abb̄, with
their relative importance depending on the value of tgβ. For large tgβ, Abb̄ production
dominates, with the gluon fusion contribution amounting to up to about 30% close to the
present exclusion bounds, depending on the region in the MA − tgβ plane [18, 19].

2.1 Leading Order

The gluon-fusion mechanism [20]
pp→ gg → A

dominates the pseudoscalar MSSM Higgs boson production at the LHC in the phenomeno-
logically relevant Higgs mass ranges for small and moderate values of tgβ. Only for large tgβ
the associated Abb̄ production channel develops a larger cross section due to the enhanced
Higgs couplings to bottom quarks [21]. The gluon coupling to pseudoscalar Higgs bosons in
the MSSM is built up by loops involving top and bottom quarks, see Fig. 1. The partonic

At, b

g

g

Figure 1: Typical diagram contributing to gg → A at lowest order.

cross section is given at lowest order by [22, 23]:

σ̂A
LO(gg → A) = σA

0 δ(1− z)

σA
0 =

GFα
2
s(µR)

128
√
2π

∣

∣

∣

∣

∣

∑

Q

gAQA
A
Q(τQ)

∣

∣

∣

∣

∣

2

, (1)
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where GF denotes the Fermi constant, αs the strong coupling, and µR the renormalization
scale. The scaling variables are defined as z = M2

A/ŝ, τQ = 4M2
Q/M

2
A (Q = t, b), and ŝ

denotes the partonic c.m. energy squared. The amplitudes AA
Q(τQ) are obtained as

AA
Q(τ) = τf(τ)

f(τ) =















arcsin2 1√
τ

τ ≥ 1

−1

4

[

log
1 +

√
1− τ

1−
√
1− τ

− iπ

]2

τ < 1

(2)

and the MSSM coupling factors gAQ are determined as gAt = 1/tgβ, gAb = tgβ. In the narrow-
width approximation the hadronic cross section is given by

σLO(pp→ A) = σA
0 τA

dLgg

dτA
(3)

with the scaling variable τA =M2
A/s, where s specifies the total hadronic c.m. energy squared,

and the gluon luminosity

dLgg

dτ
=

∫ 1

τ

dx

x
g(x, µ2

F )g(τ/x, µ
2
F ) (4)

at the factorization scale µF . For small tgβ the top-loop contribution is dominant, while for
large values of tgβ the bottom-quark contribution is strongly enhanced.

2.2 QCD Corrections

The full two-loop QCD corrections to the gluon-fusion cross section were calculated in the
past [23, 24, 25]. In complete analogy to the SM case, they consist of virtual two-loop
corrections to the basic gg → A process and real one-loop corrections due to the associated
production of the pseudoscalar Higgs boson with massless quarks and gluons. The final
result for the hadronic cross section at NLO can be decomposed as

σ(pp→ A+X) = σA
0

[

1 + CAαs

π

]

τA
dLgg

dτA
+∆σA

gg +∆σA
gq +∆σA

qq̄ . (5)

The analytical expressions for arbitrary Higgs boson and quark masses at NLO are rather
involved [23, 25]. As in the SM case, the quark-loop masses have been identified with the pole
mass mQ (Q = t, b), while the QCD coupling and the parton distribution functions (PDFs)
of the proton are treated in the MS scheme with five active flavours. The axial γ5 coupling
can be regularized in the ’t Hooft–Veltman scheme [26] or its extension by Larin [27], which
preserve the chiral symmetry in the massless quark limit by the addition of supplementary
counterterms and fulfill the non-renormalization theorem [17] of the ABJ anomaly [15] at
vanishing momentum transfer. The same result can also be obtained with the scheme of
Ref. [28] that gives up the cyclicity of the traces involving Clifford matrices. The next-to-
next-to-leading order (NNLO) QCD corrections have been obtained in the limit of heavy

4



top quarks (HTL) [29]. The QCD corrections are positive and large in total, increasing the
MSSM Higgs production cross sections at the LHC by up to about 100%. For the top-loop
contributions alone, the (moderate) NNLO corrections in the heavy-top limit (HTL) can be
used consistently. Electroweak corrections are unknown so far.

The leading terms of the relative QCD corrections in the HTL provide a reasonable
approximation for small tgβ up to pseudoscalar Higgs masses of ∼ 1 TeV with a maximal
deviation of ∼ 25% for tgβ <∼ 5 at NLO in the intermediate mass range [30]. The genuine
SUSY–QCD corrections are only known in the limit of heavy SUSY particles [31, 32]. For
large values of tgβ they can be large and approximated by the ∆b terms. This work improves
this incomplete status by calculating the full SUSY–QCD corrections with full virtual quark-,
squark- and gluino-mass dependence, which will contribute to the virtual corrections as

CA = CA
QCD + CA

SQCD (6)

where CA
QCD is the virtual part of the pure QCD corrections. We will compare the full results

for CA
SQCD with the approximate calculations in the following sections. For the SUSY–

QCD corrections we implement the stop and sbottom sector at the NLO level, although the
squarks do not contribute at LO, and therefore the definition of a renormalization scheme
for their parameters is not required. However, to be in line with the treatment of scalar
Higgs production in a future work, where stops and sbottoms contribute at LO already, we
choose the same framework. The NLO implementation of the stop and sbottom sectors will
be discussed in Section 4.

In the opposite limit, where the pseudoscalar Higgs mass is much larger than the quark
mass, the analytical results of the relative QCD corrections coincide with the SM expressions
at the leading and subleading logarithmic level for both the scalar and pseudoscalar Higgs
bosons up to NLO where the results for small quark masses are known [23]. This coincidence
is due to the restoration of the chiral symmetry in the massless quark limit. The leading
double and subleading logarithms have been resummed recently [33].

3 Pseudoscalar Higgs Decays

Although pseudoscalar Higgs decays into gluons and photons do not play a prominent role
as for the SM-like light scalar Higgs particle, they can still reach sizeable branching ratios
for smaller values of tgβ so that they might be accessible at future e+e− colliders.

3.1 A→ gg

The decay of pseudoscalar Higgs bosons into gluons is loop-induced, see Fig. 2. The dominant
contributions originate from top and bottom loops, while lighter quarks as e.g. the charm
quark yield contributions at the per-cent or sub-per-cent level only. The LO expression of
the gluonic pseudoscalar Higgs decay reads [22, 23]

ΓLO(A→ gg) =
GFα

2
sM

3
A

16
√
2π3

∣

∣

∣

∣

∣

∑

Q

gAQA
A
Q(τQ)

∣

∣

∣

∣

∣

2

, (7)
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A t, b

g

g

Figure 2: Typical diagrams contributing to A→ gg at lowest order.

where we adopted the same notation as in Eq. (1) using the same quark form factors as
given in Eq. (2). The NLO QCD and SUSY–QCD corrections can be cast into the form

Γ(A→ gg) = ΓLO

{

1 + EAαs

π

}

, (8)

with the NLO coefficient EA splitting into pure QCD corrections and genuine SUSY–QCD
corrections,

EA = EA
QCD + EA

SQCD . (9)

The QCD part can be expressed as [23, 34]

EA
QCD =

97

4
− 7

6
NF +∆m , (10)

where ∆m denotes finite mass effects at NLO [23], and NF is the number of active light
flavors included as final-state quarks as well. For e.g. tgβ = 1 the mass effects amount to
∆m ≈ 1.3, if the quark masses are defined as pole masses, but are larger for increasing values
of tgβ due to the rising significance of the bottom contributions. The expression without
∆m corresponds to the heavy-quark limit of the relative QCD corrections. The coefficient
EA

SQCD coincides with the one for the gluon-fusion cross section of Eq. (6),

EA
SQCD = CA

SQCD . (11)

3.2 A→ γγ

As for the gluonic pseudoscalar Higgs decay, its decay into photon pairs is a loop-induced pro-
cess with top and bottom quarks providing the dominant contributions, but also charginos,
see Fig. 3. At LO, the pseudoscalar decay width into photon pairs reads [22, 23]

ΓLO(A→ γγ) =
GFα

2M3
A

32
√
2π3

∣

∣

∣

∣

∣

∣

∑

f

Ncfe
2
fg

A
f A

A
f (τf) +

∑

χ̃±

gAχ̃±AA
χ̃±(τχ̃±)

∣

∣

∣

∣

∣

∣

2

, (12)

where χ̃± denotes the two chargino mass eigenstates, Ncf is the color factor of the fermions
of charge ef contributing to the loops. The LO form factors AA

i (τi) (i = t, b, χ̃±) follow the
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A t, b, χ̃±

γ

γ

Figure 3: Generic diagrams contributing to A→ γγ at LO.

expressions of Eq. (2). The chargino-coupling factors are given by

gχ̃±

i
= −2

MW

mχ̃±

i

(Sii cos β +Qii sin β) , (13)

with the charge factors Qii, Sii(i = 1, 2) given in Refs. [9, 22]. They are related to the mixing
angles between the chargino states χ̃±

1,2. The NLO QCD and SUSY–QCD corrections can
be defined as a shift of the corresponding LO quark-form factors,

