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Abstract

The mode stability of the Kerr black hole in four dimensions was demonstrated

by Whiting in 1989, by separating the Teukolsky equation that describes gravitational

perturbations and then transforming the radial and angular equations in such a way

that the problem can be reformulated as a wave equation in an auxiliary spacetime in

which the proof of stability is greatly simplified, owing to the absence of an ergore-

gion. As a preliminary step towards extending these ideas to higher-dimensional black

holes, we study the mode stability of the massless scalar wave equation in the five-

dimensional black hole solutions of Einstein gravity and supergravity. We show how

the wave equation can again be mapped into one in an auxiliary spacetime in which

there is no ergoregion, allowing us to give a proof of the mode stability of the solutions

of the scalar wave equation.
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1 Introduction

Establishing results on the stability of black hole solutions has been a major activity in the

general relativity community for many years. This is especially subtle, and also important,

in the case of stationary rotating black holes. Many different approaches have been followed,

but one of the most fruitful has involved finding an integral transformation that maps

the difficult analysis in the original variables into a considerably simpler analysis in the

transformed variables. The idea was first developed in [1], where it was employed to establish

the mode stability of the Kerr black hole [1]. The technique has been developed further

in recent years, and found application in studies such as the global stability of black holes

(see, for example, [2,3]), the stability of extremal black holes [4], and mode stability on the

real frequency axis [5, 6].

Establishing the mode stability of the Kerr black hole involved studying the properties

of the mode functions in the separation of variables for the Teukolsky equation, which pro-

vides a gauge-invariant description of the perturbations around the Kerr background. In [1]
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the generalised Teukolsky equation with a spin parameter s was studied, with s = ±2 cor-

responding to the actual case of interest in which the equation describes the gravitational

perturbations themselves. The case s = 0 corresponds to the massless scalar wave equa-

tion (the massless Klein-Gordon equation), while the s = ±1 case governs gauge-invariant

components of the Maxwell field.

The techniques for analysing the Teukolsky equation for spin s that were developed in [1]

were broadly similar for all s, and in fact the essential features associated with the stability

of the solutions could already be seen in the s = 0 case. This is a useful observation because

if one looks at more complicated situations than black holes in pure Einstein gravity, such

as black holes in Einstein-Maxwell theory or in supergravity, the analogue of the Teukolsky

analysis has not been implemented. In the absence of a gauge-invariant treatment of the

perturbations of the black holes in these more complicated situations, one can at least study

the analogue of s = 0 Teukolsky equation, that is, the massless scalar wave equation in the

black hole background. One may hope that this can provide a “proxy” for the full analysis,

and that establishing stability results for the solutions of the massless wave equation may be

indicative of what one might find in a more elaborate and complete perturbative analysis.

This approach was adopted in [7], where the techniques of [1] were applied to the study

of the mode stability for solutions of the massless scalar wave equation in the background

of a class of four-dimensional supergravity black holes carrying four independent electric

charges [8, 9].

In this paper, we extend some of the four-dimensional techniques for mode-stability

analysis that were developed in [1] to the case of five dimensions. Even in the pure Einstein

case, the analogue of the four-dimensional Teukolsky analysis is unknown. The stumbling

block is that the four-dimensional analysis depended heavily upon the use of the Newman-

Penrose formalism, and no particularly useful extension of this to five or higher dimensions

has been constructed.1 Thus for now, our approach will mirror the one that can be followed

for more complicated theories in four dimensions, namely, we shall focus attention on estab-

lishing stability results for solutions of the five-dimensional massless scalar wave equation.

This already allows us to develop a rather non-trivial generalisation of the techniques that

were employed in four dimensions, and it reveals ways in which the integral transformation

that allows us to establish mode-stability results is substantially different from the one in

four dimensions.

We shall describe in the subsequent sections how one can establish mode stability results

1However, see [10].
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for solutions of the massless wave equation in the background of the five-dimensional Myers-

Perry rotating black hole [11], and also in the background of general 3-charge rotating black

holes in the five-dimensional STU supergravity theory [12].

2 Massless Scalar Wave Equation in Five-Dimensional Black

Hole Background

2.1 Five-dimensional Myers-Perry black hole

The natural generalisation of the four-dimensional rotating Kerr [13] black hole to higher

spacetime dimensions is provided by the Myers-Perry black hole solutions [11]. These

vacuum solutions of the D-dimensional Einstein equations are characterised by their mass

M and by [(D − 1)/2] independent angular momenta, reflecting the fact that independent

rotations can occur in each orthogonal spatial 2-plane. In this paper we shall be concerned

specifically with the example of the five-dimensional rotating black hole. Its metric is given

by [11]

ds2 = −∆

ρ2
(dt− a sin2 θ dφ− b cos2 θ dψ)2 +

ρ2

∆
dr2 + ρ2 dθ2

+
sin2 θ

ρ2
[adt− (r2 + a2) dφ]2 +

cos2 θ

ρ2
[bdt− (r2 + b2) dψ]2

+
1

r2 ρ2
[abdt− b(r2 + a2) sin2 θdφ− a(r2 + b2) cos2 θ dψ]2 (2.1)

where

∆ =
(r2 + a2)(r2 + b2)

r2
− 2M , ρ2 = r2 + a2 cos2 θ + b2 sin2 θ . (2.2)

Here a and b are the two independent rotation parameters, with φ and ψ being the two

associated azimuthal angles (each with period 2π). The latitude coordinate θ ranges over

0 ≤ θ ≤ 1
2π.

