
Performance of CUDA Unified Memory in CMS Heteroge-
neous Pixel Reconstruction

Matti J. Kortelainen1,∗ and Martin Kwok1,∗∗

1Fermi National Accelerator Laboratory, Batavia, IL, USA

Abstract. The management of separate memory spaces of CPUs and GPUs
brings an additional burden to the development of software for GPUs. To help
with this, CUDA unified memory provides a single address space that can be
accessed from both CPU and GPU. The automatic data transfer mechanism is
based on page faults generated by the memory accesses. This mechanism has a
performance cost, that can be with explicit memory prefetch requests. Various
hints on the inteded usage of the memory regions can also be given to further
improve the performance. The overall effect of unified memory compared to
an explicit memory management can depend heavily on the application. In this
paper we evaluate the performance impact of CUDA unified memory using the
heterogeneous pixel reconstruction code from the CMS experiment as a realistic
use case of a GPU-targeting HEP reconstruction software. We also compare the
programming model using CUDA unified memory to the explicit management
of separate CPU and GPU memory spaces.

1 Introduction1

Graphics Processing Units (GPUs) are commonly used to accelerate scientific computing2

because of their cost and power efficiency in solving many data-parallel problems. Their3

programming model introduces a concept of separate memory spaces between the host (CPU)4

and devices (GPUs). Traditionally the data in these memory spaces have to be managed5

explicitly, for example calling a function to copy the bytes from host to device (or vice versa),6

and possibly allocating a specific memory buffer in pinned host memory for asynchronous7

memory transfers and then copying data from regular host memory to pinned host memory8

(or vice versa). Data structures that use pointers are especially tedious to transfer because of9

the need to rewrite the pointers from host memory addresses to device memory addresses.10

CUDA [1] 6.0 introduced unified memory to simplify the programming model by pro-11

viding a single memory space that the runtime and the hardware manage between the host12

and devices according to demand. The automation comes with a runtime cost from tracking13

the memory accesses through page faults. The runtime penalty can be mitigated with explicit14

prefetch calls to initiate the data transfers earlier. The performance impact of unified memory15

with or without prefetching depends, however, on application and the exact memory access16

patterns and device kernel computation times.17

∗e-mail: matti@fnal.gov
∗∗e-mail: kkwok@fnal.gov

FERMILAB-CONF-21-064-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. 
Department of Energy, Office of Science, Office of High Energy Physics.



In this work, we evaluate the performance impact of the CUDA unified memory com-18

pared to manage the separate host and device memory spaces explicitly. We use the Patatrack19

heterogeneous pixel reconstruction workflow [2] from the CMS experiment [3] at the CERN20

LHC [4] as a use case for a set of realistic HEP reconstruction algorithms that are able to21

effectively utilize a GPU. Even if of this study being specific to CUDA, we believe the con-22

clusions largely hold on other technologies as well, except for a case where the host and the23

device share the same physical memory. In addition, some approaches for portable code be-24

tween CPU and GPUs rely on unified memory or equivalent, for example in NVIDIA HPC25

Compiler support for C++ parallel algorithms [5].26

This paper is organized as follows. Technical aspects of the Patatrack pixel reconstruc-27

tion are described in Section 2. The use of CUDA unified memory in the Patatrack code is28

discussed in Section 3. Performance measurements and their results are shown in Section 4,29

and conclusions are given in Section 5.30

2 Structure of the pixel reconstruction application31

The Patatrack pixel reconstruction pioneered offloading algorithms to NVIDIA GPUs with32

direct CUDA programming within the CMS data processing software (CMSSW) [6]. The33

offloaded chain of reconstruction algorithms takes the raw data of the CMS pixel detector as34

an input, along with the beamspot parameters and necessary calibration data, and produces35

pixel tracks and vertices as an output. CMSSW schedules algorithms as units that are called36

modules. The algorithms are organized in five CMSSW framework modules, depicted in37

Figure 1 as a directed acyclig graph (DAG) by their data dependencies, that communicate38

the intermediate data in the device memory through the CMSSW event data. The BeamSpot39

module only transfers the beamspot data to the device memory. The Clusters module transfers40

the raw data to the device memory, unpacks them, calibrates the individual pixels, and clusters41

the pixels on each detector module. The RecHits module estimates the 3D position of each42

cluster and forms hits. The Tracks module forms n-tuplets from the hits and fits the hit n-43

tuplets to obtain track parameters, and the Vertices module forms vertices from these tracks.44

