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Abstract

I discuss the theoretical uncertainties in the extraction of |Vcb| from
semileptonic decays of B mesons, taking into account the most recent the-
oretical developments. The main sources of uncertainty are identified both
for the exclusive decay mode B → D∗ℓ ν̄ and for the inclusive channel
B → X ℓ ν̄. From an analysis of the available experimental data, I ob-
tain |Vcb|excl = 0.041 ± 0.003exp ± 0.002th from the exclusive mode, and
|Vcb|incl = 0.040 ± 0.001exp ± 0.005th from the inclusive mode. I also give
a prediction for the slope of the form factor F(w) at zero recoil, which is
̺̂2 = 0.8 ± 0.3.
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1 Introduction

Semileptonic decays of B mesons have received a lot of attention in recent years.
The decay channel B → D∗ℓ ν̄ has the largest branching fraction of all B-meson
decay modes, and large data samples have been collected by various experimental
groups. From the theoretical point of view, semileptonic decays are simple enough
to allow for a reliable, quantitative description. Yet, the analysis of these decays
provides much information about the strong forces that bind the quarks and
gluons into hadrons. Schematically, a semileptonic decay process is shown in
Fig. 1. The strength of the b → c transition vertex is governed by the element
Vcb of the Cabibbo–Kobayashi–Maskawa (CKM) matrix. The parameters of this
matrix are fundamental parameters of the Standard Model. A primary goal of
the study of semileptonic decays of B mesons is to extract with high precision
the values of Vcb and Vub. The problem is that the Standard Model Lagrangian
describing these transitions is formulated in terms of quark and gluon fields,
whereas the physical hadrons are bound states of these degrees of freedom. Hence,
an understanding of the transition from the quark to the hadron world is necessary
before the fundamental parameters can be extracted from experimental data.
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Figure 1: Semileptonic decay of a B meson.

Today, our knowledge of the elements of the CKM matrix, as extracted
from direct measurements of flavour-changing transitions, is as follows: The best
known entries are Vud and Vus, which have an uncertainty of 0.1% and 1%, re-
spectively. The next well known entry is already related to the b-quark; Vcb is
now determined to an accuracy of 7%. Then follow Vcd, Vcs, and Vub, with 10%,
20%, and 30% uncertainties, respectively. No direct measurements exist for the
matrix elements related to the top quark.

In this talk I discuss the status of the theoretical developments underlying the
determination of Vcb, both from exclusive and from inclusive semileptonic decays
of B mesons.
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2 |Vcb| from Exclusive Decays

With the discovery of heavy-quark symmetry (for a review see Ref. [1] and ref-
erences therein), it has become clear that the study of the exclusive semileptonic
decay mode B̄ → D∗ℓ ν̄ allows for a reliable determination of | Vcb|, which is free,
to a large extent, of hadronic uncertainties [2]–[5]. Model dependence enters this
analysis only at the level of power corrections of order (ΛQCD/mQ)2.1 These cor-
rections can be investigated in a systematic way, using the heavy-quark effective
theory [6]. They are found to be small, of order a few per cent.

The analysis consists in measuring the recoil spectrum in the decay B →
D∗ℓ ν̄. One introduces the kinematic variable

w = vB · vD∗ =
ED∗

mD∗

=
m2

B + m2
D∗ − q2

2mBmD∗

, (1)

which is the product of the four-velocities of the mesons. Here ED∗ denotes the
recoil energy of the D∗ meson in the parent rest frame, and q2 = (pB − pD∗)2 is
the invariant momentum transfer. The differential decay rate is given by [4, 5]

dΓ

dw
=

G2
F

48π3
(mB − mD∗)2 m3

D∗

√
w2 − 1 (w + 1)2

×
[
1 +

4w

w + 1

m2
B − 2w mBmD∗ + m2

D∗

(mB − mD∗)2

]
| Vcb|2 F2(w) . (2)