2.2 Massless scalar wave equation

Our focus will be the investigation of solutions of the massless scalar wave equation �Ψ = 0

in the Myers-Perry background, with the goal of establishing that modes with time de-

pendence e−iωt that are ingoing on the future horizon and outgoing at future null infinity

cannot have a frequency ω with a positive imaginary part. In other words, we seek to show
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that there cannot exist spatially regular modes that would give rise to instabilities growing

exponentially in time.

One can define new radial and latitude coordinates x̃ and y by writing

x̃ = r2 , y = cos2 θ . (2.3)

Using these, we have
√−g =

x̃+ a2 y + b2 (1− y)

4
, (2.4)

and defining the quantity Gµν ≡ √−g gµν , we have

G00 = −(x̃+ 2M + b2)

4
− M2 x̃

D
+

(b2 − a2)y

4
, G01 = G02 = 0 , G03 = −aM(x̃+ b2)

2D
,

G04 = −bM(x̃+ a2)

2D
, G11 = x̃2 + (a2 + b2 − 2M)x̃+ a2b2 , G12 = G13 = G14 = 0 ,

G22 = y(1− y) , G23 = G24 = 0 ,

G33 =
(b2 − a2)x̃+ b2 (b2 − a2 − 2M)

4D
+

1

4(1 − y)
, G34 = −abM

2D
,

G44 =
(a2 − b2)x̃+ a2 (a2 − b2 − 2M)

4D
+

1

4y
, (2.5)

where

D = (x̃+ a2)(x̃+ b2)− 2Mx̃ . (2.6)

It can be shown [14] that the massless scalar wave equation �Ψ = 0, which may be written

as ∂µ(G
µν ∂νΨ) = 0, is separable.

We can obtain the separated x̃ and y equations in Schrödinger form by writing 2

Ψ = e−iωt+imφ+inψ R(x̃)S(y) (2.7)

and then defining

R(x̃) =
X(x̃)√
D

, S(y) =
Y (y)

√

y(1− y)
. (2.8)

This gives the separated equations

X ′′

X
+ Ux̃ −

σ

D
= 0 ,

Y ′′

Y
+ Uy +

σ

y(1− y)
= 0 . (2.9)

It is convenient now to make a further change of the radial variable. Defining ǫ+ and

2For the separated form of the equations before casting them in the Schrödinger form, see [14]. There
the separation was already performed for the 5d STU black holes [12].
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ǫ− by

2M − (a+ b)2 = 2Mǫ2+ , 2M − (a− b)2 = 2Mǫ2− , (2.10)

a further coordinate transformation from x̃ to x, given by

x̃ = 2Mǫ+ ǫ− x+ 1
2M(ǫ+ − ǫ−)

2 , (2.11)

implies that D, defined in eqn (2.6), becomes

D = 4M2 ǫ2+ ǫ
2
− x(x− 1) . (2.12)

The outer horizon r = r+ is located at x = 1, and the inner horizon r = r− at x = 0. The

region where r goes to infinity corresponds to x goes to infinity.

In terms of the variable x, we can now write the radial equation in the form

X ′′

X
+
κ+ Λ

x
+
κ− Λ

x− 1
+

1
4 − β2

x2
+

1
4 − γ2

(x− 1)2
= 0 , (2.13)

finding

κ = 1
4Mǫ+ ǫ− ω

2 ,

β =
i

4
√
2M

[2Mω − (a+ b)(m+ n)

ǫ+
− 2Mω − (a− b)(m− n)

ǫ−

]

,

γ =
i

4
√
2M

[2Mω − (a+ b)(m+ n)

ǫ+
+

2Mω − (a− b)(m− n)

ǫ−

]

, (2.14)

Λ = σ +
1

2
− 3

4
Mω2 + 1

8(a
2 − b2)ω2 +

[2Mω − (a+ b)(m+ n)]2

16Mǫ2+
+

[2Mω − (a− b)(m− n)]2

16Mǫ2−
.

In the angular direction, the equation for Y in (2.9) is of the form

Y ′′

Y
+
κ̂+ Λ̂

y
+
κ̂− Λ̂

y − 1
+

1
4 − β̂2

y2
+

1
4 − γ̂2

(y − 1)2
= 0 , (2.15)

with

κ̂ = −1

8
(a2 − b2)ω2 , β̂ =

n

2
, γ̂ =

m

2

Λ̂ =
1

2
+ σ − (m2 + n2)

4
+

(a2 − b2)ω2

8
. (2.16)
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2.3 Transforming the radial equation

We start with the radial equation given by eqn (2.13), with the constants given in (2.14).