AA
Q(τQ) → AA

Q(τQ)
{

1 +
[

DA
Q,QCD +DA

Q,SQCD

] αs

π

}

(14)

where the pure QCD corrections DQ,QCD to the quark form factor vanish in the heavy-quark
limit due to the Adler–Bardeen [17] theorem for these leading contributions. This means they
are induced by pure quark-mass effects [23]. The implementation of the QCD corrections
DA

Q,QCD follows Ref. [23], i.e. the running quark masses

m̂Q(µ) = κ(mQ)mQ(µ)

κ(mQ) = 1 +
4

3

αs(mQ)

π
+KQ

(

αs(mQ)

π

)2

+O(α3
s)

mQ (µ) = mQ (mQ)
c [αs (µ)/π]

c [αs (mQ)/π]

c(x) =

(

7

2
x

)
4

7

[1 + 1.398x+ 1.793 x2 − 0.6834 x3] for mt < µ

=

(

23

6
x

)
12

23

[1 + 1.175x+ 1.501 x2 + 0.1725 x3] for mb < µ < mt (15)

where mQ (µ) denotes the MS mass [35] and Kb = 12.4, Kt = 10.9 [36], are used for the loop-
quark masses at the scale µ = MA/2 such that the relations MA = 2m̂Q(mQ) = 2mQ (Q =
t, b) define the virtual quark thresholds in terms of the quark pole masses mQ. The genuine
SUSY–QCD corrections, represented by the coefficient DA

Q,SQCD, will be discussed in Section
6.3.
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4 Squark Masses and Couplings

In the following the parametrization of the stop and sbottom sectors will be described in
detail at LO and at NLO starting from the soft SUSY-breaking parameters, where the
extension to NLO requires a dedicated scheme choice for our gluon-fusion calculation. We
will follow the set-ups described in Refs. [37, 38] with corresponding modifications.

4.1 Sfermion Masses and Couplings at LO

Since the scalar sfermion current-eigenstates f̃L,R, the super-partners of the the left- and
right-handed fermions, mix with each other, the corresponding mass eigenstates f̃1,2 are
related to the current eigenstates by a rotation involving the mixing angles θf ,

f̃1 = f̃L cos θf + f̃R sin θf

f̃2 = −f̃L sin θf + f̃R cos θf , (16)

These mixing angles grow with the Yukawa couplings of the corresponding SM fermions,
i.e. mixing effects are in general only relevant for the third-generation sfermions t̃, b̃, τ̃ . The
mass matrix in the current-eigenstate basis is given by

Mf̃ =

[

M̃2
f̃L

+m2
f mf(Af − µrf)

mf (Af − µrf) M̃2
f̃R

+m2
f

]

. (17)

where rb = rτ = 1/rt = tgβ. Af is the trilinear sfermion coupling of the soft SUSY-breaking
part of the Lagrangian, while µ denotes the higgsino mass parameter and mf the fermion
mass. The parameters M̃f̃L/R

absorb the corresponding D-terms,

M̃2
f̃L/R

= M2
f̃L/R

+Df̃L/R

Df̃L
= M2

Z(I
f
3L − ef sin

2 θW ) cos 2β

Df̃R
= M2

Zef sin
2 θW cos 2β , (18)

with ef being the electric charge of the sfermion, and I3L its third isospin component, θW
denotes the Weinberg angle and Mf̃L/R

are the sfermion mass parameters of the soft SUSY-

breaking part of the Lagrangian. Hence, the mixing angles are determined from

sin 2θf =
2mf (Af − µrf)

m2
f̃1
−m2

f̃2

, cos 2θf =
M̃2

f̃L
− M̃2

f̃R

m2
f̃1
−m2

f̃2

(19)

and the squark-eigenstate masses acquire the form

m2
f̃1,2

= m2
f +

1

2

[

M̃2
f̃L

+ M̃2
f̃R

∓
√

(M̃2
f̃L

− M̃2
f̃R
)2 + 4m2

f(Af − µrf)2
]

. (20)
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In the current-eigenstate basis, the neutral Higgs couplings to sfermions are given by

gΦ
f̃Lf̃L

= m2
fg

Φ
1 +M2

Z(I3f − ef sin
2 θW )gΦ2

gΦ
f̃Rf̃R

= m2
fg

Φ
1 +M2

Zef sin
2 θW g

Φ
2

gΦ
f̃Lf̃R

=
mf

2
(µgΦ3 − Afg

Φ
4 ) , (21)

where the couplings gΦi (i = 1, . . . , 4) are specified in Table 1. In case of the scalar Higgs
bosons h,H the couplings to sfermions are symmetric, i.e. gh,H

f̃Rf̃L
= gh,H

f̃Lf̃R
, while for the

pseudoscalar Higgs boson A the diagonal couplings gA
f̃Lf̃L

and gA
f̃Rf̃R

vanish and the off-

diagonal couplings are antisymmetric, gA
f̃Rf̃L

= −gA
f̃Lf̃R

. The physical Higgs couplings to the

sfermion mass eigenstates f̃1,2 read

gh,H
f̃1f̃1

= gh,H
f̃Lf̃L

cos2 θf + gh,H
f̃Rf̃R

sin2 θf + gh,H
f̃Lf̃R

sin 2θf

gh,H
f̃2f̃2

= gh,H
f̃Lf̃L

sin2 θf + gh,H
f̃Rf̃R

cos2 θf − gh,H
f̃Lf̃R

sin 2θf

gh,H
f̃1f̃2

= gh,H
f̃2f̃1

=
1

2
(gh,H

f̃Rf̃R
− gh,H

f̃Lf̃L
) sin 2θf + gh,H

f̃Lf̃R
cos 2θf

gA
f̃1f̃1

= gA
f̃2f̃2

= 0

gA
f̃1f̃2

= −gA
f̃2f̃1

= gA
f̃Lf̃R

. (22)

Next, we will discuss the extension of the stop and sbottom sectors to the NLO SUSY–QCD
level.

f̃ Φ gΦ1 gΦ2 gΦ3 gΦ4

h cosα/ sinβ − sin(α + β) − sinα/ sinβ cosα/ sinβ

ũ H sinα/ sin β cos(α+ β) cosα/ sinβ sinα/ sin β

A 0 0 1 −1/tgβ

h − sinα/ cosβ − sin(α + β) cosα/ cosβ − sinα/ cosβ

d̃ H cosα/ cos β cos(α+ β) sinα/ cosβ cosα/ cosβ

A 0 0 1 −tgβ

Table 1: Coefficients of the neutral MSSM Higgs couplings to sfermion pairs. The symbols
ũ, d̃ denote up- and down-type sfermions.

4.2 Stops and Sbottoms at NLO

At NLO, we will introduce the soft SUSY-breaking parameters in the MS scheme, i.e. we
will start from the soft supersymmetry-breaking parameters M Q̃L,R

(Q0) and AQ(Q0) at the
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input scale Q0 which will in general be the SUSY scale, i.e. the average size of the left- and
right-handed soft SUSY-breaking mass parameters. The benchmark scenarios of Ref. [19],
however, are defined in the on-shell scheme of all involved input parameters. Thus, we will
describe how we are implementing the relation between the MS and the on-shell parameters.

The bottom and top masses involved in the sbottom and stop mass matrices have to be
chosen such that large higher-order corrections to their entries are avoided. We have chosen
the top pole mass and a derived bottom mass for the sbottom mass matrix according to
Refs. [38]. At LO, the stop/sbottom mass matrix is then given by (q = t, b)

MQ̃ =

[

M̃
2

Q̃L
(Q0) +m2

Q mQ[ĀQ(Q0)− µrQ]

mQ[ĀQ(Q0)− µrQ] M̃
2

Q̃R
(Q0) +m2

Q

]

, (23)

where mt is the top pole mass and mb is the derived bottom mass as will be discussed in
the following. The D-terms DQ̃L/R

have again been absorbed in the soft SUSY-breaking

parameters, M̃ Q̃L/R
(Q0),

M̃
2

Q̃L/R
(Q0) =M

2

Q̃L/R
(Q0) +DQ̃L/R

. (24)

The diagonal and off-diagonal entries of the stop/sbottom mass matrix are corrected at higher
orders. We absorb the radiative corrections to the diagonal matrix elements in shifted soft
mass parameters, MQ̃L/R

,

M2
Q̃L/R

=M
2

Q̃L/R
(Q0) + ∆M

2

Q̃L/R
, M̃2

Q̃L/R
= M̃

2

Q̃L/R
(Q0) + ∆M

2

Q̃L/R
, (25)

while the corrections to the off-diagonal entries will be absorbed in shifted soft trilinear
couplings,

AQ = AQ(Q0) + ∆AQ . (26)

The shifted parameters are related to the radiative corrections to the mixing angles and
stop/sbottom masses in order to arrive at simple tree-level like expressions at NLO for the
stop/sbottom parameters. On the other hand, these shifted parameters correspond to the
on-shell scheme introduced in Refs. [38] and thus have to coincide with the input values of
the chosen benchmark scenario.

4.2.1 Stops

Starting from the on-shell parameters the treatment of the stop sector is identical to the
LO level discussed before. The relation of the on-shell to the MS parameters, however, is
affected by the NLO corrections.