There are further modules that optionally transfer the tracks and vertices to the CPU, and45

convert the Structure-of-Array (SoA) data structures to the data formats used by downstream46

algorithms in CMSSW, but those are not considered in this work and therefore not shown in47

Figure 1.48

The CUDA code of the Patatrack pixel reconstruction was extracted into a standalone49

program [7] mainly to explore performance portability technologies. The separation from50

CMSSW gives freedom e.g. for compilers, build rules, external libraries, and code organi-51

zation that would be more laborious to achieve in the full CMSSW software stack. These52

BeamSpot

Clusters

RecHits Tracks Vertices

Figure 1. Directed acyclic graph of the framework modules in the Patatrack pixel reconstruction. The
arrows denote the data dependencies of the modules, e.g. RecHits module depends on BeamSpot and
Clusters modules. The Clusters module (red rectangle) is the only one that transfers data from the device
to the host and uses the ExternalWork synchronization mechanism, while the other modules (blue oval)
do not.



benefits can be useful for other technology exploration than only portability tools, like the53

impact of using CUDA unified memory as in this work.54

The standalone program was crafted to mimic several aspects of the CMSSW, including55

similar organization of code into shared libraries, plugin libraries that are loaded dynamically56

based on run-time information, and a simple framework that uses Intel Threading Building57

Blocks (TBB) [8] for multi-threading. Borrowing from the CMSSW framework concurrency58

features [9–11], this simple framework implements only an event loop based on the TBB59

tasks, processing multiple events concurrently, and processing independent modules concur-60

rently for the same event. There is only a single module type of each module having a separate61

instance for each concurrent event, and the External Worker concept [12] is included in order62

to use the host threads to do other work while the device is running the offloaded work.63

The CMSSW tools to use the CUDA runtime directly from framework modules [12] are64

also included. On the device, the events are processed concurrently with CUDA streams.65

Each parallel branch in the data dependence DAG gets its own CUDA stream dynamically.66

In the case of Figure 1, this strategy means that the BeamSpot and Clusters modules get67

separate CUDA streams, the remaining modules queue their work in the same CUDA stream68

as the Clusters module, and RecHits module synchronizes the work of BeamSpot and Clusters69

modules with cudaStreamWaitEvent() before queueing its work.70

The standalone setup includes a binary data file that contains raw pixel detector data71

from 1000 simulated top quark pair production events from CMS Open Data [13], with an72

average of 50 superimposed pileup collisions with a center-of-mass energy of 13 TeV, using73

conditions corresponding to the design 2018 CMS detector. All of the data, about 250 MB, are74

read into the host memory at the job startup to exclude I/O from the throughput measurement.75

The necessary pixel detector conditions data are also stored in binary files, and are read into76

the host memory at the job startup time. The data processing throughput is measured by77

measuring the time spent in the event processing, and dividing the number of processed events78

with that time. This event processing time includes the time taken to copy the raw data of79

each event from the pre-read memory buffer into an object in the event data.80

3 Use of CUDA Unified Memory81

An important ingredient for the achieved performance of the Patatrack pixel tracking is82

a memory pool to amortize the costs of raw CUDA memory allocations. Therefore we83

first ported the memory pool, based on the CachingDeviceAllocator from the CUB84

library [14], to the semantics of cudaMallocManaged(). This development was fairly85

smooth, and provided a memory allocation API similar to the current code enabling a straight-86

forward migration path for the code.87

We migrated the code to use the unified memory component by component. The first mi-88

grated component was all the conditions data that are transferred to each device once during89

the job at their first use. In this use case, the unified memory allowed a significantly simpler90

code, depicted in Figure 2, compared to explicit memory management, shown in Figure 3.91