Next, introduce a new function f(x), related to X(x) by

X(x) = x
1

2
−ǫ1 β (x− 1)

1

2
−ǫ2 γ f(x) , (2.17)

where ǫ21 = ǫ22 = 1. The function f therefore satisfies

[x(x− 1) ∂2x + (bx+ c) ∂x + dx+ e]f(x) = 0 , (2.18)

with

b = 2(1 − ǫ1 β − ǫ2 γ) , c = −1 + 2ǫ1 β ,

d = 2κ , e = 1
2 − κ− ǫ1 β − ǫ2 γ + 2ǫ1 ǫ2 β γ − Λ . (2.19)

Next, we make an integral transform to a new radial variable h(z), by defining

h(z) = e−α̃ z eν̃/z z1+γ̃
∫ ∞

1
e2α̃ x z f(x) dx (2.20)

Now, multiplying eqn (2.18) by e2α̃ x z and integrating gives, after integration by parts,

0 = B +

∫ ∞

1
[4α̃2 x(x− 1) z2 + 2α̃ (4x− bx− 2− c)z + dx+ 2− b+ e] f(x) dx , (2.21)

where B is the boundary term

B =
[

e2α̃ x zx(x− 1) ∂xf − ∂x(e
2α̃ x z x(x− 1)) f + e2α̃ x z(bx+ c) f

]∞

1
. (2.22)

Note that eqn (2.21) can be written as

0 = B +

∫ ∞

1
f(x)Oz(e

2α̃ x z) dx , (2.23)

where

Oz = z2 ∂2z +

(

4z − 2α̃ z2 − bz +
d

2α̃

)

∂z + 2− 2α̃ c z − 4α̃ z − b+ e . (2.24)

It can then be seen that provided the boundary term B vanishes, a question to which we
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shall return later, then h(z) defined in eqn (2.20) satisfies Oz

(

eα̃ z e−ν̃/z z−1−γ̃ h(z)
)

= 0,

and thus

(

∂2z − α̃2 +
2α̃ κ̃

z
+

Λ̃

z2
+

2γ̃ ν̃

z3
− ν̃2

z4

)

h(z) = 0 , (2.25)

where the constants are chosen so that

κ̃ = −ǫ1 β + ǫ2 γ , Λ̃ = 1
2 − β2 − γ2 − Λ ,

γ̃ = ǫ1 β + ǫ2 γ , ν̃ = − κ

2α̃
. (2.26)

The constant α̃ is arbitrary at this stage (it really just sets the scale of the new radial

variable z that is introduced in eqn (2.20)). We shall find it convenient to define it to be

α̃ =
i
√
M ǫ− ω

2
√
2

. (2.27)

2.4 Behaviour of unstable modes

If they existed, unstable modes would be solutions than were purely outgoing at I and

purely ingoing at the horizon H, that is, asymptotically, they would have support only at

I + and H+. We are interested in establishing the non-existence of unstable modes arising

from frequencies in the upper half of the complex ω-plane, that is for ω = ω0 + iω1, with

ω1 > 0, since these would grow exponentially in the future. Thus, near I +, we must have:

Ψ ∼ exp−iω(t− r∗) , as {t, r∗} → ∞ , (2.28)

and, near H+, we must have:

Ψ ∼ exp−iω(t+ r∗) , as {−t, r∗} → −∞ . (2.29)

From the definition of the r∗ coordinate in eqn (A.1), it can be seen that in terms of the

radial coordinate x introduced in eqn (2.11), we shall have asymptotically

Near I : r∗ =
√

2Mǫ+ ǫ− x
1

2 +O
(

x−1/2
)

, (2.30)

Near H : r∗ =

√
M (ǫ+ + ǫ−)

2
√
2 ǫ+ ǫ−

log(x− 1) +O
(

x− 1
)

. (2.31)

From the radial equation (2.13), it can be seen that near the horizon x = 1, the solutions
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will have the form

X(x) = (x− 1)
1

2
±γ F

(1)
± (x− 1) , (2.32)

where the functions F
(1)
± (x−1) are analytic around x = 1, with F

(1)
± (0) a non-zero constant.

As noted above, an unstable mode would have ω dependence of the form e−iωr∗ near H, and

hence from (2.31) and (2.14) it would correspond to the minus-sign choice in eqn (2.32).

Thus for an unstable mode Xum, we must have the near-horizon behaviour

Near H : Xum(x) = (x− 1)
1

2
−γ F

(1)
− (x− 1) . (2.33)

In the asymptotic region near x = ∞, it can be seen from the radial equation (2.13)

that the asymptotic form of the solutions will be

X(x) = x
1

4 e±2i
√
2κ

√
x F

(∞)
±

( 1√
x

)

, (2.34)

with the functions F
(∞)
±

(

1√
x

)

being asymptotic series with F
(∞)
± (0) a non-zero constant.

