EPJ Web of Conferences 251, 03056 (2021) https://doi.org/10.1051/epjcont/202125103056
CHEP 2021

Building HEP Software with Spack: Experiences from Pilot
Builds for Key4hep and Outlook for LCG Releases

Valentin Volkl', Thomas Madlener?, Tao Lin?, Joseph Wang*, Dmitri Konstantinov®, Ivan
Razumov?, Andre Sailer!, and Gerardo Ganis!

ICERN, Geneva, Switzerland

’DESY, Hamburg, Germany

SIHEP, Beijing, China

4Bitquant Digital Services, Hong Kong
SIHEP/NRC Kurchatov

Abstract. Consistent, efficient software builds and deployments are a com-
mon concern for all HEP experiments. This paper describes the evolution of the
usage of the Spack package manager in HEP in the context of the LCG stacks
and the current Spack-based management of Key4hep software. Whereas pre-
viously Key4hep software used Spack only for a thin layer of FCC experiment
software on top of the LCG releases, it is now possible to build the complete
stack, from system libraries to FCC-, iLCSoft- and CEPC software packages
with Spack. This pilot build doubles as a prototype for a Spack-based LCG
release. The workflows and mechanisms that can be used for this purpose, po-
tential for improvement as well as the roadmap towards a complete LCG release
in spack are discussed.

1 Introduction

Spack [1] is a widely used build tool and package manager for scientific software, and is one
of the candidates to replace LCGCMake [2], the tool currently used to build/manage the LCG
stacks. Investigations of the use of Spack for LCG builds were initiated by the HEP Software
Foundation Packaging Working Group and reported at CHEP [3-5]. The continuing interest
in Spack triggered a more detailed investigation presented at the HSF framework meeting.
The work restarted for in the context of Key4hep which stack is now managed with Spack.
The purpose of this contribution is to discuss the issues and solutions/workarounds found so
far. Any mentions of Spack refer to the v0.16.0 release and developments as of February
2021.

2 Spack: Overview and Status as of v0.16.0

Originating in the High-Performance Computing community, Spack’s philosophy differs
from traditional package managers. Its most important features include reproducibility of
the builds, and the co-existence of multiple versions and configurations of the same package
on one system.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).



EPJ Web of Conferences 251, 03056 (2021) https://doi.org/10.1051/epjconf/202125103056
CHEP 2021

Software is built according to a "recipe"”, a description of the build process of a package
written in a domain-specific language on top of python — see listing 1 for an example. The
length of recipes ranges from around 50 to 500 lines of code. Specifically the recipes of
packages that use common build systems and require little configuration at build time may
be very short and easy to maintain. The largest recipe of a HEP package is that of the ROOT
package, which is composed of 510 lines of code from 52 commits.

The upstream Spack repository contains an extensive collection of recipes for general
purpose as well as specialised HEP packages. This central repository facilitates sharing of
both the maintenance burdens and expertise. The additional scrutiny of the recipes also brings
build failures to light and increases the overall robustness of the builds. Currently, 67 HEP-
specific software packages are part of Spack, and have been labelled accordingly by adding
the hep tag. This allows librarians to monitor relevant changes that might otherwise be hard
to keep track of in the high volume of overall Spack contributions. Over the last five years,
247 commits from 36 authors have contributed to these HEP package recipes. In addition,
several groups maintain smaller repositories with recipes for experiment-specific packages,
such as Key4hep.

1

> class Dd4hep(CMakePackage):

3 """DD4hep is a software framework for providing a complete solution for

4 full detector description (geometry, materials, visualization, readout

5 alignment, calibration, etc.) for the full experiment life cycle

6 (detector concept development, detector optimization, construction,

7 operation). It offers a consistent description through a single source
8 of detector information for simulation, reconstruction, analysis, etc.
9 It distributed under the LGPLv3 License."""