At tree-level, the mixing angle θ̃Q is derived from

sin 2θ̃Q =
2mQ[AQ(Q0)− µrQ]

m2
Q̃1

−m2
Q̃2

, cos 2θ̃Q =
M̃

2

Q̃L
(Q0)− M̃

2

Q̃R
(Q0)

m2
Q̃1

−m2
Q̃2

, (27)

where the tree-level squark masses mq̃1/2 according to Eq. (20) have been used1.

1The standard range for the squark mixing angle is chosen between 0 and π.
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= + +
Q̃i Q̃j Q̃i

Q̃

g

Q̃j Q̃i

Q

g̃

Q̃j Q̃i

Q̃

Q̃j

Figure 4: One-loop contributions to the squark self-energies.

The masses of the stop/sbottom mass eigenstates acquire radiative corrections,

m2
Q̃1/2

= m2
Q +

1

2

[

M̃
2

Q̃L
(Q0) + M̃

2

Q̃R
(Q0)

∓
√

[M̃
2

Q̃L
(Q0)− M̃

2

Q̃R
(Q0)]2 + 4m2

Q[AQ(Q0)− µrQ]2

]

+∆m2
Q̃1/2

∆m2
Q̃1/2

= Σ11/22(m
2
Q̃1/2

) + δm̂2
Q̃1/2

. (28)

The self-energies Σ11/22 of the stops/sbottoms can be derived from the diagrams in Fig. 4,

Σ11/22(m
2
Q̃1/2

) = CF
αs

π

1

4

{

−(1 + cos2 2θ̃Q)A0(mQ̃1/2
)− sin2 2θ̃QA0(mQ̃2/1

)

+2A0(Mg̃) + 2A0(mQ) + 4m2
Q̃1/2

B0(m
2
Q̃1/2

; 0, mQ̃1/2
)

+2
[

M2
g̃ +m2

Q −m2
Q̃1/2

∓ 2Mg̃mQ sin 2θ̃Q

]

B0(m
2
Q̃1/2

;Mg̃, mQ)
}

, (29)

whereMg̃ denotes the gluino mass and the scalar one-loop integrals are defined as (n = 4−2ǫ)
[39]

A0(m) =

∫

dnk

(2π)n
−i(4π)2µ̄2ǫ

k2 −m2

B0(p
2;m1, m2) =

∫

dnk

(2π)n
−i(4π)2µ̄2ǫ

[k2 −m2
1][(k + p)2 −m2

2]

B1(p
2;m1, m2) =

1

2p2
{

A0(m1)− A0(m2)− (p2 +m2
1 −m2

2)B0(p
2;m1, m2)

}

. (30)

The scale µ̄ denotes the ’t Hooft mass of dimensional regularization. The mass counterterms
δm̂2

Q̃1,2
of Eq. (28) are related to the counterterms of the input parameters,

δm̂2
Q̃1/2

= 2mQδmQ +
1

2

{

δM
2

Q̃L
+ δM

2

Q̃R
±
[

(δM
2

Q̃L
− δM

2

Q̃R
) cos 2θ̃Q

+

(

δmQ

mQ

+
δAQ

AQ(Q0)− µrQ

)

(m2
Q̃1

−m2
Q̃2

) sin2 2θ̃Q

]}

= −CF
αs

π
Γ(1 + ǫ)(4π)ǫ

{

1

ǫ
+ log

µ̄2

Q2
0

}

{

M2
g̃ ∓Mg̃mQ sin 2θ̃Q)

}

+
δmQ

mQ

{

2m2
Q ∓ 1

2
(m2

Q̃2

−m2
Q̃1

) sin2 2θ̃Q

}

, (31)
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using the tree-level mixing angle θ̃Q of Eq. (27), and CF = 4/3. The counterterms of the

parameters M
2

Q̃L/R
(Q0) and AQ(Q0) are defined in the MS scheme,

δM
2

Q̃L/R
= −CF

αs

π
Γ(1 + ǫ)(4π)ǫM2

g̃

{

1

ǫ
+ log

µ̄2

Q2
0

}

δAQ = CF
αs

π
Γ(1 + ǫ)(4π)ǫMg̃

{

1

ǫ
+ log

µ̄2

Q2
0

}

. (32)

The counterterm of the pole quark mass mq is given by

δmQ

mQ

= −CF
αs

4π

{

A0(mQ)

m2
Q

+ 2B0(m
2
Q; 0, mQ)− 1 +B1(m

2
Q;Mg̃, mQ̃1

) +B1(m
2
Q;Mg̃, mQ̃2

)

+δSUSY + 2Mg̃(AQ − µrQ)
B0(m

2
Q;Mg̃, mQ̃1

)−B0(m
2
Q;Mg̃, mQ̃2

)

m2
Q̃1

−m2
Q̃2

}

, (33)

where δSUSY = 1/3 is a finite counterterm required to restore the supersymmetric relation
between the Higgs-boson couplings to quarks and squarks within dimensional regulariza-
tion [40]. The definition of the mixing angle θ̃Q in Eq. (27) corresponds to the following
counterterm at NLO,

δθ̃Q =
tg 2θ̃Q

2

{

δmQ

mQ

+
δAQ

AQ(Q0)− µrQ
−
δm2

Q̃1

− δm2
Q̃2

m2
Q̃1

−m2
Q̃2

}

,

δm2
Q̃1/2

= −Σ11/22(m
2
Q̃1/2

) . (34)

However, this mixing angle definition induces artificial singularities in physical observables
for stop/sbottom masses mq̃1,2 close to each other [41]. To avoid such singularities, the
mixing angle of the squark fields has been renormalized via the anti-Hermitian (on-shell)
counterterm [41],

δθQ = −1

2

ReΣ12(m
2
Q̃1

)− ReΣ12(m
2
Q̃2

)

m2
Q̃1

−m2
Q̃2

, (35)

with the off-diagonal part Σ12 of the stop/sbottom self-energy (see Fig. 4) describing tran-
sitions from the first to the second mass eigenstate or vice versa,

Σ12(m
2) = −CF

αs

π

{

Mg̃mQB0(m
2;Mg̃, mQ) +

sin 2θ̃Q
4

[

A0(mQ̃2
)− A0(mQ̃1

)
]

}

cos 2θ̃Q .

(36)
For the mixing angle θ̃Q of Eq. (27), this implies a finite shift ∆θ̃Q,

θQ = θ̃Q +∆θ̃Q , ∆θ̃Q = δθ̃Q − δθQ (37)

that will be absorbed in the shifted AQ value of Eq. (26). This shift defines the relation
between the on-shell coupling AQ and the MS one AQ(Q0).

12



Using the NLO corrected squark pole masses of Eq. (28) and the radiatively corrected
mixing angle θq, the shifted (on-shell) squared soft SUSY-breaking squark mass parameters

M̃2
Q̃L/R

= M̃
2

Q̃L/R
(Q0) + ∆M

2

Q̃L/R
can be obtained from the sum rules,

M̃2
Q̃L

= M2
Q̃L

+DQ̃L
= m2

Q̃1

cos2 θQ +m2
Q̃2

sin2 θQ −m2
Q

M̃2
Q̃R

= M2
Q̃R

+DQ̃R
= m2

Q̃1

sin2 θQ +m2
Q̃2

cos2 θQ −m2
Q (38)

while the shifted (on-shell) trilinear couplings AQ are derived from the relation

AQ =
m2

Q̃1

−m2
Q̃2

2mQ
sin 2θQ + µrQ . (39)

In terms of these shifted (on-shell) parameters the radiatively corrected squark masses and
mixing angles are given by LO-like expressions,

m2
Q̃1/2

= m2
Q +

1

2

[

M̃2
Q̃L

+ M̃2
Q̃R

∓
√

(M̃2
Q̃L

− M̃2
Q̃R

)2 + 4m2
Q(AQ − µrQ)2

]

sin 2θQ =
2mQ(AQ − µrQ)

m2
Q̃1

−m2
Q̃2

, cos 2θQ =
M̃2

Q̃L
− M̃2

Q̃R

m2
Q̃1

−m2
Q̃2

. (40)

The scale of the strong coupling constants αs in Eqs. (29, 31, 32, 33, 36) has been identified
with the input scale Q0.

These relations have been used for the determination of the MS parameters M̃
2

Q̃L/R
(Q0)

and Aq(Q0) iteratively until the on-shell parameters agreed with the input value of the chosen
benchmark scenario.