Now, as we saw, an unstable mode would correspond to a having an ω dependence of the

form eiωr∗ near infinity, and so from (2.30) and (2.14) it would correspond to the plus-sign

choice in eqn (2.34). Thus, for an unstable mode Xum(x), we must have the asymptotic

behaviour

Near I : Xum(x) = x
1

4 e2i
√
2κ

√
x F

(∞)
+

( 1√
x

)

. (2.35)

Before going on, we point out that infinitely many modes with these analytic properties

do exist with ω1, the imaginary part of ω, being < 0. These modes decay exponentially in

time, have been extensively studied [15], and are known as the quasi-normal modes which,

taken together, uniquely characterise a black hole spacetime to which they correspond.

We turn now to the behaviour of the transformed radial function h(z), defined by eqn

(2.20). In particular, we shall be concerned with the behaviour in the coordinate range

0 ≤ z ≤ ∞.

Near z = 0, it can be seen from eqn (2.25) that the leading-order behaviour of the

solutions will be

h(z) = e±ν̃/z z1±γ̃ G
(0)
± (z) , (2.36)
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where G
(0)
± (z) are analytic functions with G

(0)
± (0) being non-zero constants. It is evident

from (2.20) that at z = 0 the integrand for an unstable mode is just an analytic function

of x, and so the leading-order behaviour of h(z) near z = 0 will be given by the pre-factor

functions eν̃/z z1+γ̃ . In other words, the unstable mode corresponds to the plus-sign choice

in eqn (2.36):

Near z = 0 : hum(z) = eν̃/z z1+γ̃ G
(0)
+ (z) , (2.37)

As a check, we see from eqns (2.14), (2.26) and (2.27) that

ν̃ =
i
√
M ǫ+ ω

2
√
2

, (2.38)

whose real part is negative when ω has a positive imaginary part, thus implying that hum(z)

in eqn (2.37) is finite, and goes to zero, as z goes to zero. (This justifies the sign choice in

the definition of α̃ in eqn (2.27).)

It can be seen from eqn (2.25) that near z = ∞, the function h(z) has the behaviour

h(z) = e±α̃z z∓κ̃G
(∞)
±

(1

z

)

, (2.39)

where the functions G
(∞)
±

(

1
z

)

are asymptotic in z−1 with G
(∞)
± (0) being non-vanishing

constants. In the expression (2.20) the leading behaviour of h(z) near z = ∞ is governed by

the behaviour of f(x) near x = 1. Using the previously-determined behaviour of X(x), and

hence f(x), for an unstable mode we see that the integrand in eqn (2.20) has the behaviour

∫ ∞

1
e2α̃xzf(x)dx = e2α̃z

∫ ∞

1
e2α̃(x−1)z (x− 1)(ǫ2−1)γ

(

1 +O(x− 1)
)

dx. (2.40)

Substituting v = −2α̃(x− 1)z, we then have:

∫ ∞

1
e2α̃xzf(x)dx ∝ e2α̃z z−1+γ(1−ǫ2)

∫ ∞

0
e−vv(ǫ2−1)γ

(

1 +O
(v

z

))

dv. (2.41)

Combining with the pre-factor we then see, provided

ǫ2 = −1 , (2.42)
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that:

h(z) ∝ e+α̃z yγ̃+(1−ǫ2)γ(1 +O
(

1

z

)

)

∼ eα̃z z−κ̃ . (2.43)

Thus for an unstable mode, the plus-sign choice in eqn (2.39) is selected:

Near z = ∞ : hum(z) = eα̃z z−κ̃G
(∞)
+

(1

z

)

. (2.44)

As a check, we note that if ω has a positive imaginary part, α̃, given in eqn (2.27), will have

a negative real part, and so hum(z) will be finite as z goes to infinity. (This motivated the

sign choice in the definition of α̃ in eqn (2.27).)

It is now straightforward to check, using the asymptotic properties of the radial func-

tions for unstable modes established in this section, that the boundary term given in eqn

(2.22) will vanish for any unstable mode. Thus we have established that there is a one-to-

one mapping between exponentially unstable modes in the original untransformed radial

function X(x) and exponentially unstable modes in the radial function h(z) obtained by

means of the integral transform (2.20). The final steps in the proof of the mode stability

will be presented in the next section; this will entail establishing for the transformed radial

equation that there cannot exist any exponentially unstable modes.

3 Modes in the Transformed Spacetime

3.1 Combining angular and transformed radial equations

The constant σ that was introduced in the original process of separating variables is present

in the transformed radial equation (2.25) through the quantity Λ (see eqns (2.14) and (2.26))

and in the angular equation (2.15) through the quantity Λ̂ (see eqn (2.16)). It follows

therefore that if we form the combination

z2

h(z)
∂2z h(z) +

y(1− y)

Y (y)
∂2y Y (y) (3.1)

and make use of eqns (2.25) and (2.15) then we shall obtain an equation in which all

the σ dependence has cancelled. This equation can in fact be interpreted as the result of
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performing a separation of variables in which we write

Ψ(t, z, y, φ, ψ) = h(z)Y (y) e−iωt eimφ einψ . (3.2)

We postpone writing the full ‘unseparated” equation for now, and just focus on the terms

proportional to ω2. (That is, the −∂tt terms in the full five-dimensional wave equation.)