The explicit memory management approach has to deal with the complexity of allocating92

device memory for each device, transferring the data to each device, and keeping alive the93

pinned host memory at least until all transfers all complete. With unified memory it is suffi-94

cient to just allocate the memory, optionally advise on the usage of the memory region, and95

optionally prefetch the data.96

The following components were migrated to use unified memory: the BeamSpot, Clus-97

ters, and RecHits modules (see Figure 1). At the time of writing, the Tracks and Vertices98

modules are still to be migrated. For these components we introduced preprosessor macros99

to switch between explicit and unified memory for each component separately to be able to100



struct SiPixelFedCablingMapGPU; // definition omitted for brevity

class CablingWrapper {
public:
explicit CablingWrapper(SiPixelFedCablingMapGPU const& cablingMap) {
cudaMallocManaged(&cablingMap_ , sizeof(SiPixelFedCablingMapGPU));
*cablingMap_ = cablingMap;
int ndev;
cudaGetDeviceCount(ndev);
for (int device = 0; device < ndev; ++device) {
cudaMemAdvise(cablingMap_ , sizeof(SiPixelFedCablingMapGPU),

cudaMemAdviseSetReadMostly , device);
cudaSetDevice(device);
auto stream = cms::cuda::getStreamCache().get();
cudaMemPrefetchAsync(cablingMap_ , sizeof(SiPixelFedCablingMapGPU),

device, stream.get());
}
~CablingWrapper() {
cudaFree(cablingMap_);

}

const SiPixelFedCablingMapGPU* get() const {
return cablingMap_;

}

private:
SiPixelFedCablingMapGPU *cablingMap_;

};

Figure 2. A simplified example of the conditions data distribution to all devices with
the unified memory management. Caching of CUDA streams is visible with the call to
cms::cuda::getStreamCache().get();. That function returns an std::shared_ptr holding a
CUDA stream object that gets returned to the cache upon the shared_ptr destruction.

test their impact on performance. In the use cases of event data, we found the program-101

ming model with unified memory to be only a little bit simpler than with explicit memory102

management.103

We are using preprocessor macros also to enable prefetch calls104

(cudaMemPrefetchAsync()), and to advise the runtime that specific memory ranges105

are read only with cudaMemAdvise() and cudaMemAdviseSetReadMostly attribute. The106

programming model with prefetching is similar to explicit memory transfers. Advising the107

usage of a memory range, on the other hand, is more complicated in conjunction with a108

memory pool, because of having to unset the advise before freeing the memory range to109

the memory pool. Therefore, if either of these calls would be needed to gain performance,110

much of the simplicity in the programming model would be lost. We identify two use cases111

where programming would nevertheless be simpler than with explicit memory: for data to be112

transferred to many devices, and for data structures that heavily use pointers to refer to other113

locations in the unified memory space. Such data structures are tedious to manage explicitly114

because of having to re-write the pointers from host memory addresses to device memory115

addresses. The Patatrack pixel tracking code has only a few such data structures, and even116

they have only one level of pointer indirection. Therefore, migrating to unified memory does117

not bring obvious simplification to the event processing code.118



struct SiPixelFedCablingMapGPU; // definition omitted for brevity

class CablingWrapper {
public:
explicit CablingWrapper(SiPixelFedCablingMapGPU const& cablingMap) {
cudaMallocHost(&cablingMapHost , sizeof(SiPixelFedCablingMapGPU));
*cablingMapHost_ = cablingMap;

}
~CablingWrapper() {
cudaFreeHost(cablingMapHost_);

}

const SiPixelFedCablingMapGPU* getAsync(cudaStream_t cudaStream) const {
const auto& data = gpuData_.dataForCurrentDeviceAsync(cudaStream ,

[this](GPUData& data, cudaStream_t stream) {

cudaMalloc(&data.cablingMapDevice , sizeof(SiPixelFedCablingMapGPU)));
cudaMemcpyAsync(data.cablingMapDevice , this->cablingMapHost ,

sizeof(SiPixelFedCablingMapGPU), cudaMemcpyDefault , stream));
});
return data.cablingMapDevice;

}

private:
SiPixelFedCablingMapGPU *cablingMapHost_; // pointer to struct in CPU

struct GPUData {
~GPUData() {
cudaFree(cablingMapDevice);

}
SiPixelFedCablingMapGPU *cablingMapDevice; // pointer to struct in GPU

};
cms::cuda::ESProduct <GPUData> gpuData_; // distributes data to all devices

};

Figure 3. A simplified example of the conditions data distribution to all devices with the explicit
memory management. Implementation of the helper class cms::cuda::ESProduct<T> is omitted for
brevity. Its complexity can be summarized as 61 lines of code containing carefully crafted synchroniza-
tion logic. Checks on the return values of the CUDA API calls are also omitted for brevity.

