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Abstract. The EDM4hep project aims to design the common event data
model for the Key4hep project and is generated via the podio toolkit.
We present the first version of EDM4hep and discuss some of its use
cases in the Key4hep project. Additionally, we discuss recent develop-
ments in podio, like the updates of the automatic code generation and
also the addition of a second I/O backend based on SIO. We compare
the available backends using benchmarks based on physics use cases,
before we conclude with a discussion of currently ongoing work and
future developments.

1 Introduction

At the core of every HEP experiment’s software framework lies the event data model
(EDM). It is the EDM that defines the language that physicists use to express their
ideas, and also the interface and communication channels between the different frame-
work components. Hence, it is crucial that an EDM captures all the use cases that
arise in the data processing and analysis and that it is implemented consistently and
efficiently. Both of these aspects are addressed in the Key4hep [1–3] project; the
former is addressed by the EDM4hep [4] library, while the latter is covered by the
underlying podio [5] library.

The EDM4hep project aims to design and define a common EDM for the Key4hep
project that should be easy to use for future lepton and hadron colliders and will be
covered in Section 2. The podio EDM toolkit aims to facilitate the efficient imple-
mentation of EDMs in C++ by automatically generating all the necessary code from
a high level description of the EDM. It is described in more detail in Section 3, where
we also present the integration of a new I/O backend and related performance stud-
ies. Finally, in section 4, we present currently ongoing work, some known current
limitations as well as future plans on how to fix them and other improvements.
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Figure 1. Overview of the contents of EDM4hep and the relations among the different
data types that it defines. The labelled associations between Monte Carlo simulation and
the reconstruction and analysis data types are distinct data types themselves in EDM4hep.
Relations and their direction are depicted by arrows, where multiple arrows imply the pos-
sibility of multiple relations.

2 EDM4hep

The contents of the EDM4hep are very similar to the ones of LCIO [6], which has
already been successfully used by the linear collider community. It features essential
data types for representing measurement data characteristic for typical HEP experi-
ments as well as data types that allow to condense these low level data into high level
descriptions of a complete collision event. Additionally, and equally important, simi-
lar data types are present to describe simulated events. A strict separation between
the data types used in simulation and the ones in event reconstruction is enforced by
not having the possibility to access any simulated data directly from the reconstruc-
tion side. Instead dedicated association data types that connect the two worlds exist.

Figure 1 shows all the currently present data types and their relations among each
other. As can be seen EDM4hep has similar capabilities as other EDMs and, e.g.
allows one to build decay hierarchies for MC particles, as an MCParticle can have
multiple relations to other mother or daughter MCParticles. Similarly it is possible to
reconstruct short lived particles from longer lived decay products by combining Recon-
structedParticles. All relations in EDM4hep are directed, i.e. a ReconstructedParticle
can hold references to Clusters or Tracks, but not vice versa.

2.1 EDM4hep and LCIO

The LCIO EDM has been used successfully for more than 15 years in physics and
detector studies for ILC and CLIC and CEPC and provides a complete and suffi-
cient event data model for generic lepton collider physics analyses. LCIO therefore
provided an ideal base for defining the EDM in EDM4hep. The closeness of the two
EDMs will eventually facilitate the porting of the large linear collider software stack
to Key4hep. The transition to EDM4hep also offers the possibility to introduce a
more modern coding style, in particular with value semantics and automatic refer-
ence counting, freeing the user of any memory handling burden, in comparison to the
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pointer semantics used in LCIO. At the same time LCIO, developed and extended
over many years, provides a significant set of utility classes and convenience functions
that facilitate the correct and simple application of LCIO in user code, e.g. for meta
data handling or relation navigation. In particular the convenience functions in some
EDM classes can easily be implemented also in EDM4hep using the extra code mech-
anism described below. Work is ongoing to port existing LCIO utility code or develop
new utilities in a dedicated package: EDMd4hep-utils [7].