Together with the terms involving the radial and angular derivatives these are

z2 ∂2z + y(1− y) ∂2y +
ǫ2+M ω2

8z2
+
ǫ2−M z2 ω2

8
+

[−ǫ1 (ǫ− − ǫ+)− ǫ2 (ǫ− + ǫ+)]M ω2

4 ǫ− z

+
[ǫ1 (ǫ− − ǫ+)− ǫ2 (ǫ− + ǫ+)]M z ω2

4 ǫ+
+ 3

4M ω2 − 1
8(a

2 − b2) (1 − 2y)ω2 + rest , (3.3)

Since

ǫ+ =

√

1− (a+ b)2

2M
, ǫ− =

√

1− (a− b)2

2M
, (3.4)

(see eqns (2.10)), and we always assume a and b are non-negative, it follows that ǫ− ≥ ǫ+.

Consequently, all the ω2 terms in eqn (3.3) will be non-negative, provided that we choose

the sign of ǫ2 to be

ǫ2 = −1 . (3.5)

Note that the necessity for this choice of sign was already seen in the previous section, in

eqn (2.42). The choice of sign for ǫ1 is undetermined by these considerations. We shall, for

definiteness, make the choice

ǫ1 = −1 (3.6)

For the remaining ω2 terms, namely with coefficient

3
4M − 1

8 (a
2 − b2)(1− 2y) , (3.7)

we note that the range of the angular coordinate is 0 ≤ y ≤ 1, and so −1 ≤ 1− 2y ≤ 1. We

also have that

(a+ b)2 ≤ 2M , (3.8)
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(see eqn (3.4)), and so we have a2−b2 = (a+b)(a−b) ≤ (a+b)2 ≤ 2M . Thus the remaining

terms (3.7) contributing to ω2 terms in (3.3) are always positive.

In summary, we have seen that the overall coefficient of ω2 in eqn (3.3) is always posi-

tive, implying that in the transformed metric g̃µν obtained by the process of unseparating

variables, ∂
∂t is always timelike outside the horizon.

We now present the complete result for the combination of the radial and angular

equations. With ǫ1 = ǫ2 = −1 as discussed above we obtain

{

z2 ∂2z + y(1− y) ∂2y −
((a+ b)

4z
+

(a− b) z

4

)

mω −
( (a+ b)

4z
− (a− b) z

4

)

nω

+
(ǫ2+M

8z2
+
ǫ2−M z2

8
+
M

2z
+
M z

2
+ 3

4M − 1
8(a

2 − b2)(1 − 2y)
)

ω2

− m2

4(1 − y)
− n2

4y
+

1

4y(1− y)

}

Ψ = 0 . (3.9)

Using the replacements

ω −→ i ∂t , m −→ −i ∂φ , n −→ −i ∂ψ (3.10)

we can read off the components g̃µν of an inverse metric in a transformed spacetime, such

that eqn (3.9) can be written as

g̃µν ∂µ ∂νΨ+
1

4y(1− y)
Ψ = 0 , (3.11)

with

g̃zz = z2 , g̃yy = y(1− y) , g̃φφ =
1

4(1 − y)
, g̃ψψ =

1

4y
,

g̃tφ = −(a+ b)

8z
− (a− b) z

8
, g̃tψ = −(a+ b)

8z
+

(a− b) z

8
,

g̃tt = −
(ǫ2+M

8z2
+
ǫ2−M z2

8
+
M

2z
+
M z

2
+ 3

4M − 1
8(a

2 − b2)(1− 2y)
)

. (3.12)

We may find a suitable conformal factor Ω2 and a redefined wave function Φ such that

the D’Alembertian of Φ in a rescaled metric ĝµν = Ω2 g̃µν gives rise to eqn (3.11). We define

Φ(t, z, y, φ, ψ) =
1

z
√

y(1− y)
Ψ(t, z, y, φ, ψ) , (3.13)

13



and, noting from (3.12) that we have

√

−ĝ =
8
√
2Ω5

√
M (1 + z)2

, (3.14)

it can be seen that if we choose Ω so that

Ω3 =
(1 + z)2

√
M

8
√
2

, (3.15)

then the transformed equation (3.11) is equivalent to the following equation for Φ in the

ĝµν metric:

∂µ
(
√

−ĝ ĝµν ∂νΦ
)

= 0 . (3.16)

This can be derived from the Lagrangian

L = −1
2

√

−ĝ ĝµν ∂µΦ̄ ∂νΦ . (3.17)