The function F(w) denotes the (suitably defined) hadronic form factor for this
decay. It is conventional to factorize it in the form F(w) = ηA ξ̂(w), where ηA

is a short-distance coefficient, and the function ξ̂(w) contains the long-distance
hadronic dynamics. Apart from corrections of order ΛQCD/mQ, this function
coincides with the Isgur–Wise form factor [3, 7]. In analogy to the case of light-
quark SU(3) flavour symmetry, in which the Ademollo–Gatto theorem protects
the K → π transition form factor against first-order symmetry-breaking correc-
tions at q2 = 0 [8], there is a theorem which protects the function ξ̂(w) against
first-order ΛQCD/mQ corrections at the kinematic point of zero recoil (w = 1).

This is Luke’s theorem [9], which determines the normalization of ξ̂(w) at w = 1
up to corrections of order (ΛQCD/mQ)2, i.e. ξ̂(1) = 1 + δ1/m2 .

The strategy for a precise determination of | Vcb| is thus to extract the product
| Vcb| F(w) from a measurement of the differential decay rate, and to extrapolate
it to w = 1 to measure

| Vcb| F(1) = | Vcb| ηA (1 + δ1/m2) . (3)

The task of theorists is to provide a reliable calculation of the quantities ηA and
δ1/m2 in order to turn this measurement into a precise determination of | Vcb|. I
will now discuss the status of these calculations.

1I shall use ΛQCD ∼ 0.25 GeV as a characteristic low-energy scale of the strong interactions,
and mQ as a generic notation for mc or mb.
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2.1 Perturbative corrections

The short-distance coefficient ηA takes into account the finite renormalization of
the axial vector current arising from virtual gluon exchange. It can be calculated
in perturbation theory. At the one-loop order, one finds [10, 2, 11]

ηA = 1 +
αs(M)

π

(
mb + mc

mb − mc
ln

mb

mc
− 8

3

)
. (4)

The scale M of the running coupling constant is not determined at this order.
A reasonable choice is to take the average virtuality of the gluon in the one-loop
diagrams [12]. In the case of ηA, this so-called BLM scale has been calculated
to be M = 0.51

√
mbmc (in the MS scheme) [13]. Taking then mb = 4.8 GeV,

mc/mb = 0.30 ± 0.05, and ΛQCD = 0.25 GeV for the scale parameter in the
two-loop expression for the running coupling constant, one obtains values in the
range ηA = 0.950–0.965.

Several (partial) higher-order calculations have been performed to improve
this result. Using renormalization-group techniques, logarithms of the type (αs ln z)n,
αs(αs ln z)n, and (mc/mb)(αs ln z)n, where z = mc/mb, have been resummed to
all orders in perturbation theory [14]–[18]. This leads to the somewhat larger
value ηA ≃ 0.985. Another class of higher-order corrections consists of the so-
called renormalon chain contributions, which are terms of order βn−1

0 αn
s in the

perturbative series for ηA. Resumming these terms to all orders gives the lower
value ηA ≃ 0.945 [19].

The main virtue of these partial higher-order calculations is to provide an
estimate of the theoretical uncertainty in the value of ηA. Thus, I quote the final
result as

ηA = 0.965 ± 0.020 . (5)

2.2 Power corrections

Hadronic uncertainties enter the determination of | Vcb| at the level of second-
order power corrections, which are expected to be of order (ΛQCD/mc)

2 ∼ 3%.
For a precision measurement, it is important to understand the structure of these
corrections in detail. This is the most complicated aspect of the theoretical anal-
ysis, which unavoidably introduces some amount of model dependence. However,
since the goal is to estimate an effect which by itself is very small, even a large
relative error in δ1/m2 is acceptable.