3 podio

The previous sections have highlighted some of the things a generic EDM needs to
be able to support, most importantly, the ability to handle unique and non-unique
relations between objects of arbitrary data types. It should also offer an easy-to-
use interface to its physicist users, as well as an implementation that leverages the
available computing power as efficiently as possible. EDMs generated by podio offer a
simple user API and use concrete types, favoring composition over inheritance as well
as well defined object ownership. To free the users from the implementation details
all code is automatically generated from a high level description in YAML format
(see section 3.2). In this section we will only give a brief introduction to the general
design principles [8, 9] and instead focus on the most recent developments.

3.1 The three layers of podio

One of the key ideas of podio is to use plain-old-data (POD) types wherever possible.
This allows for a relatively simple memory model, performant I/O operations and
also supports vectorization. To facilitate the handling of relations among objects in
the EDM podio uses three layers to separate the data handling with the POD types
from the rest. An illustration of this layered approach is shown in Figure 2.

The POD Layer holds arrays of the actual data structures, e.g. HitData with
position and amplitude information.

The Object Layer consists of transient objects (HitObject), which handle the
relations between the objects of the EDM and also manage the POD objects.

The top layer, the User Layer comprises lightweight handles to the objects (Hit)
and collections of them, e.g. HitCollection. These handles offer value semantics,
completely freeing the user of any resource management duties or worries of how
to best pass these handles around. The design goal of podio is to allow for full
functionality using only objects that are present in the User Layer.

3.2 Automatic code generation

Automatic code generation offers several advantages. It frees the user of the often
cumbersome and error prone details of implementation, allowing her instead on fo-
cusing on designing the EDM by having the possibility of starting quickly and quick
turn-around times for later improvements. Furthermore the generated code is consis-
tent, homogeneous and implementation improvements can be easily deployed to the
entire EDM. This code generation is handled by a python script that has been almost
completely re-implemented recently to use the Jinja2 [10] template engine and now
produces C++17 compliant code.

It starts from a description of the entire EDM in a single YAML file. Each data
type in this file has a few mandatory and several optional fields which can be filled by
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Figure 2. The three layers of data types in podio: The POD Layer holding the actual
data, the Object Layer handling relations and managing the resources and the User Layer
with the user facing handles and collections.

edm4hep::ReconstructedParticle:
Description: "Reconstructed Particle"
Author : "F.Gaede, DESY"
Members:

- float energy // [GeV] energy of the reconstructed particle
- edm4hep::Vector3f momentum // [GeV] particle momentum

OneToOneRelations:
- edm4hep::Vertex startVertex // start vertex associated to this particle

OneToManyRelations:
- edm4hep::Cluster clusters // clusters that have been used for this particle
- edm4hep::Track tracks // tracks that have been used for this particle

ExtraCode:
declaration: "
bool isCompund() const { return particles_size() > 0; }\n"

Listing 1: Simplified YAML snippet describing the ReconstructedParticle class of
EDM4hep showing parts of the present data members and relations.

the user, an example is shown in Listing 1. A limited validation is run on the input
YAML file, e.g. to make sure that the data types really only define POD structures
and to a lesser extent also to make sure that the EDM is internally consistent. It is
also possible to add custom code to enhance the functionality of data types. However,
this custom code is not validated to be valid C++ code before the automatic code
generation and non-valid C++ will only be caught during compilation.

To further enhance the usability, dedicated CMake [11] functions are offered for
downstream usage that nicely wrap the different steps from calling the code generation
script to compiling the generated code into shared libraries that offer the functionality
of the EDM, including I/O, see Listing 2.

3.3 Supporting different I/O backend libraries

Another key design goal of podio is to be agnostic to the library that is used for
persistency. This is achieved by encapsulating the functionality to encode and resolve
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3.3 Supporting different I/O backend libraries

Another key design goal of podio is to be agnostic to the library that is used for
persistency. This is achieved by encapsulating the functionality to encode and resolve

find_package(PODIO)

# generate the c++ code from the yaml definition
PODIO_GENERATE_DATAMODEL(edm4hep edm4hep.yaml headers sources IO_BACKEND_HANDLERS "ROOT;SIO")
# compile the core data model shared library (no I/O)
PODIO_ADD_DATAMODEL_CORE_LIB(edm4hep "${headers}" "${sources}")
# generate and compile the ROOT I/O dictionary
PODIO_ADD_ROOT_IO_DICT(edm4hepDict edm4hep "${headers}" src/selection.xml)
# compile the SIOBlocks shared library for the SIO backend
PODIO_ADD_SIO_IO_BLOCKS(edm4hep "${headers}" "${sources}")