From the resulting energy-momentum tensor

Tµν = ∂(µΦ̄ ∂ν)Φ− 1
2 ĝµν ĝ

ρσ ∂ρΦ̄ ∂σΦ (3.18)

we may construct a conserved current Jµ = −Kν T µν , where K = ∂
∂t is the time-translation

Killing vector. This gives rise to a conserved energy

E =

∫

√

−ĝ J0 d4x , (3.19)

with

J0 = −ĝtρ ∂(ρΦ̄ ∂t)Φ+ 1
2 ĝ
ρσ ∂ρΦ̄∂σΦ

= −1
2 ĝ
tt |∂tΦ|2 + 1

2 ĝ
zz |∂zΦ|2 + 1

2 ĝ
yy |∂yΦ|2 + 1

2 ĝ
φφ |∂φΦ|2 + 1

2 ĝ
ψψ |∂ψΦ|2 . (3.20)

The integrand in the energy integral (3.19) is therefore given by

√

−ĝ J0 =
1

2z2

{

P |∂tΦ|2 + z2 |∂zΦ|2 + y(1− y) |∂yΦ|2

+
1

4(1− y)
|∂φΦ|2 +

1

4y
|∂ψΦ|2

}

, (3.21)
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where

P =
ǫ2+M

8z2
+
ǫ2−M z2

8
+
M

2z
+
M z

2
+ 3

4M − 1
8(a

2 − b2)(1− 2y) . (3.22)

The four-dimensional integration in eqn (3.19) is over the coordinates of the 3-sphere

(with the ranges 0 ≤ y ≤ 1, 0 ≤ φ < 2π, 0 ≤ ψ < 2π), and over the transformed radial

variable z. This ranges over 0 ≤ z ≤ ∞, and as we discussed in section 2.4 the transformed

radial function h(z) for any putative unstable mode goes rapidly to zero at z = 0 (see eqn

(2.37)), and it goes rapidly to zero at z = ∞ (see eqn (2.44)), ensuring the convergence of

the integrals of all the terms in eqn (3.19).

From eqns (3.4) we have |a2 − b2| ≤ 2M , and since y lies in the interval 0 ≤ y ≤ 1,

it follows that the quantity P satisfies P ≥ 0. Since every term in the energy integral

(3.19) is integrable for any putative unstable mode, and each contribution is non-negative,

it follows in particular that the integral of the 1
2z2

P |∂tΦ|2 term is bounded from above by

the conserved energy E . Thus Φ cannot grow exponentially in time, and therefore there

cannot in fact exist any exponentially unstable modes.

4 3-Charge Five-Dimensional STU Supergravity Black Holes

The 3-charge rotating black-hole solution in five-dimensional STU supergravity was obtained

in [12], by using a solution-generating procedure. A convenient form of the solution was

given in [16]. With minor change of notation, to achieve consistency with our present

conventions, the metric is given by

ds2 = (H1H2H3)
1/3 (x̃+ ỹ) dŝ2 , (4.1)

where

dŝ2 = −Φ(dt+A)2 + ds24 , (4.2)

with

ds24 =
dx̃2

4X
+
dỹ2

4Y
+
U

G

(

dχ− Z

U
dσ

)2
+
XY

U
dσ2 . (4.3)
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The various functions above are given by3

X = (x̃+ a2)(x̃+ b2)− 2M x̃ , Y = −(a2 − ỹ)(b2 − ỹ) ,

G = (x̃+ ỹ)(x̃+ ỹ − 2M) , U = ỹ X − x̃ Y , Z = ab (X + Y ) ,

A =
2Mc1c2c3 (x̃+ ỹ)

G
[(a2 + b2 − ỹ)dσ − abdχ]− 2Ms1s2s3

x̃+ ỹ
(abdσ − ỹdχ) ,

Φ =
G

(x̃+ ỹ)3H1H2H3
, Hi = 1 +

2Ms2i
x̃+ ỹ

. i = 1, 2, 3. (4.4)

Here si = sinh δi and ci = cosh δi, where δi are the boost parameters that correspond

to turning on the three electric charges. When δi = 0, the metric reduces to the five-

dimensional Myers-Perry black hole.

The coordinates σ and χ are related to the standard azimuthal angular coordinates φ

and ψ (each with period 2π) by

σ =
aφ− bψ

a2 − b2
, χ =

bφ− aψ

a2 − b2
, (4.5)

as can be seen from eqn (15) in [16] after turning off the gauge coupling constant g. The

standard radial and angular coordinates r and θ are related to x̃ and ỹ by

x̃ = r2 , ỹ = a2 cos2 θ + b2 sin2 θ . (4.6)

Thus x̃ here is the same as x̃ in eqn (2.6) of the uncharged case. The coordinate ỹ is related

to our coordinate y = cos2 θ by

ỹ = (a2 − b2)y + b2 . (4.7)

Proceeding as in the earlier uncharged case, we may separate variables and write the

radial equation in the same form as eqn (2.13), and the angular equation in the same form

as eqn (2.15). Only the expressions for the various κ, Λ, β and γ coefficients will change

when the charges are turned on.