Three approaches have been suggested to estimate these corrections. The idea
of the “exclusive” approach of Falk and myself is to classify all 1/m2

Q operators in
the heavy-quark effective theory and to estimate their matrix elements between
meson states [20]. This last step is model-dependent. A typical result obtained
in this way is δ1/m2 = −(3 ± 2)%. In Ref. [1], the error has been increased to

3



±4% in order to account for the model dependence and unknown higher-order
corrections. A similar result, −5% < δ1/m2 < 0, has been obtained by Mannel
[21].

The idea of the “inclusive” approach of Shifman et al. is to apply the operator
product expansion to the B-meson matrix element of the time-ordered product of
two flavour-changing currents, and to equate the resulting theoretical expression
to a phenomenological expression obtained by saturating the matrix element with
physical intermediate states [22]. This leads to sum rules that imply inequalities
for the B → D∗ transition form factors. In particular, one obtains the bound
δ1/m2 < −1

8
(m2

B∗ −m2
B)/m2

c ≃ −3%. The authors of Ref. [22] make an “educated
guess” that the value of δ1/m2 is actually much larger, namely −(9 ± 3)%.

It is possible to combine the above predictions in a “hybrid” approach, which
uses the sum rules to put bounds on the hadronic parameters that enter the “ex-
clusive” analysis [5]. One then finds that for all reasonable choices of parameters
the results are in the range −8% < δ1/m2 < −3%, which is consistent with all
previous estimates at the 1σ level. Thus, I quote the final result as

δ1/m2 = −(5.5 ± 2.5)% . (6)

2.3 Determination of |Vcb|
Combining the above results, I obtain for the normalization of the hadronic form
factor at zero recoil

F(1) = ηA (1 + δ1/m2) = 0.91 ± 0.04 . (7)

To be conservative, I have added the theoretical errors linearly. Three exper-
iments have recently presented new measurements of the product | Vcb| F(1).
When rescaled using the new lifetime values τB0 = (1.61 ± 0.08) ps and τB+ =
(1.65 ± 0.07) ps [23], the results are

| Vcb| F(1) =






0.0351 ± 0.0019 ± 0.0020 ; Ref. [24],
0.0364 ± 0.0042 ± 0.0031 ; Ref. [25],
0.0388 ± 0.0043 ± 0.0025 ; Ref. [26],

(8)

where the first error is statistical and the second one systematic. I will follow
the suggestion of Ref. [27] and add 0.001 ± 0.001 to these values to account for
a small positive curvature2 of the function F(w). Taking the weighted average
of the experimental results, which is | Vcb| F(1) = 0.0370± 0.0025, and using the
theoretical prediction (7), I then obtain

| Vcb| = 0.0407 ± 0.0027exp ± 0.0016th , (9)

2The fit results are obtained assuming a linear form of F(w).
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which corresponds to a measurement of | Vcb| with 7% accuracy.

2.4 Prediction for the slope parameter ̺̂2

In the extrapolation of the differential decay rate (2) to zero recoil, the slope
of the function F(w) close to w = 1 plays an important role. One defines a
parameter ̺̂2 by

F(w) = F(1)
{
1 − ̺̂2 (w − 1) + . . .

}
. (10)

It is important to distinguish ̺̂2 from the slope parameter ̺2 of the Isgur–
Wise function. They differ by corrections that break the heavy-quark symmetry.
Whereas the slope of the Isgur–Wise function is a universal, mass-independent
parameter, the slope of the physical form factor depends on logarithms and in-
verse powers of the heavy-quark masses. The relation between the two parameters
is [5]

̺̂2 = ̺2 + (0.16 ± 0.02) + O(1/mQ) . (11)

An estimate of the ΛQCD/mQ corrections to this relation is model-dependent and
thus has a large theoretical uncertainty. I shall not attempt it here.