4 Performance measurements and results119

The performance tests were done on GPU nodes of the Cori supercomputer at the National120

Energy Research Scientific Computing Center (NERSC). A Cori GPU node has two sockets121

with Intel Xeon Gold 6148 ("Skylake") processors, each with 20 cores and 2 threads per core,122

and eight NVIDIA V100 GPUs. For this work we used only one CPU socket, to avoid NUMA123

effects, and one GPU. In all tests, the threads were pinned to a single socket, and the node124

was free from other activity. Each job was run for approximately 5 minutes, processing the125

set of 1000 individual events for some integer factor times, and repeated 8 times on random126

nodes of the GPU cluster. The code was compiled with GCC 8.3.0, and nvcc from CUDA127

11.1.128

Using unified memory for only the conditions data is expected to have a smaller impact on129

the performance than using it for both the conditions and event data, because the conditions130

data needs to be updated orders of magnitude less frequently; in the case of the standalone131

Patatrack pixel tracking program exactly once at the beginning of the job. This difference132

is shown in Figure 4, which depicts the event processing throughput as a function of events133



2 4 6 8 10 12
Concurrent events

0

250

500

750

1000

1250

1500

1750

Th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

Explicit memory
Unified memory for conditions
Unified memory up to Rechits

Figure 4. Event processing throughput of the standalone Patatrack pixel tracking using explicit mem-
ory (blue), CUDA unified memory applied to the management of conditions data (orange) and unified
memory applied to all modules up to the RecHits module (green) as a function of the number of con-
current events. The program uses the same number of threads as concurrent events except for the case
of 1 concurrent event, for which 2 threads are used. For the full unified memory case, the highest
throughput was achieved by advising read-only memory regions with cudaMemAdvise() and without
prefetching data. Using unified memory for conditions data shows an impact of less than 1 % on the
overall throughput with respect to explicit memory. The quoted uncertainties correspond to the sample
standard deviation of 8 trials.

being processed concurrently using unified memory only for conditions data, and for condi-134

tions and event data for the modules that have been migrated so far, and compares those to135

the throughput of managing the host and device memory explicitly. The throughput of using136

unified memory only for the conditions data is observed to be within 1 % to that of the ex-137

plicit memory management throughout the tested range of concurrent events. Using unified138

memory for the event data, however, results in a significant degradation in the throughput, to139

55–60 % with respect to the explicit memory management.140

The throughput measurement for the unified memory shown in Figure 4 is the best one141

from the set of with or without data prefetching with cudaMemPrefetchAsync(), and with142

or without advising read-only memory regions with cudaMemAdvise(). The throughput as a143

function of concurrent events for all these four cases are shown in Figure 5. Even though both144

options are intended improve the performance of unified memory, we found that in the Pata-145

track pixel tracking application the highest throughput is obtained with advising read-only146

memory regions, but without prefetching data. With respect to this configuration, enabling147

prefetching (orange line in Figure 5) leads to 20–35 % decrease in throughput, which was not148

expected. Without the read-only memory advice, prefetching the data improves the through-149

put by up to 20 %. Conversely, without the data prefetch, advising the read-only memory150

regions improves the throughput by 40–60 %.151

We noticed that using unified memory without data prefetching and memory advice in-152

troduces a non-monotonic dependence in the throughput on the number of concurrent events153

and threads.154



2 4 6 8 10 12 14
Concurrent events

0

200

400

600

800

1000

Th
ro

ug
hp

ut
 (e

ve
nt

s/
s)

Unified memory up to RecHits
With prefetch
Without advise
Without advise, with prefetch

2 4 6 8 10 12 14
Concurrent events

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Th
ro

ug
hp

ut
 ra

tio
 w

.r.
t d

ef
au

lt

With prefetch
Without advise
Without advise, with prefetch

Figure 5. Left: Event processing throughput of the Patatrack pixel tracking using different unified
memory options as a function of the number of concurrent events. The program uses the same number of
threads as concurrent events except for the case of 1 concurrent event, for which 2 threads are used. The
highest throughput is achieved using without cudaMemPrefetchAsync() and with cudaMemAdvise()
(blue) and is chosen as the default option. Other combinations of prefetch and advise options varied
with respect to the default options are shown. The quoted uncertainty corresponds to sample standard
deviation of 8 trials.
Right: Ratio of throughput using unified memory with respect to the default unified memory options as
a function of number of threads.