Listing 2: CMake configuration of EDM4hep for generating and compiling three
shared libraries, one for the core data model and one each for the currently supported
I/O backends: ROOT and SIO. The configuration is adapted here slightly for better
readability, but is essentially the same as the one that is shipped with EDM4hep.

the relations between objects into the collection classes, where all the relation infor-
mation is packed into arrays of POD types. The collections are also responsible for
packing and unpacking the data of all contained objects into or from contiguous data
buffers. Hence, essentially all that an I/O backend library has to be able to do is to
read and write several continuous data buffers per collection.

The default I/O backend used by podio is using ROOT [12, 13] that offers au-
tomatic generation of the necessary streamer code from dictionaries. The current
implementation stores the collection data and the relation data in different branches
of a TTree in columnar data layout. An alternative I/O backend based on the SIO
(Simple Input Output) [14] library has recently been fully integrated. SIO is the un-
derlying I/O layer of LCIO and stores binary records holding complete events in the
case of podio. It also allows to split the steps of compressing and decompressing from
writing and reading to file in a thread safe way, allowing them to happen on separate
threads. However, the current implementation does not yet exploit this feature. The
necessary wrapper code for the SIO primitives is automatically generated by the code
generator (see section 3.2) and is also compiled into a shared library. This library
will be automatically loaded at runtime by the SIO reader and writer classes. Similar
to the code generation, generating the different additional libraries necessary for the
two backend backends is facilitated by CMake functions, see Listing 2.

3.4 Benchmarks comparing the ROOT and SIO backend

The two philosophies of laying out the data in the produced files between the SIO
and ROOT I/O backends have different advantages and disadvantages for different
use cases. Especially when only parts of the complete event record are needed for
analysis, the columnar data layout of ROOT I/O should have favorable performance
over SIO. On the other hand, for usage in HEP experiment frameworks, where the
complete event record has to be read SIO might offer better performance. In the
benchmarks presented in the following we have used ROOT version 6.22/08 and SIO
version 00-01 on a laptop computer with an Intel(R) Core(TM) i7-9750H CPU @
2.60GHz processor, 16 GB of RAM and a SSD hard drive. All involved packages
have been compiled with the default gcc-9.3.0 that comes with Ubuntu 20.04. Both
backends are used with their default settings regarding compression algorithms and
levels, as podio does not yet offer the possibility to easily change that for the user.
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Figure 3. Distribution of the total number of objects per event for the different physics
cases that are used for benchmarking.

To record benchmark data, podio offers two static decorators to instru-
ment the reader and writer classes. These decorators simply wrap all calls
to member functions of the original readers and writers into a pair of calls of
std::chrono::high_resolution_clock::now() and record the elapsed time.

To assess the writing performance of both currently present backends we make
use of the k4SimDelphes package [15] that is part of the Key4hep software stack.
This package uses the Delphes fast simulation framework [16] to simulate the detec-
tor response for generated MC particles. It offers interfaces to a few different MC
generators and stores the resulting event contents using EDM4hep. This allows us
to explore different possible physics use cases, which differ in their event contents,
i.e. the number and type of the different physics objects as well as their relations
among each other. However, as Delphes only does a parametrized detector response
simulation, mainly the high-level MCParticle and ReconstructedParticle classes will
be used, whereas low-level objects, such as calorimeter or tracker hits are completely
absent. For the reading benchmarks we use a small standalone executable that tries to
mimic the usage pattern of a HEP experiment framework, by reading in all collections
that are present in the event and furthermore also resolving all relations between the
objects.

The physics cases that we use are ee → Z → bb̄ and ee → Z → ττ at FCC-ee
(
√
s = 91 GeV) as well as ee → ZH → µµX (Higgs recoil) at ILD (

√
s = 250 GeV).

Figure 3 shows the distribution of the total number of objects per event for these cases.
While the ee → Z → ττ case leads to relatively small events, the ee → Z → bb̄ case
mainly produces medium sized events, whereas the Higgs recoil at ILD case produces
events of mixed sizes.