The coefficients κ, Λ, β and γ in the potential for the radial equation, generalising those

3There was one typo in [16]: a missing factor of (x̃+ ỹ) in the first of the two terms in the expression for
the 1-form A. This is corrected here.
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in (2.14) for Myers-Perry, are now given by

κ = 1
4Mǫ+ ǫ− ω

2 ,

β =
i

4
√
2M

[2(Πc +Πs)Mω − (a+ b)(m+ n)

ǫ+
− 2(Πc −Πs)Mω − (a− b)(m− n)

ǫ−

]

,

γ =
i

4
√
2M

[2(Πc +Πs)Mω − (a+ b)(m+ n)

ǫ+
+

2(Πc −Πs)Mω − (a− b)(m− n)

ǫ−

]

,(4.8)

Λ = σ +
1

2
− 1

4
M(3 + 2s21 + 2s22 + 2s23)ω

2 + 1
8(a

2 − b2)ω2

+
[2(Πc +Πs)Mω − (a+ b)(m+ n)]2

16Mǫ2+
+

[2(Πc −Πs)Mω − (a− b)(m− n)]2

16Mǫ2−
.

Crucial properties that held previously in the uncharged case continue to hold here. In

particular, since

Πc +Πs ≥ Πc −Πs ≥ 1 , (4.9)

together with the usual inequalities ǫ+ ≤ ǫ− ≤ 1, it follows that when ω has a positive

imaginary part, the real parts of β and γ will be negative.

For the angular equation, the hatted quantities κ̂, Λ̂, β̂ and γ̂ are given by

κ̂ = −1

8
(a2 − b2)ω2 , β̂ =

n

2
, γ̂ =

m

2

Λ̂ =
1

2
+ σ − (m2 + n2)

4
+

(a2 − b2)ω2

8
, (4.10)

unchanged from the results (2.16) for the uncharged black holes.

Following the same steps as we did previously for the uncharged Myers-Perry black hole,

we find that after implementing the same integral transformation of the radial equation as

before, we again arrive at an “unseparated” equation of the form (3.9), with the only

difference being in the coefficient of ω2:

{

z2 ∂2z + y(1− y) ∂2y −
((a+ b)

4z
+

(a− b) z

4

)

mω −
( (a+ b)

4z
− (a− b) z

4

)

nω

+
(ǫ2+M

8z2
+
ǫ2−M z2

8
+

(Πc +Πs)M

2z
+

(Πc −Πs)M z

2
+ 1

4M(3 + 2
∑

i

s2i )

−1
8(a

2 − b2)(1− 2y)
)

ω2 − m2

4(1 − y)
− n2

4y
+

1

4y(1− y)

}

Ψ = 0 . (4.11)

This correspondingly implies that the components of the tilded inverse metric g̃µν are un-
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changed except for g̃tt, which becomes

g̃tt = −
(ǫ2+M

8z2
+
ǫ2−M z2

8
+

(Πc +Πs)M

2z
+

(Πc −Πs)M z

2
+ 1

4M
(

3 + 2
∑

i

s2i
)

−1
8(a

2 − b2)(1− 2y)
)

. (4.12)

Calculating the determinant, we now find that instead of eqn (3.14) we have

√

−ĝ =
8
√
2 eδ1+δ2+δ3 Ω5

√
M

[

(eδ1+δ2 + eδ3z)(eδ2+δ3 + eδ1z)(eδ1+δ3 + eδ2z)

(1 + eδ1+δ2+δ3 z)
]− 1

2

, (4.13)

Following the remaining steps of the previous discussion for the uncharged case, we find

that the conserved energy is given by integrating
√−ĝ J0 as in equation (3.21), with the

function P now given not by eqn (3.22) but instead

P =
ǫ2+M

8z2
+
ǫ2−M z2

8
+

(Πc +Πs)M

2z
+

(Πc −Πs)M z

2
+ 1

4M(3 +
∑

i

2s2i )

−1
8(a

2 − b2)(1 − 2y) . (4.14)

The same arguments that established that P was non-negative in the uncharged case show

that P ≥ 0 here also, and hence again there cannot exist any unstable exponentially-growing

modes.

5 Discussion

It has become apparent that many of the equations governing massless fields on black hole

spacetimes are of Heun type (in cases where the cosmological constant is non-zero), or one

of its many confluent variants, such as for non-extreme Kerr [1], or the extreme case [4].

The differential equations we find for massless scalar fields in the five-dimensional Myers-

Perry black hole spacetime (see (2.13) and (2.15)) are of yet another confluent Heun type.

That observation has allowed us to extend to this (and the related STU) case the analysis

originally applied to massless fields of all spin in the Kerr spacetime [1]. Before our present

work, that analysis had also been extended: i) by using a different integration contour, to

rule out unstable modes on the real axis for the Kerr spacetime [6], ii) by considering a

modified integral transform, to deal with the extreme (|a| = M) Kerr black hole [4], and

iii), by looking carefully at more complicated examples, to establish the absence of unstable
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modes for massless scalar fields in STU spacetimes and all more specialized sub-cases [7].