11 homepage = "https://dd4hep.web.cern.ch/dd4hep/"

12 url = "https://github.com/AIDASoft/DD4hep/archive/v01-12-01.tar.gz"
13 git = "https://github.com/AIDASoft/DD4hep.git"

14

15 maintainers = ['vvolkl', 'drbenmorgan']

17 tags = ['hep']

19 version('master', branch='master')

20 version('1.15"', sha256='992a...")
21 version('1.14.1"', sha256="'5b5...")
2 generator = 'Ninja'

26 # Workarounds for various TBB issues in DD4hep v1.11
27 # See https://github.com/AIDASoft/DD4hep/pull /613

28 patch('tbb-workarounds.patch', when='@1.11")

29 patch('tbb2.patch', when='@1.12.1")

31 variant ('xercesc', default=False, description="Enable 'Detector Builders'
based on XercesC")

32 variant ('geant4', default=False, description="Enable the simulation part
based on Geant4")
variant('assimp', default=False, description="Enable CAD interface based
on Assimp")

34 variant ('hepmc3', default=False, description="Enable build with hepmc3")

35 variant('lcio', default=False, description="Enable build with lcio")

36 variant ('edm4hep', default=True, description="Enable build with edm4hep™)

37 variant ('debug', default=False,

38 description="Enable debug build flag - adds extra info in"

2



EPJ Web of Conferences 251, 03056 (2021) https://doi.org/10.1051/epjcont/202125103056
CHEP 2021

39 " some places in addtion to the debug build type™)

41 depends_on('cmake @3.12:"', type='build"')

12 depends_on('ninja', type="build'")

43 depends_on('boost @1.49:")

44 depends_on('root @6.08: +gdml +math +opengl +python +x')
45 extends ('python')

46 depends_on('xerces-c', when='+xercesc')

17 depends_on('geant4@10.2.2: "', when="+geant4')

50 def cmake_args(self):

51 spec = self.spec

52 cxxstd = spec['root'].variants['cxxstd'].value

53 # root can be built with cxxstd=11, but dd4hep requires 14

54 if cxxstd == "11":

55 cxxstd = "14"

56 args = [

57 self.define_from_variant ('DD4HEP_USE_EDM4HEP', 'edm4hep'),
58 self.define_from_variant ('DD4HEP_USE_XERCESC', '=xercesc'),
59 self.define_from_variant ('DD4HEP_USE_GEANT4', 'geant4'),

60

61 ]

62 return args

64 def setup_run_environment (self, env):

65 # used p.ex. in ddsim to find DDDetectors dir
66 env.set ("DD4hepINSTALL", self.prefix)

6 env.set ("DD4hep_DIR", self.prefix)

68 env.set ("DD4hep_ROOT", self.prefix)

Listing 1. Abridged example of the recipe for the DD4hep package, showing how versions, patches and
build options can be declared in Spack. Sources are fetched from the specified url and patches can be
applied depending on version ranges and other conditions. The build phase is determined by the base
class "CMakePackage" which keeps the recipe compact and only requires custom build options to be
added.

Spack calculates a hash from version, build options, dependencies and other information
that identifies a packages. "Variants" are custom configurations of the packages that result
in different installations. Usually these are mapped to build options and enable or disable
optional parts of the package. This also allows to install multiple configurations of the same
version of a package. This unique identifier helps reproducibility and allows the installation
in arbitrary prefixes — when setting up a package the dependencies are identified by hash and
loaded via RPATH and environment variables (depending on the build system type, these may
include standard variables like CMAKE_PREFIX_PATH or custom ones as set in the package
recipe).

Hashing the packages allows Spack to be very flexible with regards to installation areas:
in contrast to traditional package managers, packages may be installed in arbitrary prefixes,
split over multiple directories (when declaring them as "upstreams") and have custom direc-
tory path naming schemes, which can be configured as "projections". Installation folders can
be moved or deleted by hand, when refreshing the index of packages afterwards with the
dedicated spack reindex command. When uninstalling a package, Spack has a garbage-
collection feature that allows to remove dependencies that are no longer in use by any other
package.



EPJ Web of Conferences 251, 03056 (2021) https://doi.org/10.1051/epjcont/202125103056
CHEP 2021

10

# Packages

10

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Package Build Time [s]

Figure 1. Distribution of build times for a full build of the Key4hep software stack on a CERN open-
stack vm with 4 cores (flavor "m2.large"). The full build time is just above 5 hours. Only one package
(ROQT) takes more than one hour to build.