4.2.2 Sbottoms

The procedure described for the stops is necessary to obtain the MS parameter M t̃L(Q0)

that by virtue of the SU(2) gauge symmetry is identified with the MS parameter M b̃L
(Q0),

M t̃L(Q0) =M b̃L
(Q0) . (41)

Due to potentially large tgβ-enhanced contributions in the sbottom sector the procedure has
to be modified. This modification addresses the treatment and renormalization of the bottom
mass mb and of the trilinear coupling Ab. Therefore, the bottom mass is not introduced as
the pole mass, but as a derived quantity, since it represents the contribution of the bottom
Yukawa coupling to the sbottom sector. To achieve a working scheme, we are starting from
Eq. (40) for the mixing angle that at NLO is still defined via the anti-Hermitian counterterm
of Eq. (35). The trilinear coupling Ab, however, is now defined from the proper Ab̃1b̃2
vertex [38]. This definition avoids large tgβ-enhanced contributions in the renormalization
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of Ab. The bottom mass mb entering the sbottom mixing matrix is then treated as a derived
quantity. This leads to the explicit counterterms,

δAb = −sβcβ
µ

(Ab − µtgβ)

(

Ab +
µ

tgβ

)

{

F − 2
c2θb
s2θb

δθb −
δm2

b̃1
− δm2

b̃2

m2
b̃1
−m2

b̃2

}

(42)

δm̂b

mb
=

{

1 +
sβcβ
µ

(Ab − µtgβ)

}

F − sβcβ
µ

(Ab − µtgβ)

{

2
c2θb
s2θb

δθb +
δm2

b̃1
− δm2

b̃2

m2
b̃1
−m2

b̃2

}

,

where the term F is defined as [42]

F = f(m2
b̃1
, m2

b̃2
) + f(m2

b̃2
, m2

b̃1
)

f(m2
1, m

2
2) = −CF

2

αs

π

{

− Mg̃

Ab + µ cotβ
B0(m

2
1;Mg̃, mb)

+
m2

1

m2
1 −m2

2

[

2B0(m
2
1; 0, m1)−

m2
1 −M2

g̃ −m2
b

m2
1

B0(m
2
1;Mg̃, mb)

]}

. (43)

The derived bottom mass m̂b is then determined as

m̂b = mb(Q0)− δm̂b + δmb , (44)

where mb(Q0) denotes the MS bottom mass at the input scale Q0, δm̂b the counterterm of
Eq. (42) and δmb the MS counterterm of the bottom mass,

δmb

mb
= −CF

αs

π
Γ(1 + ǫ)(4π)ǫ

3

4

{

1

ǫ
+ log

µ̄2

Q2
0

+ δSUSY

}

− CF
αs

4π

{

B1[m
2
b ;Mg̃, mb̃1

] +B1[m
2
b ;Mg̃, mb̃2

]

+2Mg̃(Ab − µtgβ)
B0[m

2
b ;Mg̃, mb̃1

]−B0[m
2
b ;Mg̃, mb̃2

]

m2
b̃1
−m2

b̃2

}

, (45)

where δSUSY = 1/3 is a SUSY-restoring counterterm. This MS counterterm defines the
running bottom mass with decoupled SUSY contributions, i.e. the running bottom mass of
the SM. The derived bottom mass m̂b is then used for the sbottom mixing matrix throughout.
In the analogous way we determine the MS value Ab(Q0) of the trilinear coupling, but this
will not be used in our analysis.

The shifted (on-shell) sbottom mass parameters M̃b̃L/R
are finally determined from the

corresponding sum rules of Eq. (38). This set-up of the sbottom sector is then used for
iteration until the on-shell parameter M̃b̃R

agrees with the input parameter of the benchmark
scenario.

An alternative approach is provided by a purely fixed-order implementation of the dif-
ference between Mb̃L

and Mt̃L ,

M2
b̃L

= M2
t̃L
+∆M2

L

∆M2
L = δM2

t̃L
− δM2

b̃L

δM2
q̃L

= c2θqδm
2
q̃1
+ s2θqδm

2
q̃2
− (m2

q̃1
−m2

q̃2
)s2θqδθq − 2mqδmq , (46)
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with q = t, b. The counterterms δmq̃1/2 are given in Eq. (34), the counterterm δθq in Eq. (35)
and the counterterm δmq in Eq. (33) for the top pole mass mq = mt and in Eq. (42) for
the (derived) bottom mass mq = m̂b. This approach does not require any iteration, since
the on-shell parameters of the benchmark scenario can immediately be used to derive the
parameters of the sbottom sector. We have compared both approaches and found agreement
of the sbottom parameters at the few-per-mille level.

4.2.3 Higgs Couplings to Stops and Sbottoms

The NLO neutral Higgs couplings to squarks in the current-eigenstate basis are given by

gΦ
Q̃LQ̃L

= m2
Qg

Φ
1 +M2

Z(I3Q − eQ sin2 θW )gΦ2

gΦ
Q̃RQ̃R

= m2
Qg

Φ
1 +M2

ZeQ sin2 θW g
Φ
2

gΦ
Q̃LQ̃R

=
mQ

2

[

µgΦ3 −AQg
Φ
4

]

, (47)

with the on-shell trilinear couplings AQ and the couplings gΦi of Table 1. The quark mass
mQ denotes either the top pole mass in the stop case or the derived bottom mass m̂b for
the sbottom sector. The related couplings to the stop/sbottom mass eigenstates Q̃1,2 are
derived by the rotations according to Eq. (22) by the radiatively corrected mixing angle θQ.
For pseudoscalar Higgs bosons, we obtain vanishing diagonal couplings gA

Q̃LQ̃L
= gA

Q̃RQ̃R
= 0

and non-vanishing off-diagonal couplings gA
Q̃1Q̃2

= −gA
Q̃2Q̃1

= gA
Q̃LQ̃R

at the NLO level as at

LO.

5 SUSY–QCD corrections at NLO

The genuine SUSY–QCD corrections at NLO are determined by the Feynman diagrams
shown in Fig. 5 that displays only the non-vanishing graphs. Additional permutations of
the external gluons have to be added. The matrix element for the LO expression and the
SUSY–QCD corrections can be parametrized as

M = iδab
αs

2πv
T µνǫµ(q1)ǫν(q2)

T µν = AA
LO/SQCD ǫµναβq1αq2β , (48)

where q1, q2 denote the two incoming momenta of the gluons and ǫµ(qi) their polarization
vectors, δab the Kronecker symbol of the adjoint SU(3)c color space and ǫµναβ the four-
dimensional Levi–Civita tensor. In this paper we will mainly use the γ5 prescription of
Larin [27], where the product of Levi–Civita tensors is replaced by the determinant of n-
dimensional metric tensors in n = 4−2ǫ dimensions. Within this framework we can construct
a projector on the anticipated form factors AA

LO/SQCD,

Pµν =
2

M4
A(1− ǫ)(1− 2ǫ)

ǫµναβq1αq2β (49)
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Figure 5: Non-vanishing diagrams contributing to the genuine SUSY–QCD corrections to
pseudoscalar MSSM Higgs boson production via gluon fusion mediated by top- and bottom
quark (Q = t, b) as well as stop/sbottom (Q̃ = t̃, b̃) and gluino (g̃) loops at NLO.

so that
PµνTµν = AA

LO/SQCD . (50)

In order to set up a simple notation in close connection to the QCD corrections of Eq. (5)
we will normalize the genuine SUSY–QCD corrections to the individual form factors at LO,

AA
Q,SQCD = AA

Q,LO CA
Q,SQCD

αs

π
, (51)

where CA
Q,SQCD depends on all ratios of the pseudoscalar Higgs, quark, squark and gluino

masses. The LO form factor

AA
Q,LO = Γ(1 + ǫ)

(

4πµ̄2

m2
Q

)ǫ

mQg
A
QA

A
Q(τQ) (52)

has been defined in terms of the expressions of Eq. (2). In the following we will describe the
technical details for the numerical integration to determine the complex coefficient CQ,SQCD

by exemplifying our method for the first diagram of Fig. 5. In order to regularize virtual
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thresholds we have added a small imaginary part to the quark and squark masses2,

m2
Q → m2

Q(1− iǭ), m2
Q̃k

→ m2
Q̃k
(1− iǭ) (k = 1, 2) , (53)

with a positive regulator ǭ > 0, which defines the analytical continuation of our two-loop
amplitudes. We work with a small but finite value of ǭ that is small enough to achieve results
in the narrow-width approximation. For the parametrization of the two-loop diagrams, we
follow the same procedure used and described in Refs. [43] for Higgs-boson pair production
and adopted in earlier works [44].

5.1 Feynman Parametrization

The parametrization of the first two-loop diagram of Fig. 5 reads

T µν
1 = −CF

4

gA
Q̃lQ̃m

mQ

αs

π
(4π)4 Aµν

1,lm

Aµν
1,lm =

∫

dnkdnq

(2π)2n

Tr
{

IP l(−6q +Mg̃)IPm(6k+6q1 +mQ)γ
µ(6k +mQ)γ

ν(6k−6q2 +mQ)
}

(k2 −m2
Q)[(k + q1)2 −m2

Q][(k − q2)2 −m2
Q][(k + q + q1)2 −m2

Q̃m
]

× 1

[(k + q − q2)2 −m2
Q̃l
](q2 −M2

g̃ )
(54)

where we sum over l, m ∈ {1, 2} in T µν
1 , k, q are the loop momenta that are integrated over

and the chiral coupling factors IPj (j = 1, 2) are defined as

IP1 = IPL cos θQ − IPR sin θQ

IP2 = −IPL sin θQ − IPR cos θQ

IPR/L =
1± γ5

2
, (55)

and IP j emerges from IPj by the replacement γ5 → −γ5. After applying the contraction with
the projector Pµν onto the contribution to the virtual form factor, we introduce Feynman
parameters x3, x4, x1, x2 for the second to fifth propagator (in this ordering) and 1−