Figure 4 (left) shows a comparison of the two backends and their per event read
and write performance as a function of the median number of objects per event. As
expected, smaller events can be written and read quicker than larger ones and can also
be stored in smaller output files. In general the ROOT backend is able to produce
smaller output files than the SIO backend, regardless of the size of the events, as
shown in Figure 4 (right). As far as read times are concerned, the SIO backend is
faster by roughly 30 to 40 %, depending on the size of the events. On the other
hand the ROOT backend has better write performance for all event sizes. Overall,
the correlation between the time spent in I/O operations per event and the number
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Figure 5. Time spent in I/O operations per event when writing (top row) and reading
(bottom row) events of the different physics benchmark cases using podio for the ROOT and
SIO backends.

of objects in the event is more pronounced for the SIO backend as for the ROOT
backend. This is visible in Figure 5 that shows the distributions of the per event read
and write times for all benchmark cases and the two backends. In case of the SIO
backend the distributions follow a similar structure as the ones shown in Figure 3,
whereas they exhibit long tails and in less differences between the physics cases for
the ROOT backend. At least for the SIO case this can be readily understood by
considering that the amount of data that is written or read per event is more or less
proportional to the contents of the event, whereas for ROOT I/O there might be some
overhead introduced by the columnar data layout.

For the Higgs recoil physics case we have also instrumented a small plotting macro
that reflects a typical analysis use case, where only parts of the events are needed,
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in this case only the collection of all ReconstructedParticles. We find that the total
read time of the SIO backend is only affected very little, whereas the ROOT backend
achieves a speed up of slightly more than a factor two, resulting in equal run times for
both I/O backends. These results are readily understood, as SIO has to read in the
full event block and only saves a bit of time in not having to resolve all the relations,
whereas the ROOT backend can actively take advantage and only read the necessary
collection data. Interestingly, the ROOT backend is able to read around 98 % of the
events quicker than the SIO backend, but the long tail of read times for the last 2 %
(also seen in Figure 5) of events leads to roughly equal performance for all events.

4 Currently ongoing work and future plans

Both EDM4hep and podio are actively used in the Key4hep project, not only to
test the software stack, but also to do physics studies. Hence, they are already
in a somewhat production ready state. Nevertheless, feedback from the involved
communities has revealed a few issues that need to be addressed before usage in large
scale productions becomes feasible. This section presents a loosely connected list of
issues that have been reported as well as some plans to address them in the near and
midterm future. Furthermore, we also present some ongoing work and open questions
that need more effort before a final answer can be given.

4.1 Finalize EDM4hep definition

As mentioned in section 2, EDM4hep draws heavy inspiration from LCIO and FCC-
edm. Both of these EDMs have been mainly used for lepton collider physics studies
and also the current physics studies focus on physics at such colliders. However,
Key4hep and EDM4hep should ideally be suitable to use for all kinds of future collider
projects, including hadron colliders. The collision environment in a hadron collision is
vastly different from the one in lepton collisions and so the EDM also has to support
potentially significantly different use cases. Recently, studies in the context of FCC-
hh have been started to investigate how well the current version of EDM4hep is able
to support the workflows of hadron collider physics analysis.

4.2 Improvements for podio generated EDMs

There are still a few use cases that are not yet fully supported by EDMs that are
generated via podio. A long standing issue is the missing schema evolution of EDMs
in podio. This is a necessary feature that allows to read files that have been written
with a different version of the EDM than the one that is currently used. We do not yet
have any actual implementation, but we plan to also automate this schema evolution
as far as possible, e.g. by generating necessary conversion code from two versions of
the yaml definition of an EDM. We plan to also add handling of customized conversion
code to allow for non-trivial schema evolution needs as well.

Another shortcoming is the one of reference collections, i.e. the possibility to have
collections of objects that do not actually store objects themselves but rather refer-
ence objects from other collections. This use case is supported by LCIO and used
in the linear collider community, where there is usually a large collection of Recon-
structedParticles that comprises all of the reconstructed particles in a collision event.
Collections of, e.g., muons are implemented as reference collections that only store
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as far as possible, e.g. by generating necessary conversion code from two versions of
the yaml definition of an EDM. We plan to also add handling of customized conversion
code to allow for non-trivial schema evolution needs as well.