The slope parameter of the Isgur–Wise function, ̺2, is constrained by the
Bjorken [28, 29] and Voloshin [30] sum rules. At the tree level, it was known for a
long time that 1/4 < ̺2 <≈ 0.75. However, only recently Grozin and Korchem-
sky have shown how to include perturbative and nonperturbative corrections to
these bounds [31, 32]. The results are shown in Fig. 2. Here, the scale parameter
µ has to be chosen large enough for the operator product expansion to be well
defined, but it is otherwise arbitrary. Assuming that values µ > 0.8 GeV are
sufficiently large, one finds that ̺2 is constrained to be very close to 0.6. This
value is in good agreement with earlier predictions obtained from QCD sum rules,
which gave ̺2 = 0.7 ± 0.1 [1, 33, 34].

From Fig. 2, and using (11), I conclude that

̺2 = 0.65 ± 0.15 , ̺̂2 = 0.8 ± 0.3 . (12)

This prediction compares well with the average value observed experimentally,
which is ̺̂2 = 0.87 ± 0.12 [24]–[26].

3 |Vcb| from Inclusive Decays

Complementary to the analysis of exclusive decays is the study of the inclusive
semileptonic decay rate for B → X ℓ ν̄. Since | Vub/Vcb|2 < 1%, one can to very
good approximation neglect the contribution of charmless final states and consider
X to be a hadronic state containing a charm particle. An obvious advantage
of inclusive decays is the existence of high-statistics data samples. From the

5



O
PE

 b
re

ak
s 

do
w

n Voloshin sum rule

Bjorken sum rule

excluded by

excluded by

0 0.5 1 1.5 2 2.5 3 3.5
µ  [GeV]

0

0.2

0.4

0.6

0.8

1

1.2

ρ2

Figure 2: Bounds for the slope parameter ̺2 following from the Bjorken
and Voloshin sum rules, from Ref. [32]. The point with the error bar
shows the QCD sum rule prediction.

theoretical point of view, summing over many final states eliminates part of the
hadronic uncertainty.

As in the exclusive case, the framework for the theoretical description of
inclusive decays is provided by the heavy-quark expansion. It could be shown that
the leading term in this expansion reproduces the free-quark decay model, while
the nonperturbative corrections to this model can be systematically included in
an expansion in powers of 1/mb [35]–[41]. The total semileptonic decay rate can
be written as

Γ =
G2

F

192π3
| Vcb|2 m5

b

{ (
1 +

λ1 + 3λ2

2m2
b

)
f(mc/mb) −

6λ2

m2
b

(
1 − m2

c

m2
b

)4

+
αs(M)

π
g(mc/mb) + . . .

}

, (13)

where the ellipsis represents terms of higher order in 1/mb or αs. In this expres-
sion, mb and mc denote the pole masses (defined to the appropriate order in per-
turbation theory) of the heavy quarks, f(mc/mb) ≃ 0.52 and g(mc/mb) ≃ −0.87
are kinematic functions, and λ1 and λ2 are nonperturbative hadronic parameters.
I will now discuss the theoretical uncertainties in the evaluation of (13).

3.1 Perturbative corrections

Let me first discuss the uncertainty due to unknown higher-order perturbative
corrections. Only the correction of order αs is known exactly [42]. However,
recently Luke et al. have computed the part of the next-order term that depends
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on the number of light-quark flavours [43]. In the MS scheme, the result is

Γ

Γ0

= 1−1.67
αs(mb)

π
−(1.68 β0+. . .)

(
αs(mb)

π

)2

+. . . = 1−0.11−0.06−. . . , (14)

where Γ0 is the decay rate at the tree level, and β0 = 11 − 2
3
nf is the first

coefficient of the β-function. If one uses this partial calculation to estimate the
uncertainty, which for an asymptotic series is given by the size of the last term
to be included, one finds (δΓ/Γ)pert ≃ 6%, which is in good agreement with an
estimate of the renormalization-scale and -scheme dependence by Ball and Nierste
[44]. Recently, Ball et al. have performed an all-order resummation of the terms
of order βn−1