5 Conclusions155

We have ported parts of the Patatrack heterogeneous pixel reconstruction code from explicit156

CUDA host and device memory management to use CUDA unified memory in a standalone157

setup, and measured the impact on the event processing throughput with NVIDIA V100158

GPU. We observed that using unified memory for infrequently changing conditions data gave159

performance within 1 % of the throughput achieved with the explicit memory management.160

In this use case the unified memory provided clearly simpler programming model. For the161

event data, however, we observed that already partial use of the unified memory incurred162

a significant decrease in the maximum throughput, from 1840 ± 20 events/s to 1096 ± 4163

events/s. We achieved the best performance with unified memory by advising that applicable164

memory regions are read only, but without prefetching the event data from host to device.165

The prefetching decreasing the performance was unexpected, we presume this effect could166

be related to lock contention of the global mutex within CUDA runtime.167

Acknowledgements168

This work was supported by the U.S. Department of Energy, Office of Science, Office of High169

Energy Physics, High Energy Physics Center for Computational Excellence (HEP-CCE) at170

Fermi National Accelerator Laboratory, under B&R KA2401045. This research used re-171

sources of the National Energy Research Scientific Computing Center (NERSC), a U.S. De-172

partment of Energy Office of Science User Facility located at Lawrence Berkeley National173

Laboratory, operated under Contract No. DE-AC02-05CH11231.174



References175

[1] NVIDIA, CUDA C++ Programming Guide, version 11.2 (2021)176

[2] A. Bocci, V. Innocente, M. Kortelainen, F. Pantaleo, M. Rovere, Front. Big. Data 3,177

601728 (2020), 2008.13461178

[3] CMS Collaboration, JINST 3, S08004 (2008)179

[4] L. Evans, P. Bryant, JINST 3, S08001 (2008)180

[5] NVIDIA, NVIDIA HPC Compilers, C++ parallel algorithms (2021)181

[6] C.D. Jones, M. Paterno, J. Kowalkowski, L. Sexton-Kennedy, W. Tanenbaum, The New182

CMS Event Data Model and Framework, in Proceedings of International Conference183

on Computing in High Energy and Nuclear Physics (CHEP06) (2006)184

[7] Standalone Patatrack pixel tracking, https://github.com/cms-patatrack/185

pixeltrack-standalone/ (2021), accessed: 2021-02-07186

[8] oneAPI Threading Building Blocks, https://github.com/oneapi-src/oneTBB (2021), ac-187

cessed: 2021-02-07188

[9] C.D. Jones, E. Sexton-Kennedy, J. Phys.: Conf. Series 513, 022034 (2014)189

[10] C.D. Jones, L. Contreras, P. Gartung, D. Hufnagel, L. Sexton-Kennedy, J. Phys.: Conf.190

Series 664, 072026 (2015)191

[11] C.D. Jones, J. Phys.: Conf. Series 898, 042008 (2017)192

[12] A. Bocci, D. Dagenhart, V. Innocente, C. Jones, M. Kortelainen, F. Pantaleo, M. Rovere,193

EPJ Web Conf. 245, 05009 (2020)194

[13] CMS Collaboration, TTToHadronic_TuneCP5_13TeV-powheg-pythia8 in FEVT-195

DEBUGHLT format for 2018 collision data. CERN Open Data Portal.,196

doi:10.7483/OPENDATA.CMS.GOB0.0LEW (2019)197

[14] CUB, https://nvlabs.github.io/cub/ (2021), accessed: 2021-02-07198

https://github.com/cms-patatrack/pixeltrack-standalone/
https://github.com/cms-patatrack/pixeltrack-standalone/
https://github.com/cms-patatrack/pixeltrack-standalone/
https://github.com/oneapi-src/oneTBB
http://doi.org/10.7483/OPENDATA.CMS.GOB0.0LEW
https://nvlabs.github.io/cub/

	Introduction
	Structure of the pixel reconstruction application
	Use of CUDA Unified Memory
	Performance measurements and results
	Conclusions