∑

j xj
for the first one, (k2 −m2

Q). With the substitutions

x1 = (1− x)y, x2 = (1− x)(1− y), x3 = x(1 − z), x4 = xzv (56)

we obtain a four-dimensional Feynman-parameter integral over x, y, z, v with integration
boundaries from 0 to 1. The shift

k → k −Q1

Q1 = (1− x)q + [x+ y − x(y + z)]q1 − [(1− x)(1− y) + xzv]q2 (57)

2This procedure is equivalent to adding an imaginary part to the gluino mass in addition, but in our
numerical analysis we do not cross virtual thresholds involving the gluino so that this addition is not required.
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in both the numerator and denominator symmetrizes the k-integration that is performed in a
simple and systematic way for the emerging integral. The residual q-dependent denominator
after the k-integration is treated as a propagator for the q-integration after extracting all
coefficients in front of the term q2. We introduce a fifth Feynman parameter r for this
propagator and 1− r for the last purely q2-dependent propagator of Eq. (54). Applying the
second shift

q → q −Q2,

Q2 = −r(1− y − z)q1 − r(1− y − zv)q2 (58)

both in the numerator and denominator we perform the symmetric q-integration. In this
way, we finally arrive at an integral of the type

AA
1,SQCD =

CF

4

gA
Q̃lQ̃m

mQ

αs

π
Γ(2 + 2ǫ)

(

4πµ2
0

M2
g̃

)2ǫ ∫ 1

0

d5x
x1+ǫ(1− x)ǫzr2+ǫH(~x)

N2+2ǫ(~x)
, (59)

with ~x = (x, y, z, v, r) and d5x = dx dy dz dv dr. The term H(~x) denotes the full numerator
and includes singular and higher powers of the dimensional regulator ǫ. N(~x) is the final
denominator,

N(~x) = x(1− x)(1− r) + ρQxr + ρm(1− x)yr + ρl(1− x)(1 − y)r

+ ρAr
{

x(1− x)r(1− y − z)(1− y − zv)

−[y(1− x) + x(1− z)][(1 − x)(1 − y) + xzv]
}

(60)

where the ratios are defined as ρQ = m2
Q/M

2
g̃ , ρk = m2

Q̃k
/M2

g̃ , ρA =M2
A/M

2
g̃ . This denomina-

tor is maximally a second-order polynomial in all Feynman parameters we have introduced.
The poles of H(~x) in ǫ originate from powers of k2 and q2 in the numerators of the k- and
q-integrals. We have chosen the convention to normalize all mass parameters to the gluino
mass Mg̃. In order to cope with the LO form factor in an easier way, we have rewritten the
coefficients of all integrals as

Γ(2 + 2ǫ)

(

4πµ2
0

M2
g̃

)2ǫ

= Γ2(1 + ǫ)

(

4πµ2
0

m2
Q

)ǫ
(

4πµ2
0

M2
g̃

)ǫ

× ρǫQ(1 + 2ǫ)(1 + ǫ2ζ2) +O(ǫ3). (61)

The factors ρǫQ(1+2ǫ)(1+ ǫ2ζ2) are added to the integrands before expansion in ǫ. The final
contribution to the coefficient CA

Q,SQCD is then given by

CA,(1)
Q,SQCD =

CF

4

gA
Q̃lQ̃m

m2
Qg

A
QA

A
Q(τQ)

Γ(1 + ǫ)

(

4πµ2
0

M2
g̃

)ǫ ∫ 1

0

d5x
x1+ǫ(1− x)ǫzr2+ǫH(~x)

N2+2ǫ(~x)

×ρǫQ(1 + 2ǫ+ ǫ2ζ2) . (62)

The final integral is finite for this diagram. For the other diagrams, we follow the same
procedure accordingly. All diagrams are infrared finite, since all virtual particles are massive,
but the residual Feynman integrals contain end-point singularities in several cases that are
subtracted in the usual way according to the description of Ref. [43]. The integration of the
subtracted part yields the corresponding UV singularities.
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5.2 Integration by Parts

In our numerical analysis, we cross the virtual bb̄, tt̄ thresholds and for large pseudoscalar
masses the b̃1b̃

∗

2, t̃1t̃
∗

2 thresholds as well. The parametrization of the integrals discussed so far
is not sufficiently stable above these thresholds due to the high power of the denominator
N(~x) that becomes small in the Feynman-parameter regions in the vicinity of the virtual
thresholds. We need to adopt imaginary regulators ǭ <∼ 10−3 in order to obtain numbers
independent of this regulator. The small size of this regulator makes the integral numerically
unstable. A stabilization of the integration can be achieved by an integration by parts (IBP)
to reduce the power of the denominator. In general, for this purpose, one can write

∆ = p0N +
∑

i

pi
∂N

∂xi
(63)

where N is the dominator of the integral, p0 and pi are polynomials and ∆ is constant in
the variables xi. For simplicity we drop the arguments ~x everywhere. The polynomials p0
and pi can be found by constructing the Gröbner basis of the set {N, ∂N

∂xi
}. We find that

∫ 1

0

dnx
gm

Nm+2ε
=

∫ 1

0

dnx
gm−1

Nm−1+2ε
+
∑

i

[

g
(i)
m−1

Nm−1+2ε

]xi=1

xi=0

gm−1 =
1

∆

(

gmp0 −
∑

i ∂xi
(gmpi)

1−m− 2ε

)

g
(i)
m−1 =

1

∆

gmpi
1−m− 2ε

. (64)

These equations can be applied iteratively to reduce the power of the denominator further.
Not every choice of the parameters for the integration by parts will yield a stable result.
Potential issues can arise from singularities in the boundary terms as well as singularities
that arise when ∆ = 0, which can happen when N = 0 and all ∂N

∂xi
= 0.

Choosing only a subset of the Feynman parameters yields shorter expressions that can be
evaluated faster. For practical purposes, it is thus usually best to find a parametrization
where using a single Feynman parameter for the integration by parts is sufficient to stabilize
the numerical integration.
We exemplify the two examples encountered in our calculation. If N is linear in the Feynman
parameter x1, i.e.

N = ax1 + b, (65)

there are two possible choices for the polynomials

p0 = 0 p1 = 1 ∆ = a (66)

or p0 = 1 p1 = −x1 ∆ = b. (67)

A linear combination of these two solutions is also valid. If N is quadratic in the Feynman
parameter i.e.

N = ax21 + bx1 + c, (68)
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the polynomials are given by

p0 = 4a p1 = −b− 2ax1 ∆ = −b2 + 4ac. (69)

For example in the first diagram we have achieved stabilization for x1 = v. The denominator
is linear in this parameter and we have

N(~x) = av + b

a = −ρAxzr
{

r(1− z) + (1− r)[y(1− x) + x(1− z)]
}

b = x(1− x)(1− r) + ρQxr + ρm(1− x)yr + ρl(1− x)(1− y)r

+ ρA(1− x)(1 − y)r
{

xr(1− y − z)− [y(1− x) + x(1− z)]
}

. (70)

With this explicit parametrization at hand, the following manipulation can be performed,

∫ 1

0

dv
Hi(~x)

N2(~x)
=

H(~x)|v=0

ab
− H(~x)|v=1

a(a + b)
+

[∂vH(~x)]|v=1 log(a+ b)− [∂vH(~x)]|v=0 log(b)

a2

−
∫ 1

0

dv

a2
[∂2vH(~x)] log(av + b) , (71)

according to Eq. (64). Since the powers of all denominators are reduced and the original
denominator N(~x) appears in the argument of a logarithm in the last integral the numerical
integration appears to be stable for the imaginary regulator down to ǭ <∼ 10−4 which is
sufficient for the narrow-width limit.

In cases of a Feynman parameter entering the denominator in second order,

N(~x) = ay2 + by + c (72)

and making make use of the identities of Eq. (69) (we drop the arguments of N)

∆ = 4ac− b2 = 4aN − (∂yN)2 = 4aN − (2ay + b)2 , (73)

we arrive at the special situation that the derivative appears in second power. This allows
us to perform two IBPs of the original integral [43],

∫ 1

0

dy
H

N2
=

1

∆

{

[

2ay + b

N
H − (∂yH) logN

]
∣

∣

∣

∣

y=1

y=0

+

∫ 1

0

dy

[

2a

N
H + (∂2yH) logN

]

}

, (74)

where for simplicity we dropped the arguments ~x everywhere.