0 αn
s for the above series [45]. They find that the effect of higher-order

terms is important and leads to Γ/Γ0 = 0.77 ± 0.05. Note that this corresponds
to an effective scale M ∼ 1 GeV in (13), which is rather low. The corresponding
value of the coupling constant is αs(M) ≃ 0.43. It is difficult to derive a reliable
error estimate from these analyses, but I think a reasonable number is

(
δΓ

Γ

)

pert

≃ 10% . (15)

3.2 Power corrections

The leading power corrections in the expression for the inclusive decay rate appear
at order 1/m2

b . They are proportional to two hadronic parameters with a simple
physical interpretation: λ1 is related to the average momentum of the b-quark
inside a B meson at rest, and λ2 is proportional to the vector–pseudoscalar mass
splitting. I shall use

λ1 = −〈 ~p 2
b 〉 = −(0.4 ± 0.2) GeV2 ,

λ2 =
m2

B∗ − m2
B

4
= 0.12 GeV2 . (16)

The value of λ1 is a compromise between the theoretical estimates obtained in
Refs. [46, 47].

The power corrections reduce the total decay rate by −(4.2±0.5)%, which is a
rather small effect. The uncertainty in the value of λ1 introduces an uncertainty
on the value of Γ of 0.6%, which is almost negligible. I increase this value in
order to account for higher-order power corrections, which I expect to be of order
(ΛQCD/mc)

3 ∼ 0.5%, and quote

(
δΓ

Γ

)

power

≃ 1% . (17)

This is the smallest contribution to the total theoretical uncertainty.
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3.3 Dependence on quark masses

Another source of nonperturbative uncertainty results from the appearance of
the heavy-quark masses in the expression for the inclusive decay rate. The pole
masses of the bottom and charm quarks have an uncertainty of at least several
hundred MeV. Since the rate is proportional to m5

b , this seems to be a severe
limitation. However, it has been pointed out that the actual uncertainty is lower
due to a strong correlation between the values of the two heavy-quark masses
[22]. In fact, one should consider the decay rate as a function of mb and of
the difference ∆m = mb − mc. I shall assume that mb has an uncertainty of
300 MeV. However, the mass difference is known to much higher precision. Using
the heavy-quark expansion, one can derive that [20]

∆m = mb − mc = (mB − mD)
{
1 − λ1

2mBmD
+ O(1/m3

Q)
}

, (18)

where mB = 1
4
(mB + 3mB∗) = 5.31 GeV and mD = 1

4
(mD + 3mD∗) = 1.97 GeV

denote the spin-averaged meson masses. This relation leads to

∆m = (3.40 ± 0.03 ± 0.03) GeV , (19)

where the first error reflects the uncertainty in the value of λ1, and the second one
takes into account unknown higher-order corrections. Hereafter, I shall assume
an uncertainty of 60 MeV in the value of ∆m.

In Fig. 3, I show the dependence of the decay rate on these two param-
eters, using the value αs(M) = 0.4 for the strong coupling constant in (13).
Clearly, the variation with ∆m is much stronger than the variation with mb.
For mb = 4.8 GeV and ∆m = 3.4 GeV, I find the partial derivatives δΓ/Γ ≃
5.73 δ(∆m)/∆m and δΓ/Γ ≃ −0.55 δmb/mb. Since the errors in mb and ∆m are
essentially uncorrelated, this leads to

(
δΓ

Γ

)

masses

=

√(
0.101

δ(∆m)

60 MeV

)2

+
(
0.034

δmb

300 MeV

)2

≃ 11% . (20)

Note that this is dominated by the (rather small) uncertainty in the mass differ-
ence ∆m.

3.4 Determination of |Vcb|
Adding the above errors linearly and taking the square root, I conclude that the
theoretical uncertainty in the extraction of | Vcb| from inclusive decays is

δ| Vcb|
| Vcb|

≃ 11% . (21)
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Figure 3: Dependence of the inclusive semileptonic decay rate Γ on the
parameters mb and ∆m = mb − mc.