Remarkably, the integral transform we have used here is, effectively, an inverse of that

developed for the extreme Kerr spacetime [4]. In this context, it is also worth noting that

quite different techniques, stemming from Seiberg-Witten theory (see, for example [17]),

and based on the spectral properties of the operators involved, have been used to discuss

both Kerr quasi-normal modes [18] and Kerr-de Sitter stability [19]. The relevance of such

an approach to the spacetimes we consider here is yet to be determined.

6 Conclusion

We have shown that a massless scalar field has no exponentially unstable modes in the five-

dimensional Myers-Perry black hole spacetime. We have also shown that the same is true in

the five-dimensional supergravity-motivated STU spacetimes and, previously [7], that this

holds, too, for the four-dimensional STU spacetimes. Together, these encompass a number

of other special cases which arise from restricting the parameters in these more general

examples. Although these results may serve as suggestive for the behaviour for fields of

higher spin – in particular, Maxwell fields and gravitational perturbations – it would be

useful to have some more direct indication, perhaps by writing down (at least) the analogue

of the Teukolsky equation in these more general cases. That task currently remains for

future work.
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A Global Structure of the Myers-Perry Black Hole

Defining a coordinate r∗ by the relation

dr∗ =
(r2 + a2)(r2 + b2) dr

r2 ∆
, (A.1)

we may introduce retarded coordinates (u, φ−, ψ−), where

du = dt− dr∗ , dφ− = dφ− a (r2 + b2) dr

r2∆
, dψ− = dψ − b (r2 + a2) dr

r2∆
. (A.2)

In terms of these, the metric (2.1) then becomes

ds2 = −du2−2dr (du−a sin2 θ dφ−−b cos2 θ dψ−)+ρ
2 dθ2 (A.3)

+
2M

ρ2
(du−a sin2 θ dφ−−b cos2 θ dψ−)

2+(r2+a2) sin2 θ dφ2−+(r2+b2) cos2 θ dψ2
− .

This form of the metric is regular in the neighbourhood of future null infinity.

We may also introduce advanced coordinates (v, φ+, ψ+) by

dv = dt+ dr∗ , dφ+ = dφ+
a (r2 + b2) dr

r2∆
, dψ+ = dψ +

b (r2 + a2) dr

r2∆
, (A.4)

with respect to which the metric (2.1) becomes

ds2 = −dv2+2dr (dv−a sin2 θ dφ+−b cos2 θ dψ+)+ρ
2 dθ2 (A.5)

+
2M

ρ2
(dv−a sin2 θ dφ+−b cos2 θ dψ+)

2+(r2+a2) sin2 θ dφ2++(r2+b2) cos2 θ dψ2
+ .

It can be seen from this form of the metric that it is regular as one crosses the future

horizon.

References

[1] B.F. Whiting, Mode stability of the Kerr black hole, J. Math. Phys. 30, 1301 (1989)

doi:10.1063/1.528308

[2] M. Dafermos, G. Holzegel, I. Rodnianski and M. Taylor, The non-linear stability of the

Schwarzschild family of black holes, [arXiv:2104.08222 [gr-qc]].

20

http://arxiv.org/abs/2104.08222


[3] Y. Shlapentokh-Rothman and R. Teixeira da Costa, Boundedness and decay for the

Teukolsky equation on Kerr in the full subextremal range |a| < M : frequency space

analysis, [arXiv:2007.07211 [gr-qc]].

[4] R. Teixeira da Costa, Mode stability for the Teukolsky equation on extremal and

subextremal Kerr spacetimes, Commun. Math. Phys. 378 (2020) no.1, 705-781

doi:10.1007/s00220-020-03796-z [arXiv:1910.02854 [gr-qc]].

[5] Y. Shlapentokh-Rothman, Quantitative Mode Stability for the Wave Equation on the

Kerr Spacetime, Annales Henri Poincare 16 (2015), 289-345 doi:10.1007/s00023-014-

0315-7 [arXiv:1302.6902 [gr-qc]].

[6] L. Andersson, S. Ma, C. Paganini and B. F. Whiting, Mode stability on the real axis, J.

Math. Phys. 58 (2017) no.7, 072501 doi:10.1063/1.4991656 [arXiv:1607.02759 [gr-qc]].
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[14] M. Cvetič and F. Larsen, General rotating black holes in string theory:

Grey body factors and event horizons, Phys. Rev. D 56, 4994-5007 (1997)

doi:10.1103/PhysRevD.56.4994 [arXiv:hep-th/9705192 [hep-th]].

[15] K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of stars and black holes, Living

Rev. Rel. 2 (1999), 2 doi:10.12942/lrr-1999-2 [arXiv:gr-qc/9909058 [gr-qc]].
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