5.3 Renormalization

In our calculation of the genuine SUSY–QCD corrections we have to renormalize the SUSY–
QCD part of the quark mass only, since everything else is already accounted for by the
QCD corrections, i.e. the decoupling of all SUSY particles from the evolution of the strong
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coupling αs and the PDFs that both run with five active flavours in our calculation. The
SUSY–QCD part of the on-shell quark-mass counterterm is given by [see Eq. (33)]

δmQ

mQ
= −CF

αs

4π

{

B1(m
2
Q;Mg̃, mQ̃1

) +B1(m
2
Q;Mg̃, mQ̃2

)

+2Mg̃(AQ − µrQ)
B0(m

2
Q;Mg̃, mQ̃1

)−B0(m
2
Q;Mg̃, mQ̃2

)

m2
Q̃1

−m2
Q̃2

}

. (75)

We renormalize the quark mass on-shell, because the LO form factor AA
Q(τQ) and the pure

QCD corrections are expressed in terms of the quark pole mass3. The corresponding coun-
terterm for the gluon-fusion cross section form factor is given by

δ1A
A
Q,SQCD =

∂ÃA
Q(τQ)

dmQ
δmQ = 2 τQ

∂ÃA
Q(τQ)

∂τQ

δmQ

mQ
, (76)

where ÃA
Q(τQ) denotes the LO form factor including O(ǫ) terms,

ÃA
Q(τ) = τf(τ) + ǫ

τ

4
H(τ) +O(ǫ2)

H(τ) = 4

{

S1,2(x) + S1,2

(

1

x

)}

+ 2

{

Li3(x) + Li3

(

1

x

)}

+ 2ζ3

x =
1−

√
1− τ

1 +
√
1− τ

, (77)

with the usual trilogarithms,

S1,2(y) =
1

2

∫ 1

0

dz

z
log2(1− zy)

Li3(y) =

∫ 1

0

dz

z
log(z) log(1− zy) . (78)

The derivative is given by

τ
∂ÃA

Q(τ)

∂τ
= ÃA

Q(τ) +
τ

1− τ
g(τ) +

ǫ

2

{

τ

τ − 1
g(τ) log

(

4
τ − 1

τ

)

+
τ√
1− τ

[

Li2

(

1

1− x

)

− Li2

( −x
1− x

)]}

g(τ) =















√
τ − 1 arcsin

1√
τ

τ ≥ 1
√
1− τ

2

[

log
1 +

√
1− τ

1−
√
1− τ

− iπ

]

τ < 1
(79)

3For the evaluation of the NLO SUSY–QCD contributions, however, we use the derived bottom mass
m̂b [see Eq.(44)] in the calculation of CA

b,SQCD. The resulting difference only contributes at the NNLO level.
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where Li2 denotes the dilogarithm,

Li2(y) = −
∫ 1

0

dz

z
log(1− zy) . (80)

However, we introduce effective low-energy Yukawa couplings in our calculation, i.e. the
Yukawa couplings of a low-energy Two-Higgs-Doublet model (2HDM), where the heavy
SUSY particles are integrated out. This implies that the top- and bottom-Yukawa couplings
are dressed with ∆t/b contributions. The SUSY–QCD parts of these contributions are given
by

∆Q =
CF

2

αs(µR)

π
Mg̃ µ rQ I(m2

Q̃1

, m2
Q̃2

,M2
g̃ )

I(a, b, c) =
ab log

a

b
+ bc log

b

c
+ ca log

c

a
(a− b)(b− c)(a− c)

. (81)

The expressions for the Yukawa couplings including resummations of the leading cot β-
enhanced contributions for the top-Yukawa coupling and the tgβ-enhanced terms of the
bottom Yukawa coupling can be cast into the form

gAQ → g̃AQ =
gAQ

1 + ∆Q

[

1− ∆Q

r2Q

]

, (82)

with rQ defined after Eq. (17). These contributions will result in additional terms in the
counterterms of our calculation,

∆AA
Q,SQCD = AA

Q(τQ)

(

1 +
1

r2Q

)

∆Q , (83)

since the LO form factors AA
Q(τQ) are proportional to the linear quark-Yukawa coupling.

This results in the complete counterterm

δAA
Q,SQCD = 2 τQ

∂ÃA
Q(τQ)

∂τQ

δmQ

mQ
+∆AA

Q(τQ) (84)

5.4 Hadronic Cross Section

Our notation can be viewed as a modification of the factor σA
0 of Eq. (1) as a starting point

that can easily be extended to the NLO corrections,

σA
0 =

GFα
2
s

128
√
2π

∣

∣

∣
gAt At(τt)

(

1 + ĈA
t,SQCD

αs

π

)

+ gAb Ab(τb)
(

1 + ĈA
b,SQCD

αs

π

)
∣

∣

∣

2

=
GFα

2
s

128
√
2π

{

∣

∣g̃At At(τt) + g̃Ab Ab(τb)
∣

∣

2
(85)

+ 2Re
[

[

g̃At At(τt) + g̃Ab Ab(τb)
]∗ [

gAt At(τt)CA
t,SQCD + gAb Ab(τb)CA

b,SQCD

] αs

π

]

+O(α2
s)
}
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where g̃AQ (Q = t, b) denote the resummed quark Yukawa couplings of Eq. (82) that absorb ∆b

and ∆t contributions in the effective Yukawa couplings as the appropriate effective Yukawa
couplings in the low-energy effective 2HDM. The factors CA

Q,SQCD and ĈA
Q,SQCD (Q = t, b)

denote the relative SUSY–QCD corrections factors to the individual form factors with and
without absorption of the ∆Q terms, respectively. Within this framework the Yukawa cou-
plings of the QCD corrections will be replaced by these effective Yukawa couplings as well
due to the factorizing properties of EFT couplings from the pure QCD corrections. How-
ever, the subleading contributions of Eq. (85) involve the LO Yukawa coulings, since ∆t,b

effects only factorize at the leading order of an 1/M2
SUSY expansion so that the SUSY–QCD

remainder does not factorize from the effective Yukawa couplings in general. This will avoid
artificial singularities in the scalar MSSM Higgs sector as well [45]. Expressing the LO factor
σA
0 in terms of the effective Yukawa couplings,

σA
0 → σ̃A

0 =
GFα

2
s

128
√
2π

∣

∣g̃At At(τt) + g̃Ab Ab(τb)
∣

∣

2
, (86)

and referring to Eq. (6), the SUSY–QCD corrections add to the virtual coefficient CA,

CA = CA
QCD + CA

SQCD , (87)

with the usual QCD-correction coefficient CA
QCD and

CA
SQCD = 2Re

{

gAt At(τt)CA
t,SQCD + gAb Ab(τb)CA

b,SQCD

g̃At At(τt) + g̃Ab Ab(τb)

}

, (88)

where we are using LO Yukawa couplings gAQ in the numerator, since this contribution con-
stitutes the remainder of the full SUSY–QCD corrections that does not factorize in general
terms. In Eq. (85) and for the following discussion of the results, we distinguish between
this coefficient for the SUSY-remainder and the corresponding coefficient4,

ĈA
SQCD = C

A

SQCD − 2Re

{

gAt ∆At,SQCD + gAb ∆Ab,SQCD

gAt At(τt) + gAb Ab(τb)

}

C
A

SQCD = 2Re

{

gAt At(τt)CA
t,SQCD + gAb Ab(τb)CA

b,SQCD

gAt At(τt) + gAb Ab(τb)

}

(89)

that describes the full SUSY–QCD corrections without introducing the effective top and
bottom Yukawa couplings, i.e. without absorbing ∆Q terms in the Yukawa couplings. The
contributions ∆AQ,SQCD are given in Eq. (83).

5.5 Axial γ5 Schemes

We have implemented the Larin scheme of Ref. [27] that is a variant of the original ’t Hooft–
Veltman scheme that has been set-up systematically by Breitenlohner and Maison [26]. We

4Note that in the case of ĈA
Q,SQCD we have to normalize to the LO expression with LO, i.e. without

effective, Yukawa couplings.
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have extracted the Levi–Civita tensor at the pseudoscalar vertex by means of the replacement

γ5 =
i

24
ǫµνρσγ

µγνγργσ (90)

and just keeping the four γ matrices inside the traces. The diagrams where the pseudoscalar
couples to squarks do not have such a vertex. They are however finite, such that a naively
anticommuting γ5 can be used at NLO. The chiral couplings at the quark-squark-gluino
vertices are treated fully anticommuting to arrive at traces with one or no γ5 matrix. Only
the contributions with no additional γ5 matrix contribute after applying the projector of
Eq. (49). The projector yields a product of two Levi–Civita tensors that is defined as

ǫµνρσǫµ′ν′ρ′σ′ = −Det









gµµ′ gµν′ gµρ′ gµσ′

gνµ′ gνν′ gνρ′ gνσ′

gρµ′ gρν′ gρρ′ gρσ′

gσµ′ gσν′ gσρ′ gσσ′









, (91)

where the metric tensors inside this determinant are treated as n-dimensional objects. This
prescription avoids a splitting of γ matrices and loop momenta into 4- and (n−4)-dimensional
components. Since γ5 as defined in Eq. (90) does not anticommute, an anomalous countert-
erm has to be added. However the genuine SUSY–QCD contributions to this counterterm
vanish. In the ’t Hooft–Veltman scheme, the metric tensors in this determinant are defined
as strictly 4-dimensional objects so that the numerators of the loop integrals split into 4- and
(n−4)-dimensional pieces that have to be treated separately. To avoid additional anomalous
counterterms we used anticommuting γ5 matrices at the QQ̃g̃-vertices in this scheme as well.
We found full agreement for both schemes. In addition, we have lifted the anti-commuting
properties of the γ5 matrices entering at the QQ̃g̃-vertices and found mismatches that require
anomalous subtractions to restore the chiral properties. Finally, we have implemented the γ5
scheme of Ref. [28] that gives up the cyclicity of the traces but keeps the full anti-commuting
property of the γ5 matrix. The cyclicity of the trace is equivalent to the arbitrary decision
where we start to read the fermion lines. To resolve this, the scheme defines unambiguous
reading points in each diagram relative to the external axial couplings. However, since we
have no axial vector couplings in our diagrams, the only prescription we have to follow is that
the reading point must be outside of subdivergences, e.g. in the fifth diagram of Fig. 5 the
reading point must not be at the gg̃g̃ vertex. We found full agreement with the calculation
in the Larin scheme as well.