3 The LCG stacks and derivatives

The LCG stacks are deployments of almost 500 HEP and general-purpose software packages
that are used as dependencies for numerous experiments like ATLAS and LHCb. New LCG
builds are released several times per year, in 10-20 configurations for different compilers, re-
lease/debug build types, operating systems and architectures. Additional software packages,
often experiment-specific, can be released in "layers" on top of the base release. LCGCMake
[2] is CMake-based build tool specifically developed for this purpose.

4 Spack for Key4hep

Key4hep is a collaborative project with the aim to create a common software for several
future collider study projects. Participating experiments include CEPC, FCC and CLIC/ILC.
Besides a common data model and a common framework, Key4hep provides a common
build infrastructure based on Spack. Future collider studies have diverse requirements for
event generators, but the fast and full simulation and reconstruction toolchain is comparable
to offline software of running experiments and thus a good prototype for the LCG releases.

The Key4hep-specific package recipes as well as configuration files and scripts for the
Gitlab-based deployment workflow are maintained in a dedicated repository [6].

Fig. 1 shows the distribution of build times for the pilot build of Key4hep software and
thus gives an indication of size and complexity of the Key4hep software stack. While initially
only built in a single configuration for CentOS 7 / GCC 8.3.0, the builds are being expanded
to include Debug/Release build types, other compilers and other platforms.

The Key4hep builds are deployed to /cvmfs/sw.hsf.org/ (and nightly builds to
/cvmfs/sw-nightlies.hsf.org) by a simple copy operation (using rsync) from the build
machine to the CVMFS publisher. This implies that, to avoid relocation, the build machine



EPJ Web of Conferences 251, 03056 (2021) https://doi.org/10.1051/epjcont/202125103056
CHEP 2021

needs write permissions on /cvmfs. Currently writing to /cvmfs is achieved by maintain-
ing a copy of the CVMFS installations on the build machines instead of running CVMEFES
on it. However, future developments in CVMES (in particular the cvmfs_server enter
command) may help to create a writable layer on a machine with CVMES access [7].

5 Open Issues and Relevant Future Developments

This section details the problems encountered during the pilot build, and lists workarounds
and relevant development lines in spack.

5.1 Concretizer

A central component of Spack is the so-called "concretizer", which determines a suitable set
of package configurations under the constraint of dependencies and additional configurations.
In practice, some manual overspecification (explicitly writing down package variants that
the concretizer could have inferred from the dependency tree) in the configuration needs
to be done, in order to avoid concretization errors [8]. While these shortcomings do not
affect the functionality of spack as a build tool, maintenance of the workarounds can be
time-consuming. With v0.16.0 a new concretizer based on clingo, a constraint solver library
has been introduced to spack. The new concretizer already removes the need for most of
the workarounds, shortens the concretization time, and provides the technical foundation to
improve further in a future release as the rules for the constraint solver are updated.

5.2 Data Packages

In some cases, notably Geant4, software packages include large data sets whose format is
independent of the compiler or operating system used for a build. When building releases for
multiple platform/compiler configurations, it is desirable to deduplicate and share these files
among all builds. This is a priori not possible in spack; packages are always tied to a compiler
and there is no concept of architecture-agnostic packages. This issue can, however be solved
by a manual intervention in the concretization process, namely by declaring the data packages
as external and not buildable in the package configuration. While again fully functional, this
solution comes again with the increased burden of a separate installation of the data packages
and maintenance of the package configuration. Improvements to the dependency model of
compilers that would solve this issue are also on the development timeline of spack.

5.3 glibc

While spack can build compilers and some fundamental packages, currently it is not possible
to build glibc. This could allow for distribution-agnostic builds similar to Gentoo Prefix, but
requires a redesign of the way compiler dependencies are handled in Spack, which is foreseen
for one of the next releases.