Another shortcoming is the one of reference collections, i.e. the possibility to have
collections of objects that do not actually store objects themselves but rather refer-
ence objects from other collections. This use case is supported by LCIO and used
in the linear collider community, where there is usually a large collection of Recon-
structedParticles that comprises all of the reconstructed particles in a collision event.
Collections of, e.g., muons are implemented as reference collections that only store

references to those elements of the reconstructed particle collection that are identified
as muons. This allows to build several distinct collections of particles without having
to actually copy their data around, in this way also avoiding errors of not updating
all the necessary copies in the end. In order for EDM4hep to support this use case an
additional data type, RecoParticleRef, has been introduced as a workaround, but has
proven to be cumbersome in its usage. Implementing reference collections in podio is
currently being worked on.

4.3 Integration of podio into Key4hep

There is an existing implementation of the I/O system in the Key4hep framework,
that is based on the same ROOT I/O that is shipped with podio. However, over
time the two implementations have diverged and are now no longer fully compatible.
Thus, we aim to consolidate the two implementations again and in doing so try to
incorporate some of the experience that we have gained. Also the example implemen-
tations for easily running an event loop and reading and writing files that come with
podio have been used for beyond their original design goal of unit testing. Hence, we
plan to implement several components that can be combined to achieve the desired
functionality by suitably combining them. Given that they are targeted to be used
at the very bottom of an experiment framework or analysis code, we have to avoid
introducing limiting design choices and aim for rather general components. We are
currently working on designing the scope of these components and their interfaces.

4.4 Support for flat data formats

In recent years many python analysis frameworks have found their way into HEP
analysis. Many of these are built around the idea of "flat data" formats and so called
columnar data analysis. Although podio and the EDMs are targeted more at the usage
inside HEP software frameworks where the rich structure of objects and relations
among them is a necessary feature, we would like to explore the possibilities of also
supporting flat data formats where such information is much harder to represent. The
ROOT backend writes TTrees that can be loaded into an RDataFrame [17], which can
be used to gain some first experience and to collect some feedback on how the current
EDM4hep can be used in such a context. We find that from a purely technical point
of view it would already be possible to implement a usable analysis framework using
RDataFrame on top of the usual file structure that is produced by podio. However,
while access to the data of the objects is trivial, the handling of relations between
different objects is very error prone as it requires to use and manipulate several integer
indices.

We are currently investigating if and how it is possible to support such flat data
formats, also in view of such usage in Key4hep. As of now, there is no clear best
solution to this problem, but we are currently also starting to look into the usage of
RNTuple [18] to see if it could offer benefits not only for flat data formats, but maybe
also improve I/O performance for other use cases.

4.5 Usage with heterogeneous resources

The usage of heterogeneous resources such as GPUs will only become more important
in the future, hence, podio generated EDMs should be efficiently usable on them.
We think that our POD based memory layout of the data should be beneficial for
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usage on such resources. However, currently we have not yet done any tests into this
direction and we are collecting use and benchmark cases to investigate how to best
support heterogeneous resources.

4.6 Code robustness

While the design of podio from the start has tried to make it hard to make mistakes
in memory handling or unnecessary copy operation, additional effort has been put
to further improve on the code robustness. We have activated a yet more stringent
warning level during compilation and thereby addressed potential code issues, such
as removing unnecessary copy constructors or potential shadowing issues. We will
continue to explore new language and compiler features in the future to ensure the
robustness, ease of use and high quality of the generated code.

5 Conclusions

The EDM of the Key4hep project, EDM4hep, has been defined in a first version. It
has been tested in first physics studies and further evaluation is ongoing. EDM4hep
uses podio as its generator and it has sparked new developments there. Here we have
presented the recent work on the automatic code generation, the integration of an
additional I/O backend based on SIO as well as some benchmarks comparing this
backend to the default ROOT based one. We have also identified future avenues that
we want to explore to further improve the quality of EDM4hep and the podio toolkit.
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