Finally, we have reproduced the limit of large top, stop and gluino masses of Ref. [32]
and found full agreement. Ref. [32] worked with Pauli–Villars regularization so that their
Clifford algebra is defined in four dimensions strictly resulting in a fully anti-commuting γ5.
That we have found full agreement with this calculation in the large-mass limit underlines
the consistency of our results.
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5.6 Adler–Bardeen Theorem

According to the analytical results of Ref. [32] the SUSY–QCD coefficient in the large SUSY-
mass limit (keeping the quark mass small) is given by

ĈA
Q,SQCD = −CF

2

Mg̃

mQ

(

s2θQ
2

− mQYQ
m2

Q̃1

−m2
Q̃2

)

(

ρ1
1− ρ1

log ρ1 −
ρ2

1− ρ2
log ρ2

)

+O(M−2
SUSY ),

(92)
with ρi as defined after Eq. (60). In this expression, we have focused just on the leading
terms of the large-mass expansion, since this is the relevant contribution of the matching to
a low-energy 2HDM. Moreover, in the expression above the ∆Q terms are not subtracted, i.e.
this is the result in terms of the LO Higgs coupling gAQ without ∆Q-dressing. The coupling
YQ is related to the squark coupling,

YQ = 2
gQ̃1Q̃2

mQg
A
Q

= AQ +
µ

rQ
. (93)

Inserting the explicit expressions for s2θQ and YQ one arrives at

ĈA
Q,SQCD = −∆Q

(

1 +
1

r2Q

)

+O(M−2
SUSY ) . (94)

Since the Att̄ operator mixes with the At̃t̃∗ operator the non-decoupling ∆t contributions to
the effective top Yukawa coupling are induced. Working with properly matched low-energy
parameters, i.e. effective Yukawa couplings with ∆Q contributions as in Eq. (82), this term is
absorbed in the Yukawa couplings exactly so that the radiative corrections in the low-energy
2HDM with properly defined low-energy parameters are vanishing for the leading O(M0

SUSY )
term

CA
Q,SQCD = O(M−2

SUSY ). (95)

This is because in contrast to the MSSM, the chiral symmetry ψQ → eiαγ5ψQ is only broken
by the quark mass term in the effective 2HDM so that only the higher-order corrections to
the proper matching of the low-energy 2HDM to the full MSSM contribute. Thus, in the
low-energy limit the Adler-Bardeen theorem [17] is fulfilled5. Since radiative corrections still
arise due to the higher-order corrections to the matching, the Adler–Bardeen theorem [17]
builds a deep connection between the explicit structure of the radiative corrections in the
full MSSM in the low-energy limit and the radiative corrections in the low-energy EFT. This
result is in line with the result of Ref. [46] that the QCD corrections to the effective ggA
Lagrangian in the HTL are vanishing if the strong coupling is chosen as the 5-flavour one,
i.e. properly decoupling the top-quark contribution from the running of αs or in other words
using the properly matched low-energy αs within pure 5-flavour QCD. This also implies that

5The Adler-Bardeen theorem is not valid for subleading O(M−2

SUSY ) orders in the large SUSY-mass
expansion with effective low-energy parameters as it also not valid for subleading O(m−2

t ) orders of the
large-top mass expansion of the pure QCD corrections.
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in the large SUSY-mass limit (keeping the top mass small in comparison) no effective ggA
operator is generated in the low-energy 2HDM at the dimension-5 level by integrating out
the SUSY particles. The same is true as well for the bottom/sbottom contributions so that
the SUSY particles do not generate a sbottom-induced effective ggA operator at leading
O(M0

SUSY ) at all.
Another situation arises when the top quark is integrated out, i.e. assumed to be much

heavier than the pseudoscalar A as well and not assumed to be much lighter than the other
SUSY particles. In this case a dimension-5 operator contribution is generated on top of
the HTL at LO due to the non-decoupling nature of the top quark as has already been
observed for the leading O(GFm

2
t ) corrections to the effective Agg coupling [47]. Since

the stops couple to the pseudoscalar in terms of the top Yukawa coupling as well, a new
genuine dimension-5 contribution to the Agg coupling, on top of the contribution from the
effective Yukawa coupling, emerges starting at NLO. This contribution can be related to
the violation of the global Peccei–Quinn symmetry of the MSSM Lagrangian by the µ term
[31, 32]. This leads to an extension of the related operator identity of the divergence of
the axial-vector current by an additional operator involving the stop fields thus destroying
the one-to-one correspondence between the pseudoscalar top-Yukawa coupling and the ABJ-
anomaly operator and in this way the translation of the Adler–Bardeen theorem to the Agg
operator. It follows that both the ∆t terms and the genuine radiative corrections to the Agg
coupling scale with the µ parameter [48]. Within the EFT view this has to be considered as
higher-order corrections to the effective Agg operator in the combined HTL and large-SUSY-
mass limit, i.e. higher-order corrections to the corresponding matching conditions that scale
with µ.

6 Results

We are now in the position to present and discuss the final results of the NLO SUSY–QCD
corrections to pseudoscalar gg → A production, but also to the pseudoscalar decays A→ gg
and A→ γγ. For the numerical analysis we have adopted the M125

h benchmark scenario [19]
that is defined by the following on-shell parameters,

M125
h : MQ̃ = 1.5 TeV, Mℓ̃3

= 2 TeV, Mg̃ = 2.5 TeV,

M1 =M2 = 1 TeV, Ab = Aτ = At = 2.8 TeV + µ/tgβ, µ = 1 TeV, (96)

that have been used in the framework of the program HDECAY [49] with an iteration to
determine the corresponding MS parameters accordingly. This proceeds along the lines
discussed in Section 4. Here, MQ̃ denotes the third-generation soft SUSY-breaking squark-
mass parameters, Mℓ̃3

the corresponding one for the sleptons and M1,M2 the soft SUSY-
breaking gaugino-mass parameters for the bino and wino, repectively. For two representative
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values of tgβ, the related stop and sbottom masses amount to

tgβ = 10

mt̃1 = 1340 GeV, mt̃2 = 1662 GeV, mb̃1
= 1496 GeV, mb̃2

= 1508 GeV

tgβ = 40

mt̃1 = 1340 GeV, mt̃2 = 1662 GeV, mb̃1
= 1479 GeV, mb̃2

= 1525 GeV. (97)

Our numerical integration has been performed with the VEGAS subroutine [50] after prepar-
ing the integrands according to the methods described in Section 5. We have used up to
O(109) points for the 5-dimensional VEGAS integration, with imaginary parts ǭ of Eq. (53)

up to the order of 10−3 above the virtual thresholds (QQ̄, Q̃1Q̃2, Q̃2Q̃1) for Q = t, b. The
numerical integration errors of our final results rank below the 10−2-level for the final coef-
ficients CA

Q,SQCD of Eq. (51) and DA
Q,SQCD of Eq. (14) for both the top- and bottom-induced

corrections. This has been achieved with less than a week of CPU time for each individual
MA point.

6.1 Gluon Fusion gg → A
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Figure 6: The genuine SUSY–QCD corrections to gg → A normalized to the LO top and
bottom quark form factors for tgβ = 10 in the M125

h benchmark scenario. Real part: red,
imaginary part: blue, compared to the approximate calculations of Ref. [32] (dashed lines).
The dotted lines for the stop contributions correspond the the combined limit of large top and
SUSY masses.
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Figure 7: The same as Fig. 6, but for tgβ = 40.
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Figure 8: The same as Fig. 6, but as a function of tgβ for MA = 1.5 TeV.
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As a starting point, the perturbative NLO coefficients CA
Q,SQCD are displayed in Figs. 6 and

7 as a function of the pseudoscalar massMA for tgβ values of 10 and 40, respectively. In these
figures, we show the approximate calculations of Ref. [32] as well, i.e. for the stop contribution
both approximations of the combined heavy-top/SUSY limit (’approxheavy’) and the pure
large SUSY-mass limit (’approxmt’), while for the sbottom contribution only the large SUSY-
mass limit (’approx’) is phenomenologically relevant and shown. The full calculation agrees
well with the former approximate calculations for smaller pseudoscalar masses in both the
stop and sbottom cases. However, we observe sizeable and increasingly relevant deviations
for pseudoscalar masses approaching or exceeding the virtual squark threshold6. Moreover,
we display the results of the NLO coefficients for the two cases of absorbing the ∆t/b terms
in the corresponding Yukawa couplings and the opposite. It is clearly visible that the ∆t/b

terms approximate the full results quite well for smaller pseudoscalar masses MA so that the
results after subtracting them turn out to be quite small. These subtracted results represent
the SUSY-remainder, i.e. the contributions beyond the leading parts corresponding to the
effective top and bottom Yukawa couplings. It is obvious that the absorption of these
contributions leads to a much better perturbative behaviour thus corroborating the effective
Yukawa-coupling approach. This is further underlined by the tgβ dependence of the stop
and sbottom contributions shown in Fig. 8 for a pseudoscalar mass MA = 1.5 TeV. The
description of the SUSY–QCD corrected cross section in terms of the effective low-energy
top- and bottom-Yukawa couplings leads to a moderate SUSY-remainder at NLO as long
as the pseudoscalar Higgs mass does not approach the virtual stop/sbottom thresholds. At
and beyond these virtual thresholds, the SUSY-remainders turn out to be sizeable.