From an analysis of the experimental data, one then obtains [27]

| Vcb| =

{
0.039 ± 0.001exp ± 0.005th ; measurements at Υ(4s),
0.042 ± 0.002exp ± 0.005th ; measurements at Z0.

(22)

The theoretical uncertainty in these numbers is somewhat larger than in the case
of the exclusive analysis; however, the experimental errors are smaller.

4 Summary

The most precise measurements of the element Vcb of the CKM matrix come from
the analysis of semileptonic decays of B mesons. From the measurement of the
recoil spectrum in the exclusive channel B → D∗ℓ ν̄, one obtains

| Vcb|excl = 0.041 ± 0.003exp ± 0.002th , (23)

where the theoretical error is dominated by the uncertainty in the calculation of
nonperturbative power corrections of order (ΛQCD/mQ)2. From the measurement
of the total inclusive decay rate, on the other hand, one finds

| Vcb|incl = 0.040 ± 0.001exp ± 0.005th . (24)

In this case, the main theoretical uncertainty comes from the uncertainty in
the value of the quark mass difference mb − mc, as well as from higher-order
perturbative corrections.
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Given the fact that both methods are very different both from the experimen-
tal and from the theoretical point of view, it is most satisfying that the results
are in perfect agreement. Combining them, I obtain the final value

| Vcb| = 0.041 ± 0.003 . (25)
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4th Rencontres de Physique de la Vallé d’Aoste, La Thuile, Italy, 1990, ed.
M. Greco (Editions Frontières, Gif-sur-Yvette, 1990), p. 583.

[29] N. Isgur and M.B. Wise, Phys. Rev. D 43, 819 (1991).

[30] M.B. Voloshin, Phys. Rev. D 46, 3062 (1992).

[31] A.G. Grozin and G.P. Korchemsky, OUT-4102-53 (1994) [hep-ph/9411323].

[32] G.P. Korchemsky and M. Neubert, CERN-TH/95-108 (1995), in prepara-
tion.

[33] E. Bagan, P. Ball and P. Gosdzinsky, Phys. Lett. B 301, 249 (1993).

[34] M. Neubert, Phys. Rev. D 47, 4063 (1993).

[35] J. Chay, H. Georgi and B. Grinstein, Phys. Lett. B 247, 399 (1990).

11

http://arxiv.org/abs/hep-ph/9412265
http://arxiv.org/abs/hep-ph/9411323


[36] I.I. Bigi, N.G. Uraltsev and A.I. Vainshtein, Phys. Lett. B 293, 430 (1992);
I.I. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, Phys. Rev. Lett.
71, 496 (1993).

[37] B. Blok, L. Koyrakh, M.A. Shifman and A.I. Vainshtein, Phys. Rev. D 49,
3356 (1994).

[38] A.V. Manohar and M.B. Wise, Phys. Rev. D 49, 1310 (1994).

[39] A.F. Falk, M. Luke and M.J. Savage, Phys. Rev. D 49, 3367 (1994).

[40] T. Mannel, Nucl. Phys. B 413, 396 (1994).

[41] M. Neubert, Phys. Rev. D 49, 3392 and 4623 (1994).

[42] Y. Nir, Phys. Lett. B 221, 184 (1989).

[43] M. Luke, M.J. Savage and M.B. Wise, Phys. Lett. B 345, 301 (1995).

[44] P. Ball and U. Nierste, Phys. Rev. D 50, 5841 (1994).

[45] P. Ball, M. Beneke and V.M. Braun, CERN-TH/95-26 (1995) [hep-
ph/9502300].

[46] P. Ball and V.M. Braun, Phys. Rev. D 49, 2472 (1994).

[47] M. Neubert, Phys. Lett. B 322, 419 (1994).

12

http://arxiv.org/abs/hep-ph/9502300
http://arxiv.org/abs/hep-ph/9502300