5.4 Binary caches

Binary caches provide some of the functionality normally found in system package managers
(apt, yum/dnf), i.e. installing packages without building them from source. This implies that
binaries need to be relocated by patching the RPATH section of ELF files (executables and
libraries). This approach is considered superior to that of 1cgcmake, where RPATH sections



EPJ Web of Conferences 251, 03056 (2021) https://doi.org/10.1051/epjcont/202125103056
CHEP 2021

are stripped, and LD_LIBRARY_PATH (DYLD_LIBRARY_PATH on MacOS) environment vari-
able is populated with paths to dependencies. However, several packages in the Key4hep
stack are by their design not relocatable, and using binary caches is therefore prone to hard-
to-detect runtime errors. Workflows that avoid relocating binaries are therefore considered
preferable. Furthermore, the relocation procedure in its present implementation introduces a
significant overhead.

If there is no need for relocation (the prefixes on both host and target machine are iden-
tical), binaries can also be transferred by a simple copy operation and an update of Spack’s
package index.

5.5 Distribution of spack on read-only file systems

As of v0.16.0, Spack needs write-access to certain subdirectories of its own installation and
will therefore break when installed on read-only file systems. This means that Spack it-
self cannot be deployed via CVMEFS, a significant downside, as the spack command could
be used by users to modify their environment to set up packages in a fine-grained manner
and install packages locally on top of the CVMES installation. As this requires some con-
figuration and set up of Spack itself, a central installation is considered a requirement for
non-expert users. The changes needed for this feature are however already under review, and
are expected for the next version.

6 Conclusion and Outlook

Spack has been proven to be a practical solution for software builds of HEP experiments,
most recently by the adoption of Spack as the sole build tool for the Key4hep software. While
several other build tools offer similar functionality (see [9] for an overview), the large number
of contributors to Spack and growing number of HEP packages maintained by members of the
community effectively reduces the maintenance burden on individual experiments. A number
of possible improvements are discussed in this paper, but none present an insurmountable
obstacle to building other HEP software stacks and the commonly used LCG releases, a
prototype of which (with some missing packages) can be released in the immediate future.

Acknowledgements

This work benefited from support by the CERN Strategic R&D Programme on Technologies
for Future Experiments (https://cds.cern.ch/record/2649646/, CERN-OPEN-2018-006).

References

[1] T. Gamblin, M. LeGendre, M.R. Collette, G.L. Lee, A. Moody, B.R. de Supinski, S. Fu-
tral, The Spack package manager: bringing order to HPC software chaos,in SC15: Inter-
national Conference for High-Performance Computing, Networking, Storage and Analy-
sis IEEE Computer Society, Los Alamitos, CA, USA, 2015), pp. 1-12, ISSN 2167-4337,
https://doi.ieeecomputersociety.org/10.1145/2807591.2807623

[2] J. Cervantes Villanueva, G. Ganis, D. Konstantinov, G. Latyshev, P. Mato Vila,
P. Mendez Lorenzo, R. Pacholek, I. Razumov, EPJ Web Conf. 214, 05020 (2019)

[3] C. Green, J. Amundson, L. Garren, P. Gartung, M. Paterno, EPJ Web Conf. 214, 05013
(2019)



EPJ Web of Conferences 251, 03056 (2021) https://doi.org/10.1051/epjcont/202125103056
CHEP 2021

[4] G.A. Stewart, B. Morgan, J.C. Villanueva, H.A. Willett, EP] Web Conf. 245, 05016
(2020)

[5] C. Green, J. Amundson, L. Garren, P. Gartung, E. Sexton-Kennedy, EPJ Web Conf. 245,
05035 (2020)

[6] V. Volkl, P. Gartung, T. Lin, A. Sailer, J. Pottgen, T. Madlener, B. Hegner, B. Viren,
B. Coutourier, B. Morgan et al., key4hep/key4hep-spack 2021-02-25a-opt (2021), https:
//doi.org/10.5281/zenodo.4569110

[7] A. Valenzuela et al., Cernvmm-fs ephemeral writable shell demo (2021), https://
indico.cern.ch/event/885212/contributions/4214041/

[8] https://spack.readthedocs.io/en/latest/known_issues.html#
variants-are-not-properly-forwarded-to-dependencies

[9] T. Gamblin et al., Spack: A package manager for HPC systems (2019), https://spack.
io/files/spack-rd100-2019-final.pdf