As the next step, we analyze the SUSY–QCD corrections to the hadronic cross section of
pseudoscalar Higgs-boson production via gluon fusion. The effect of the corrections on the
K-factor at the hadronic level, which is defined as the ratio between the NLO and LO cross
sections, is discussed first. We adopt the MSHT20nlo as118 parton density functions and
perform the analysis for a c.m. energy of 13 TeV at the LHC. Fig. 9 exhibits the K-factor
for tgβ = 10, 40 with effective top- and bottom-Yukawa couplings for the QCD part of the
cross section and for the corresponding results of the previous approximate calculations. The
QCD part of the K-factors shows the usual sizeable NLO corrections of about 30–50%, while
the additional SUSY–QCD remainder turns out to be small or moderate. The comparison
implies that effects beyond the approximation become relevant when approaching the virtual
stop/sbottom thresholds and above as expected.

These K-factors can be translated to the hadronic production cross sections of pseu-
doscalar Higgs bosons via gluon fusion as shown in Fig. 10 for two values of tgβ = 10, 40.
For the effective bottom-Yukawa couplings, we include the full set of NNLO corrections [51]
to lift the accuracy of the factorizing and dominant contributions to the NNLO level, while
for the effective top-Yukawa coupling we use the NLO expression in the effective field-theory
framework. Here, we present the QCD-corrected cross sections without the effective top-
and bottom-Yukawa couplings, i.e. without any genuine SUSY–QCD corrections and the ap-
proximate and full SUSY–QCD corrected cross sections with the effective Yukawa couplings

6The kink structure at the heavy squark threshold is in line with the S-wave but CP-odd behaviour of
q̃1q̃2 and q̃2q̃1 pairs of different squarks close to the threshold.
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Figure 9: The K-factors of the QCD and genuine SUSY–QCD corrections for the LHC with
tgβ = 10, 40 and a c.m. energy of 13 TeV. As parton density functions the MSHT20 sets
have been used. The renormalization and factorization scales have been chosen as µR =
µF =MA/2.

as discussed in the previous section. The comparison of the full QCD-corrected cross section
(blue line) and the full QCD + SUSY–QCD corrected cross section (red line) supports the
high relevance of the SUSY–QCD corrections in total, while the SUSY-remainder plays a
role close or above the virtual stop- and sbottom thresholds.

6.2 The Gluonic Decay A→ gg

The same virtual coefficient as for gg → A contributes to the genuine SUSY–QCD corrections
of the gluonic pseudoscalar Higgs decay A → gg according to Eq. (11). The relative QCD
and SUSY–QCD corrections to the gluonic decay width are shown in Fig. 11 with the use
of effective top and bottom Yukawa couplings. It is clearly visible that the bulk of the
genuine SUSY–QCD corrections can be absorbed by the effective top and bottom Yukawa
couplings including ∆t,b contributions. The SUSY-remainder is relevant in regions where
finite squark-mass effects become relevant, i.e. close or above the related virtual thresholds.
The corresponding partial decay widths Γ(A → gg) are shown in Fig. 12 for tgβ = 10, 40,
using effective top and bottom Yukawa couplings for the SUSY–QCD-corrected decay widths,
but LO couplings without ∆t.b terms for the LO and QCD-corrected decay widths. The
SUSY–QCD corrections are treated in the same way as for the production cross sections,
i.e. ∆b terms at two-loop order and ∆t contributions at one-loop level. The main effect
of the genuine SUSY–QCD corrections emerges from the factorizing ∆b,t corrections to the

30



QCD

LO

QCD + SQCD

QCD + approx

σ(pp → A+X) [pb]

Mh
   125   scenario

tgβ = 10

√s = 13 TeV

MSHT20

MA [GeV]

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

1000 1500 2000 2500 3000 3500

QCD

LO

QCD + SQCD

QCD + approx

σ(pp → A+X) [pb]

Mh
   125   scenario

tgβ = 40

√s = 13 TeV

MSHT20

MA [GeV]

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

1000 1500 2000 2500 3000 3500

Figure 10: The pseudoscalar production cross section via gluon-fusion at the LHC with
tgβ = 10 (left) and tgβ = 40 (right) and a c.m. energy of 13 TeV at LO, NLO QCD and
including the genuine SUSY–QCD corrections involving effective Yukawa couplings. The
LO and NLO QCD corrected cross sections are shown without effective Yukawa couplings.
As parton density functions the MSHT20 sets have been used. The renormalization and
factorization scales have been chosen as µR = µF =MA/2.

Yukawa couplings. The comparison of the pure NLO QCD prediction (blue curve) and the
SUSY–QCD corrected one (red curve) indicates the large size of SUSY–QCD corrections at
NLO for the partial width.

6.3 The Photonic Decay A→ γγ

The virtual SUSY–QCD corrections to the photonic decay width of A → γγ emerge from
the first four diagrams of Fig. 5 after adjusting the related coupling and color factors and
replacing the two external gluons by photons. The normalized coefficient of the SUSY–QCD
corrections with and without absorption of the ∆t,b terms is shown in Figs. 13 and 14 for
two values of tgβ = 10, 40. As in the gluonic case the ∆t and ∆b contributions determine
the dominant part of the SUSY–QCD corrections that can be absorbed in the effective top
and bottom Yukawa couplings of Eq. (82). The SUSY–QCD remainder turns out to be
small apart from the regions closer to the virtual stop and sbottom thresholds. The partial
decay widths of A→ γγ are shown in Fig. 15 for the different levels of perturbative orders.
The LO and NLO QCD corrected widths are shown in blue, while the approximate and full
SUSY–QCD-corrected ones are displayed in red. As in the previous cases it is clearly visible
that the bulk of the genuine SUSY–QCD corrections can be absorbed by the corresponding
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Figure 11: Relative radiative corrections, defined as Γ = ΓLO(1 + δ), to the gluonic pseu-
doscalar decay width as a function of the pseudoscalar mass MA for tgβ = 10 (left) and
tgβ = 40 (right) at NLO QCD and including the genuine SUSY–QCD corrections involving
effective Yukawa couplings. The renormalization scale has been chosen as µR =MA.
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Figure 12: Partial decay widths Γ(A → gg) as a function of the pseudoscalar mass MA for
tgβ = 10 (left) and tgβ = 40 (right) at NLO QCD and including the genuine SUSY–QCD
corrections involving effective Yukawa couplings. The renormalization scale has been chosen
as µR =MA.
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effective top and bottom Yukawa couplings leaving a sizeable SUSY-remainder in regions
only where squark-mass effects become relevant. The extended peaking structure around a
pseudoscalar mass of 2 TeV originates from the two chargino thresholds that are not affected
by corrections due to strong interactions. It should be noted that the same corrections are
valid for the reverse process γγ → A as well, which could be probed at a potential future
high-energy γγ-collider.
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Figure 13: The genuine SUSY–QCD corrections to A → γγ normalized to the LO top
and bottom quark form factors for tgβ = 10 in the M125

h benchmark scenario. Real part:
red, imaginary part: blue, compared to the Abelian part of the approximate calculations of
Ref. [32] (dashed lines). The dotted lines for the stop contributions correspond the combined
limit of large top and SUSY masses.

7 Conclusions

We have calculated the full SUSY–QCD corrections to pseudoscalar Higgs-boson produc-
tion via gluon fusion gg → A within the MSSM at hadron colliders. We implemented the
virtual stop and sbottom sector at the NLO level to be in line with the necessities for the
corresponding scalar Higgs-boson production cross sections via gluon fusion gg → h,H .
We have analyzed pseudoscalar Higgs-boson production with respect to the introduction of
effective low-energy top and bottom Yukawa couplings, i.e. the couplings within the low-
energy 2HDM after integrating out the strongly interacting SUSY particles (stops, sbottoms
and gluinos). We found that the bulk of the NLO corrections can be absorbed in these
effective Yukawa couplings, while the SUSY-remainder is of moderate size, being significant
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Figure 14: The same as Fig. 13, but for tgβ = 40.
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Figure 15: The partial decay width of A → γγ for two values of tgβ = 10, 40 in the M125
h

benchmark scenario at LO and NLO QCD (blue) and including the genuine SUSY–QCD
corrections involving effective Yukawa couplings (red).
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close or above virtual squark thresholds. We have analyzed the corrections in the context of
the Adler-Bardeen theorem and found that this theorem is fulfilled in the large SUSY-mass
limit, if the observable is expressed in terms of properly matched low-energy parameters,
i.e. top- and bottom-Yukawa couplings. The analogous results have also been obtained for
the related rare pseudoscalar Higgs-boson decays A → gg, γγ that, however, only play a
minor role in phenomenological analyses at hadron colliders. This work completes the full
NLO QCD calculation for pseudoscalar MSSM Higgs production and decay into gluonic and
photonic final states and thus serves as a basis for the corresponding theoretical predictions.
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